首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Leukemia inhibitory factor (LIF) and ciliary neurotrophic factor (CNTF) are neurally active cytokines, or neurokines. LIF signals through a receptor consisting of gp130 and the low affinity LIF receptor (LIFR), while the CNTF receptor consists of gp130, LIFR, and the low affinity CNTF receptor (CNTFR). Ser1044 of the LIFR is phosphorylated by Erk1/2 MAP kinase. Stimulation of neural cells with growth factors which strongly activate Erk1/2 decreases LIF-mediated signal transduction due to increased degradation of the LIFR as a consequence of Erk1/2-dependent phosphorylation of the receptor at Ser1044.  相似文献   

2.
Abstract: The cytokines leukemia inhibitory factor (LIF) and ciliary neurotrophic factor (CNTF) have been implicated in determination of neuronal phenotype as well as promotion of neuronal survival. However, the intracellular mechanisms by which their signals are transduced remain poorly understood. We have previously studied the regulation of vasoactive intestinal polypeptide gene expression by LIF and CNTF in the NBFL neuroblastoma cell line. Because these cytokines induce tyrosine phosphorylation that may lead to Ras activation, we explored a possible role for Ras in LIF- and CNTF-induced signal transduction. In NBFL cells LIF increases activated Ras in a rapid, transient, and concentration-dependent manner. CNTF and a related cytokine, oncostatin M, produce similar increases. CNTF and LIF also increase activated Ras in neuron-enriched dissociated cultures of sympathetic ganglia. Moreover, these cytokines rapidly and transiently induce specific tyrosine-phosphorylated proteins, p165 and p195. The protein kinase inhibitors K252a and staurosporine block LIF-induced increases in tyrosine phosphorylation, activated Ras, and vasoactive intestinal polypeptide mRNA in NBFL cells. These data support a possible role for Ras in the cell differentiation effects of LIF and CNTF.  相似文献   

3.
Interleukin-6 (IL-6) and ciliary neurotrophic factor (CNTF) are "4-helical bundle" cytokines of the IL-6 type family of neuropoietic and hematopoietic cytokines. IL-6 signals by induction of a gp130 homodimer (e.g. IL-6), whereas CNTF and leukemia inhibitory factor (LIF) signal via a heterodimer of gp130 and LIF receptor (LIFR). Despite binding to the same receptor component (gp130) and a similar protein structure, IL-6 and CNTF share only 6% sequence identity. Using molecular modeling we defined a putative LIFR binding epitope on CNTF that consists of three distinct regions (C-terminal A-helix/N-terminal AB loop, BC loop, C-terminal CD-loop/N-terminal D-helix). A corresponding gp130-binding site on IL-6 was exchanged with this epitope. The resulting IL-6/CNTF chimera lost the capacity to signal via gp130 on cells without LIFR, but acquired the ability to signal via the gp130/LIFR heterodimer and STAT3 on responsive cells. Besides identifying a specific LIFR binding epitope on CNTF, our results suggest that receptor recognition sites of cytokines are organized as modules that are exchangeable even between cytokines with limited sequence homology.  相似文献   

4.
5.
6.
Fusion proteins of the extracellular parts of cytokine receptors, also known as cytokine traps, turned out to be promising cytokine inhibitors useful in anti-cytokine therapies. Here we present newly designed cytokine traps for murine and human leukemia inhibitory factor (LIF) as prototypes for inhibitors targeting cytokines that signal through a heterodimer of two signaling receptors of the glycoprotein 130 (gp130) family. LIF signals through a receptor heterodimer of LIF receptor (LIFR) and gp130 and induces the tyrosine phosphorylation of STAT3 leading to target gene expression. The analysis of various receptor fusion and deletion constructs revealed that a truncated form of the murine LIF receptor consisting of the first five extracellular domains was a potent inhibitor for human LIF. For the efficient inhibition of murine LIF, the cytokine-binding module of murine gp130 had to be fused to the first five domains of murine LIFR generating mLIF-RFP (murine LIFR fusion protein). The tyrosine phosphorylation of STAT3 and subsequent gene induction induced by human or murine LIF are completely blocked by the respective inhibitor. Furthermore, both inhibitors are specific and do not alter the bioactivities of the closely related cytokines interleukin (IL)-6 and oncostatin M. The gained knowledge on the construction of LIF inhibitors can be transferred to the design of inhibitors for related cytokines such as IL-31, IL-27, and oncostatin M for the treatment of inflammatory and malignant diseases.  相似文献   

7.
8.
Leukemia inhibitory factor (LIF), a member of the gp130 family of helical cytokines, is involved in the hemopoietic and neural systems. The LIF signal transducing complex contains two receptor molecules, the LIF receptor (LIFR) and gp130. The extracellular region of the LIFR is unique in that it includes three membrane-proximal fibronectin type III domains and two cytokine binding domains (CBDs) separated by an immunoglobulin-like domain. Although some mutagenesis data on LIF are available, it is not yet known which regions of LIFR or gp130 bind LIF. Nor is it known whether LIFR contacts gp130 in a manner similar to the growth hormone receptor dimer and, if so, through which of its CBDs. To attempt to elucidate these matters and to investigate the receptor complex, models of the CBDs of LIFR and the CBD of gp130 were constructed. Analyses of the electrostatic isopotential surfaces of the CBD models suggest that gp130 and the membrane-proximal CBD of LIFR hetero-dimerize and bind LIF through contacts similar to those seen in the growth hormone receptor dimer. This work further demonstrates the utility of electrostatic analyses of homology models and suggests a strategy for biochemical investigations of the LIF-receptor complex.  相似文献   

