首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
A new pterocarpan glycoside, glycinol-3-O-β-d-glucopyranoside (1), and a new dihydrochalcone glycoside, ismaeloside A (2), were isolated together with 13 known compounds, including several flavonoids (38), lignans (911), and phenolic compounds (1215), from the methanol extract of the aerial parts of Ducrosia ismaelis. The chemical structures of these compounds were elucidated from spectroscopic data and by comparison of these data with previously published results. The anti-osteoporotic and antioxidant activities of the isolated compounds were assessed using tartrate-resistant acid phosphatase (TRAP), oxygen radical absorbance capacity (ORAC), and reducing capacity assays. Compound 15 exhibited a dose-dependent inhibition of osteoclastic TRAP activity with a TRAP value of 86.05 ± 6.55% of the control at a concentration of 10 μM. Compounds 1, 35, and 8 showed potent peroxyl radical-scavenging capacities with ORAC values of 22.79 ± 0.90, 25.57 ± 0.49, 20.41 ± 0.63, 26.55 ± 0.42, and 24.83 ± 0.12 μM Trolox equivalents (TE) at 10 μM, respectively. Only compound 9 was able to significantly reduce Cu(I) with 23.44 μM TE at a concentration of 10 μM. All of the aforementioned compounds were isolated for the first time from a Ducrosia species.  相似文献   

2.
《Phytomedicine》2014,21(10):1146-1153
IntroductionR(+)-pulegone is a ketone monoterpene and it is the main constituent of essential oils in several plants. Previous studies provided some evidence that R(+)-pulegone may act on isolated cardiac myocytes. In this study, we evaluated in extended detail, the pharmacological effects of R(+)-pulegone on cardiac tissue.MethodsUsing in vivo measurements of rat cardiac electrocardiogram (ECG) and patch-clamp technique in isolated myocytes we determinate the influence of R(+)-pulegone on cardiac excitability.ResultsR(+)-pulegone delayed action potential repolarization (APR) in a concentration-dependent manner (EC50 = 775.7 ± 1.48, 325.0 ± 1.30, 469.3 ± 1.91 μM at 10, 50 and 90% of APR respectively). In line with prolongation of APR R(+)-pulegone, in a concentration-dependent manner, blocked distinct potassium current components (transient outward potassium current (Ito), rapid delayed rectifier potassium current (IKr), inactivating steady state potassium current (Iss) and inward rectifier potassium current (IK1)) (EC50 = 1441 ± 1.04; 605.0 ± 1.22, 818.7 ± 1.22; 1753 ± 1.09 μM for Ito, IKr, Iss and IK1, respectively). The inhibition occurred in a fast and reversible way, without changing the steady-state activation curve, but instead shifting to the left the steady-state inactivation curve (V1/2 from −56.92 ± 0.35 to −67.52 ± 0.19 mV). In vivo infusion of 100 mg/kg R(+)-pulegone prolonged the QTc (∼40%) and PR (∼62%) interval along with reducing the heart rate by ∼26%.ConclusionTaken together, R(+)-pulegone prolongs the APR by inhibiting several cardiomyocyte K+ current components in a concentration-dependent manner. This occurs through a direct block by R(+)-pulegone of the channel pore, followed by a left shift on the steady state inactivation curve. Finally, R(+)-pulegone induced changes in some aspects of the ECG profile, which are in agreement with its effects on potassium channels of isolated cardiomyocytes.  相似文献   

3.
Freeze tolerant insects must not only survive extracellular ice formation but also the generation of reactive oxygen species (ROS) during oxygen reperfusion upon thawing. Furthermore, diurnal fluctuations in temperature place temperate insects at risk of being exposed to multiple freeze–thaw cycles, yet few studies have examined metrics of survival and oxidative stress in freeze-tolerant insects subjected to successive freezing events. To address this, we assessed survival in larvae of the goldenrod gall fly Eurosta solidaginis, after being subjected to 0, 5, 10, 20, or 30 diurnally repeated cold exposures (RCE) to −18 °C or a single freeze to −18 °C for 20 days. In addition, we measured indicators of oxidative stress, levels of cryoprotectants, and total aqueous antioxidant capacity in animals exposed to the above treatments at 8, 32, or 80 h after their final thaw. Repeated freezing and thawing, rather than time spent frozen, reduced survival as only 30% of larvae subjected to 20 or 30 RCE successfully pupated, compared to those subjected to fewer RCE or a single 20 d freeze, of which 82% pupated. RCE had little effect on the concentration of the cryoprotectant glycerol (4.26 ± 0.66 μg glycerol·ng protein−1 for all treatments and time points) or sorbitol (18.8 ± 2.9 μg sorbitol·mg protein−1 for all treatments and time points); however, sorbitol concentrations were more than twofold higher than controls (16.3 ± 2.2 μg sorbitol·mg protein−1) initially after a thaw in larvae subjected to a single extended freeze, but levels returned to values similar to controls at 80 h after thaw. Thawing likely produced ROS as total aqueous antioxidant capacities peaked at 1.8-fold higher than controls (14.7 ± 1.6 mmol trolox·ng protein−1) in animals exposed to 5, 10, or 20 RCE. By contrast, aqueous antioxidant capacities were similar to controls in larvae subjected to 30 RCE or the single 20 d freeze regardless of time post final thaw, indicating these animals may have had an impaired ability to produce primary antioxidants. Larvae lacking an antioxidant response also had elevated levels of oxidized proteins, nearly twice that of controls (21.8 ± 3.2 mmol chloramine-T·mg protein−1). Repeated freezing also lead to substantial oxidative damage to lipids that was independent of aqueous antioxidant capacity; peroxides were, on average, 5.6-fold higher in larvae subjected to 10, 20 or 30 RCE compared to controls (29.1 ± 7.3 mmol TMOP·μg protein−1). These data suggest that oxidative stress due to repeated freeze–thaw cycles reduces the capacity of E. solidaginis larvae to survive freezing.  相似文献   

4.
The study aimed to evaluate extraction efficiency, detection and quantification of phytochemicals, minerals and antioxidative capacity of different parts of Salacia chinensis L. Continuous shaking extraction, steam bath assisted extraction, ultrasonic extraction and microwave assisted extraction with varied time intervals were employed for extraction of phenolics, flavonoids, and antioxidants. Preliminary screening revealed the presence of wide array of metabolites along with carbohydrates and starch. Steam bath assisted extraction for 10 min exposure was found most suitable for extraction phenolics (46.02 ± 2.30 mg of gallic acid equivalent per gram of dry weight and 48.57 ± 2.42 mg of tannic acid equivalent per gram of dry weight) and flavonoids (35.26 ± 1.61 mg of quercetin equivalent per gram of dry weight and 51.60 ± 2.58 mg of ellagic acid equivalent per gram of dry weight). In support, reverse phase-high performance liquid chromatography- diode array detector confirmed the presence of seven pharmaceutically important phenolic acids. Antioxidant capacity was measured by 1, 1- diphenyl-1-picryl hydrazyl (DPPH), ferric reducing antioxidant power (FRAP), 2, 2′-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) scavenging (ABTS) and N, N-dimethyl-p-phenylenediamine (DMPD) assays and represented as trolox equivalent antioxidant capacity (TEAC) and ascorbic acid equivalent antioxidant capacity (AEAC). Antioxidant capacity ranged from 121.02 ± 6.05 to 1567.28 ± 78.36 µM trolox equivalent antioxidant capacity and 56.62 ± 2.83 to 972.48 ± 48.62 µM ascorbic acid equivalent antioxidant capacity. Roots showed higher yields of illustrated biochemical parameters, however fresh fruit pulp was found a chief source of minerals. Gas chromatography-mass spectroscopic analysis revealed the presence of a vast array of phytoconstituents associated with different plant parts. The present study revealed the amounts of minerals and diverse phytoconstituents in various parts of S. chinensis and confirmed its medicinal and nutritional implications.  相似文献   