9.
10.
The related cytokines, interleukin-6 (IL-6), oncostatin M (OSM), and leukemia inhibitory factor (LIF) direct the formation of specific heteromeric receptor complexes to achieve signaling. Each complex includes the common signal-transducing subunit gp130. OSM and LIF also recruit the signaling competent, but structurally distinct OSMRbeta and LIFRalpha subunits, respectively. To test the hypothesis that the particularly prominent cell regulation by OSM is due to signals contributed by OSMRbeta, we introduced stable expression of human or mouse OSMRbeta in rat hepatoma cells which have endogenous receptors for IL-6 and LIF, but not OSM. Both mouse and human OSM engaged gp130 with their respective OSMRbeta subunits, but only human OSM also acted through LIFR. Signaling by OSMRbeta-containing receptors was characterized by highest activation of STAT5 and ERK, recruitment of the insulin receptor substrate and Jun-N-terminal kinase pathways, and induction of a characteristic pattern of acute phase proteins. Since LIF together with LIFRalpha appear to form a more stable complex with gp130 than OSM with gp130 and OSMRbeta, co-activation of LIFR and OSMR resulted in a predominant LIF-like response. These results suggest that signaling by IL-6 cytokines is not identical, and that a hierarchical order of cytokine receptor action exists in which LIFR ranks as dominant member.  相似文献   

11.
12.
He W  Gong K  Smith DK  Ip NY 《FEBS letters》2005,579(20):4317-4323
Ciliary neurotrophic factor (CNTF) forms a functional receptor complex containing the CNTF receptor, gp130, and the leukemia inhibitory factor receptor (LIFR). However, the nature and stoichiometry of the receptor-mediated interactions in this complex have not yet been fully resolved. We show here that signaling by CNTF, but not by LIF or oncostatin M (OSM), was abolished in cells overexpressing a LIFR mutant with the N-terminal cytokine binding domain deleted. Our results illustrate molecular differences between the CNTF active receptor complex and those of LIF and OSM and provide further support for the hexameric model of the CNTF receptor complex.  相似文献   

13.
14.
15.
Cross-talk among gp130 cytokines in adipocytes   总被引:3,自引:0,他引:3  
  相似文献   

16.
17.
In contrast to other hematopoietic cytokine receptors, the leukemia inhibitory factor receptor (LIFR) possesses two cytokine binding modules (CBMs). Previous studies suggested that the NH(2)-terminal CBM and the Ig-like domain of the LIFR are most important for LIF binding and activity. Using the recently engineered designer cytokine IC7, which induces an active heterodimer of the LIFR and gp130 after binding to the IL-6R, and several receptor chimeras of the LIFR and the interleukin-6 receptor (IL-6R) carrying the CBM of the IL-6R in place of the COOH-terminal LIFR CBM, we could assign individual receptor subdomains to individual binding sites of the ligand. The NH(2)-terminal CBM and the Ig-like domain of the LIFR bind to ligand site III, whereas the COOH-terminal CBM contacts site I. Furthermore, we show that LIFR mutants carrying the IL-6R CBM instead of the COOH-terminal CBM can replace the IL-6R by acting as an alpha-receptor for IL-6. However, in situations where a signaling competent receptor is bound at IL-6 site I, ligand binding to site III is an absolute requirement for participation of the receptor in a signaling heterodimer with gp130; i.e., a functional receptor complex of IL-6 type cytokines cannot be assembled solely via site I and II as in the growth hormone receptor complex.  相似文献   

18.
Leukemia inhibitory factor (LIF) signals via the heterodimeric receptor complex comprising the LIF receptor alpha subunit (LIFRalpha) and the common signal transducing subunit for interleukin-6 cytokine receptors, gp130. This study demonstrates that in different cell types, the level of LIFRalpha decreases during treatment with LIF or the closely related cytokine oncostatin M (OSM). Moreover, insulin and epidermal growth factor induce a similar LIFRalpha down-regulation. The regulated loss of LIFRalpha is specific since neither gp130 nor OSM receptor beta shows a comparable change in turnover. LIFRalpha down-regulation correlates with reduced cell responsiveness to LIF. Using protein kinase inhibitors and point mutations in LIFRalpha, we demonstrate that LIFRalpha down-regulation depends on activation of extracellular signal-regulated kinase 1/2 and phosphorylation of the cytoplasmic domain of LIFRalpha at serine 185. This modification appears to promote the endosomal/lysosomal pathway of the LIFRalpha. These results suggest that extracellular signal-regulated kinase-activating factors like OSM and growth factors have the potential to lower specifically LIF responsiveness in vivo by regulating LIFRalpha half-life.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号