5.
《Animal reproduction science》2006,91(3-4):307-328
In vitro fertilization (IVF) and embryonic development of mature and meiotically arrested porcine oocytes were compared in the present study. After in vitro maturation (IVM) of cumulus-oocyte complexes for 48 h, 75.4% of them extruded a visible polar body (PB). Most of the oocytes with a first polar body (PB+ group) were at the metaphase-II (M-II) stage (91.4%). Most of the oocytes without a visible polar body (PB− group) appeared to be arrested at the germinal vesicle (GV) (41.6%) and metaphase-I (M-I) (34.0%) stages. After IVF of oocytes (day of IVF = Day 0), there was no difference between PB+ and PB groups in rates of sperm penetration, mono-spermy, however oocyte activation rate after penetration was greater in the PB+ than in the PB− group (P < 0.05). On Day 2, there was no difference between rates of embryos cleaved at the 2–4 cell stages in PB+ and PB− groups (42.1 ± 48.8% and 33.6 ± 2.1%, respectively). On Day 4, the rate of PB+ embryos developing beyond the 4-cell stage was greater than that of PB− embryos (P < 0.05, 31.7 ± 3.9% and 14.1 ± 1.5%, respectively), and PB+ embryos had more cells than the PB− embryos (P < 0.05, 8.3 ± 0.4 and 6.0 ± 0.8 cells, respectively). On Day 6, a greater proportion of PB+ embryos developed to the blastocyst stage than did PB− embryos (P < 0.05, 34.6 ± 2.4% and 20.7 ± 2.8%, respectively). However, when the GV oocytes of the PB− group were not included in recalculations, there was no difference in blastocyst rates between M-I arrested and M-II oocytes (35.3 and 34.6%, respectively). The number of blastomere nuclei in embryos obtained from the PB+ group (52.0 ± 2.5) was greater than that from the PB− group (P < 0.05, 29.1 ± 2.8). The proportion of degenerated parts in the blastocysts, as determined by morphological appearance, was the same in the PB+ and PB− groups. Although the quality of PB+ embryos was enhanced as compared with that of the PB− group, the proportion of inner cell mass and trophectoderm cells in PB+ and PB− blastocysts did not differ (1:1.9 and 1:2.2, respectively). Chromosome analysis revealed that PB+ blastocysts had more diploidy (P < 0.05, 69.7%) than did PB− blastocysts (44.0%), whereas PB− blastocysts had more triploid cells (P < 0.05, 34.0%) than did PB+ oocytes (8.4%). These results indicate that pig oocytes arrested before the M-II stage (M-I oocytes) undergo cytoplasmic maturation during maturation culture and have the same ability to develop to blastocysts after IVF as M-II oocytes, but some of them resulted in degeneration or delayed development with poor embryo quality.  相似文献   

6.
In isolated rat lung perfused with a physiological saline solution (5.5 mM glucose), complex I inhibitors decrease lung tissue ATP and increase endothelial permeability (Kf), effects that are overcome using an amphipathic quinone (CoQ1) [Free Radic. Biol. Med. 65:1455–1463; 2013]. To address the microvascular endothelial contribution to these intact lung responses, rat pulmonary microvascular endothelial cells in culture (PMVEC) were treated with the complex I inhibitor rotenone and ATP levels and cell monolayer permeability (PS) were measured. There were no detectable effects on ATP or permeability in experimental medium that, like the lung perfusate, contained 5.5 mM glucose. To unmask a potential mitochondrial contribution, the glucose concentration was lowered to 0.2 mM. Under these conditions, rotenone decreased ATP from 18.4±1.6 (mean±SEM) to 4.6±0.8 nmol/mg protein, depolarized the mitochondrial membrane potential (Δψm) from −129.0±3.7 (mean±SEM) to −92.8±5.5 mV, and decreased O2 consumption from 2.0±0.1 (mean±SEM) to 0.3±0.1 nmol/min/mg protein. Rotenone also increased PMVEC monolayer permeability (reported as PS in nl/min) to FITC–dextran (~40 kDa) continually over a 6 h time course. When CoQ1 was present with rotenone, normal ATP (17.4±1.4 nmol/mg protein), O2 consumption (1.5±0.1 nmol/min/mg protein), Δψm (−125.2±3.3 mV), and permeability (PS) were maintained. Protective effects of CoQ1 on rotenone-induced changes in ATP, O2 consumption rate, Δψm, and permeability were blocked by dicumarol or antimycin A, inhibitors of the quinone-mediated cytosol–mitochondria electron shuttle [Free Radic. Biol. Med. 65:1455–1463; 2013]. Key rotenone effects without and with CoQ1 were qualitatively reproduced using the alternative complex I inhibitor, piericidin A. We conclude that, as in the intact lung, PMVEC ATP supply is linked to the permeability response to complex I inhibitors. In contrast to the intact lung, the association in PMVEC was revealed only after decreasing the glucose concentration in the experimental medium from 5.5 to 0.2 mM.  相似文献   

7.
PurposeThis study evaluates the radiological properties of different 3D printing materials for a range of photon energies, including kV and MV CT imaging and MV radiotherapy beams.MethodsThe CT values of a number of materials were measured on an Aquilion One CT scanner at 80 kVp, 120 kVp and a Tomotherapy Hi Art MVCT imaging beam. Attenuation of the materials in a 6 MV radiotherapy beam was investigated.ResultsPlastic filaments printed with various infill densities have CT values of −743 ± 4, −580 ± 1 and −113 ± 3 in 120 kVp CT images which approximate the CT values of low-density lung, high-density lung and soft tissue respectively. Metal-infused plastic filaments printed with a 90% infill density have CT values of 658 ± 1 and 739 ± 6 in MVCT images which approximate the attenuation of cortical bone. The effective relative electron density REDeff is used to describe the attenuation of a megavoltage treatment beam, taking into account effects relating to the atomic number and mass density of the material. Plastic filaments printed with a 90% infill density have REDeff values of 1.02 ± 0.03 and 0.94 ± 0.02 which approximate the relative electron density RED of soft tissue. Printed resins have REDeff values of 1.11 ± 0.03 and 1.09 ± 0.03 which approximate the RED of bone mineral.Conclusions3D printers can model a variety of body tissues which can be used to create phantoms useful for both imaging and dosimetric studies.  相似文献   

8.
《Process Biochemistry》2014,49(10):1691-1698
Hydrolysates and peptide fractions obtained from Mucuna pruriens protein concentrate were studied for their angiotensin converting enzyme (ACE) inhibitory, hypotensive and antioxidant activities. The hydrolysate obtained by pepsin–pancreatin (HPP) was the most active with an ACE IC50 value of 19.5 μg/mL, a Trolox equivalent antioxidant capacity (TEAC) value of 102.8 mM/mg and a ferric reducing power (FRP) IC50 of 67.2 μg/mL. At a dose of 5 mg/kg HPP decrease systolic (32.2%) and diastolic (37%) blood pressure in rats more pronounced than Captopril. The peptide fraction <1 kDa from HPP was the most active with an ACE inhibitory of 10.2 μg/mL (IC50), a TEAC value of 709.8 mM/mg and a FRP IC50 of 54.9 μg/mL. These results indicate that the hydrolysates and peptide fractions of M. pruriens would be used as nutraceuticals ingredients for preventing and providing therapy against hypertension and diseases related to oxidative damage.  相似文献   

9.
The reduction potential of a cell is related to its fate. Proliferating cells are more reduced than those that are differentiating, whereas apoptotic cells are generally the most oxidized. Glutathione is considered the most important cellular redox buffer and the average reduction potential (Eh) of a cell or organism can be calculated from the concentrations of glutathione (GSH) and glutathione disulfide (GSSG). In this study, triplicate groups of cod larvae at various stages of development (3 to 63 days post-hatch; dph) were sampled for analyses of GSSG/2GSH concentrations, together with activities of antioxidant enzymes and expression of genes encoding proteins involved in redox metabolism. The concentration of total GSH (GSH+GSSG) increased from 610±100 to 1260±150 μmol/kg between 7 and 14 dph and was then constant until 49 dph, after which it decreased to 810±100 μmol/kg by 63 dph. The 14- to 49-dph period, when total GSH concentrations were stable, coincides with the proposed period of metamorphosis in cod larvae. The concentration of GSSG comprised approximately 1% of the total GSH concentration and was stable throughout the sampling series. This resulted in a decreasing Eh from −239±1 to −262±7 mV between 7 and 14 dph, after which it remained constant until 63 dph. The changes in GSH and Eh were accompanied by changes in the expression of several genes involved in redox balance and signaling, as well as changes in activities of antioxidant enzymes, with the most dynamic responses occurring in the early phase of cod larval development. It is hypothesized that metamorphosis in cod larvae starts with the onset of mosaic hyperplasia in the skeletal muscle at approximately 20 dph (6.8 mm standard length (SL)) and ends with differentiation of the stomach and disappearance of the larval finfold at 40 to 50 dph (10–15 mm SL). Thus, metamorphosis in cod larvae seems to coincide with high and stable total concentrations of GSH.  相似文献   

10.
This study investigated the phytochemical, antioxidative, antimicrobial and cytotoxic effects of Leea indica leaf ethanol extract. Phytochemical values namely total phenolic and flavonoid contents, total antioxidant capacity, DPPH radical scavenging effect, FeCl3 reducing power, DMSO superoxide scavenging effect and Iron chelating effects were studied by established methods. Antibacterial, antifungal and cytotoxic effects were screened by disk diffusion technique, food poison technique and brine shrimp bioassay, respectively. Results showed the total phenolic content 24.00 ± 0.81 g GAE/100 g, total flavonoid content 194.68 ± 2.43 g quercetin/100 g and total antioxidant capacity 106.61 ± 1.84 g AA/100 g dry extract. Significant (P < 0.05) IC50 values compared to respective standards were recorded in DPPH radical scavenging (139.83 ± 1.40 μg/ml), FeCl3 reduction (16.48 ± 0.64 μg/ml), DMSO superoxide scavenging (676.08 ± 5.80 μg/ml) and Iron chelating (519.33 ± 16.96 μg/ml) methods. In antibacterial screening, the extract showed significant (P < 0.05) zone of inhibitions compared to positive controls Ampicillin and Tetracycline against Gram positive Bacillus subtilis, Bacillus cereus, Bacillus megaterium, and Staphylococcus aureus and Gram negative Salmonella typhi, Salmonella paratyphi, Pseudomonas aeroginosa, Shigella dysenteriae, Vibrio cholerae, and Escherichia coli. Significant minimum inhibitory concentrations compared to tetracycline were obtained against the above organisms. In antifungal assay, the extract inhibited the growth of Aspergillus flavus, Candida albicans and Fusarium equisetii by 38.09 ± 0.59, 22.58 ± 2.22, and 22.58 ± 2.22%, respectively. The extract showed a significant LC50 value compared to vincristine sulfate in cytotoxic assay. The results evidenced the potential antioxidative, antimicrobial and cytotoxic capacities of Leea inidica leaf extract to be processed for pharmaceutical use.  相似文献   

11.
The glutathione reductase (GR) and thioredoxin reductase (TrxR) are important enzymes of the redox system that aid parasites to maintain an adequate intracellular redox environment. In the present study, the enzyme activity of GR and TrxR was investigated in Setaria cervi (S. cervi). Significant activity of both enzymes was detected in the somatic extract of adult and microfilariae stages of S. cervi. Both GR and TrxR were separated by partial purification using ammonium sulfate fractionation and DEAE ion exchange chromatography suggesting the presence of both glutathione and thioredoxin systems in S. cervi. The enzyme glutathione reductase (ScGR) was purified to homogeneity using affinity and ion exchange chromatography that resulted in 90 fold purification with a yield of 11.54%. The specific activity of the ScGR was 643 U/mg that migrated as a single band on SDS-PAGE. The subunit molecular mass was determined to be ~ 50 kDa while the optimum pH and temperature were found to be 7.0 and 35 °C respectively. The activation energy (Ea) was calculated from the slope of Arrhenius plot as 16.29 ± 1.40 kcal/mol. The Km and Vmax were determined to be 0.27 ± 0.045 mM; 30.30 ± 1.30 U/ml with NADPH and 0.59 ± 0.060 mM; 4.16 ± 0.095 U/ml with GSSG respectively. DHBA, a specific inhibitor for GR has completely inhibited the enzyme activity at 1 μM concentration. The inhibition of ScGR activity with NAI (IC50 0.71 mM), NEM (IC50 0.50 mM) and DEPC (IC50 0.27 mM) suggested the presence of tyrosine, cysteine and histidine residues at its active site. Further studies on characterization and understanding of these antioxidant enzymes may lead to designing of an effective drug against lymphatic filariasis.  相似文献   

12.
《Endocrine practice》2014,20(2):129-138
ObjectiveThere are varied reports on the effect of vitamin D supplementation on β-cell function and plasma glucose levels. The objective of this study was to examine the effect of vitamin D and calcium supplementation on β-cell function and plasma glucose levels in subjects with vitamin D deficiency.MethodsNondiabetic subjects (N = 48) were screened for their serum 25-hydroxyvitamin D (25-OHD), albumin, creatinine, calcium, phosphorus, alkaline phosphatase, and intact parathyroid hormone (PTH) status. Subjects with 25-OHD deficiency underwent a 2-hour oral glucose tolerance test. Cholecalciferol (9,570 international units [IU]/day; tolerable upper intake level, 10,000 IU/day; according to the Endocrine Society guidelines for vitamin D supplementation) and calcium (1 g/day) were supplemented.ResultsThirty-seven patients with 25-OHD deficiency participated in the study. The baseline and postvitamin D/calcium supplementation and the difference (corrected) were: serum calcium, 9 ± 0.33 and 8.33 ± 1.09 mg/dL (− 0.66 ± 1.11 mg/dL); 25-OHD, 8.75 ± 4.75 and 36.83 ± 18.68 ng/mL (28.00 ± 18.33 ng/mL); PTH, 57.9 ± 29.3 and 36.33 ± 22.48 pg/mL (− 20.25 ± 22.45 pg/mL); fasting plasma glucose, 78.23 ± 7.60 and 73.47 ± 9.82 mg/dL (− 4.88 ± 10.65 mg/dL); and homeostasis model assessment-2–percent β-cell function C-peptide secretion (HOMA-2–%B C-PEP), 183.17 ± 88.74 and 194.67 ± 54.71 (11.38 ± 94.27). Significant differences were observed between baseline and post-vitamin D/calcium supplementation serum levels of corrected calcium (Z, − 3.751; P < .0001), 25-OHD (Z, − 4.9; P < .0001), intact PTH (Z, − 4.04; P < .0001), fasting plasma glucose (Z, − 2.7; P < .007), and HOMA-2–%B C-PEP (Z, − 1.923; P < .05) as determined by Wilcoxon signed rank test. Insulin resistance as measured by HOMA was unchanged.ConclusionOptimizing serum 25-OHD concentrations and supplementation with calcium improves fasting plasma glucose levels and β-cell secretory reserve. Larger randomized control studies are needed to determine if correction of 25-OHD deficiency will improve insulin secretion and prevent abnormalities of glucose homeostasis. (Endocr Pract. 2014;20:129-138)  相似文献   

13.
《Phytomedicine》2014,21(10):1189-1195
Oxidative stress resulting from accumulation of reactive oxygen species (ROS) is involved in cell death associated with neurological disorders such as stroke, Alzheimer's disease and traumatic brain injury. Antioxidant compounds that improve endogenous antioxidant defenses have been proposed for neural protection. The purpose of this study was to investigate the potential protective effects of total saponin in leaves of Panax notoginseng (LPNS) on oxidative stress and cell death in brain cells in vitro. Lactate dehydrogenase (LDH) assay indicated that LPNS (5 μg/ml) reduced H2O2-induced cell death in primary rat cortical astrocytes (23 ± 8% reduction in LDH release vs. control). Similar protection was found in oxygen and glucose deprivation/reoxygenation induced SH-SY5Y (a human neuroblastoma cell line) cell damage (78 ± 7% reduction vs. control). The protective effects of LPNS in astrocytes were associated with attenuation of reactive oxygen species (ROS) accumulation. These effects involved activation of Nrf2 (nuclear translocation) and upregulation of downstream antioxidant systems including heme oxygenase-1 (HO-1) and glutathione S-transferase pi 1 (GSTP1). These results demonstrate for the first time that LPNS has antioxidative effects which may be neuroprotective in neurological disorders.  相似文献   

14.
This study was conducted to determine the effects of methionine, inositol and carnitine on sperm (motility, abnormality, DNA integrity and in vivo fertility) and oxidative stress parameters (lipid peroxidation, total glutathione and antioxidant potential levels) of bovine semen after the freeze–thawing process. Nine ejaculates, collected with the aid of an artificial vagina twice a week from each Simmental bovine, were included in the study. Each ejaculate, splitted into seven equal groups and diluted in Tris-based extender containing methionine (2.5 and 7.5 mM), carnitine (2.5 and 7.5 mM), inositol (2.5 and 7.5 mM) and no additive (control), was cooled to 5 °C and then frozen in 0.25 ml straws. Frozen straws were then thawed individually at 37 °C for 20 s in a water bath for the evaluation.The extender supplemented with 7.5 mM doses of carnitine and inositol led to higher subjective motility percentages (61.9 ± 1.3% and 51.3 ± 1.6%) compared to the other groups. The addition of methionine and carnitine at doses of 2.5 and 7.5 mM and inositol at doses of 7.5 mM provided a greater protective effect in the percentages of total abnormality in comparison to the control and inositol 2.5 mM (P < 0.001). As regards CASA motility, 7.5 mM carnitine (41.6 ± 2.9% and 54.2 ± 4.9%) and inositol (34.9 ± 2.0% and 47.3 ± 2.2%) caused insignificant increases in CASA and total motility in comparison to the other groups. All of the antioxidants at 2.5 and 7.5 mM resulted in lower sperm with damaged DNA than that of control, thus reducing the DNA damage (P < 0.05). No significant differences were observed in CASA progressive motility and sperm motion characteristics among the groups. In fertility results based on 59-day non-returns, no significant differences were observed in non-return rates among groups. As regards biochemical parameters, supplementation with antioxidants did not significantly affect LPO and total GSH levels in comparison to the control group (P > 0.05). The maintenance of AOP level in methionine 2.5 mM was demonstrated to be higher (5.06 ± 0.38 mM) than that of control (0.96 ± 0.29 mM) following the freeze–thawing (P < 0.001). Supplementation with these antioxidants prior to the cryopreservation process protected the DNA integrity against the cryodamage. Furthermore, future research should focus on the molecular mechanisms of the antioxidative effects of the antioxidants methionine, carnitine and inositol during cryopreservation.  相似文献   

15.
The aim of this work was to study the antioxidant activity and the protective effect of 2′,4′-dihydroxy-6′-methoxy-3′,5′-dimethylchalcone (DMC), the main compound from the buds of Cleistocalyx operculatus, on human umbilical vein endothelial cells against cytotoxicity induced by H2O2. The antioxidant activities of DMC were measured by ABTS assay, ferric reducing antioxidant power (FRAP) and hydroxyl radical scavenging activity, and protective effects of DMC on human umbilical vein endothelial cells against cytotoxicity induced by H2O2 were tested. DMC was found to have high ABTS radical scavenging activity (176.5 ± 5.2 μmol trolox equivalents/500 μmol DMC) and strong ferric reducing antioxidant power (213.3 ± 5.8 μmol trolox equivalents/500 μmol DMC). In addition, DMC scavenged the hydroxyl radicals, with IC50 values of 243.7 ± 6.3 μM, slightly lower than the reference antioxidant ascorbic acid (ASC). Moreover, DMC could protect the human umbilical vein endothelial cells against H2O2-induced cytotoxicity by decrease intracellular and extracellular ROS levels, reduction in catalase (CAT) activity and increment in malondialdehyde (MDA) level. These results suggested that DMC has the potential to be used in the therapy of oxidative damage.  相似文献   

16.
The present study reports aspects of GI tract physiology in the white-spotted bamboo shark, Chiloscyllium plagiosum, little skate, Leucoraja erinacea and the clear nose skate, Raja eglanteria. Plasma and stomach fluid osmolality and solute values were comparable between species, and stomach pH was low in all species (2.2 to 3.4) suggesting these elasmobranchs may maintain a consistently low stomach pH. Intestinal osmolality, pH and ion values were comparable between species, however, some differences in ion values were observed. In particular Ca2+ (19.67 ± 3.65 mM) and Mg2+ (43.99 ± 5.11 mM) were high in L. erinacea and Mg2+ was high (130.0 ± 39.8 mM) in C. palgiosum which may be an indication of drinking. Furthermore, intestinal fluid HCO3? values were low (8.19 ± 2.42 and 8.63 ± 1.48 mM) in both skates but very high in C. plagiosum (73.3 ± 16.3 mM) suggesting ingested seawater may be processed by species-specific mechanisms. Urea values from the intestine to the colon dropped precipitously in all species, with the greatest decrease seen in C. plagiosum (426.0 ± 8.1 to 0 mM). This led to the examination of the molecular expression of both a urea transporter and a Rhesus like ammonia transporter in the intestine, rectal gland and kidney in L. erinacea. Both these transporters were expressed in all tissues; however, expression levels of the Rhesus like ammonia transporter were orders of magnitude higher than the urea transporter in the same tissue. Intestinal flux rates of solutes in L. erinacea were, for the most part, in an inward direction with the notable exception of urea. Colon flux rates of solutes in L. erinacea were all in an outward direction, although absolute rates were considerably lower than the intestine, suggestive of a much tighter epithelia. Results are discussed in the context of the potential role of the GI tract in salt and water, and nitrogen, homeostasis in elasmobranchs.  相似文献   

17.
《Cryobiology》2011,62(3):248-253
This study was conducted to determine the effects of methionine, inositol and carnitine on sperm (motility, abnormality, DNA integrity and in vivo fertility) and oxidative stress parameters (lipid peroxidation, total glutathione and antioxidant potential levels) of bovine semen after the freeze–thawing process. Nine ejaculates, collected with the aid of an artificial vagina twice a week from each Simmental bovine, were included in the study. Each ejaculate, splitted into seven equal groups and diluted in Tris-based extender containing methionine (2.5 and 7.5 mM), carnitine (2.5 and 7.5 mM), inositol (2.5 and 7.5 mM) and no additive (control), was cooled to 5 °C and then frozen in 0.25 ml straws. Frozen straws were then thawed individually at 37 °C for 20 s in a water bath for the evaluation.The extender supplemented with 7.5 mM doses of carnitine and inositol led to higher subjective motility percentages (61.9 ± 1.3% and 51.3 ± 1.6%) compared to the other groups. The addition of methionine and carnitine at doses of 2.5 and 7.5 mM and inositol at doses of 7.5 mM provided a greater protective effect in the percentages of total abnormality in comparison to the control and inositol 2.5 mM (P < 0.001). As regards CASA motility, 7.5 mM carnitine (41.6 ± 2.9% and 54.2 ± 4.9%) and inositol (34.9 ± 2.0% and 47.3 ± 2.2%) caused insignificant increases in CASA and total motility in comparison to the other groups. All of the antioxidants at 2.5 and 7.5 mM resulted in lower sperm with damaged DNA than that of control, thus reducing the DNA damage (P < 0.05). No significant differences were observed in CASA progressive motility and sperm motion characteristics among the groups. In fertility results based on 59-day non-returns, no significant differences were observed in non-return rates among groups. As regards biochemical parameters, supplementation with antioxidants did not significantly affect LPO and total GSH levels in comparison to the control group (P > 0.05). The maintenance of AOP level in methionine 2.5 mM was demonstrated to be higher (5.06 ± 0.38 mM) than that of control (0.96 ± 0.29 mM) following the freeze–thawing (P < 0.001). Supplementation with these antioxidants prior to the cryopreservation process protected the DNA integrity against the cryodamage. Furthermore, future research should focus on the molecular mechanisms of the antioxidative effects of the antioxidants methionine, carnitine and inositol during cryopreservation.  相似文献   

18.
Response surface methodology was used to evaluate the quantitative effects of three independent variables: rapeseed moisture content, concentration of the added enzymes and conditioning temperature, on the antioxidant capacity and total phenolic, tocopherol, and phospholipid contents in the enzyme-treated rapeseed oils. The highest antioxidant capacity (1220.0, 964.8 μmol TE/100 g) total phenolic (83.3, 74.0 mg SA/100 g) and phospholipid (12,532, 12,376 mg/kg) contents reveal two rapeseed oils extruded from seeds contained 11% moisture, treated with cellulolytic and pectolytic enzymes (0.05%), respectively, and heated at 120 °C. However, the highest content of total tocopherols was determined in rapeseed oils pressed from seeds with 7% moisture, after addition of cellulolytic (0.05%) and pectolytic (0.1%) enzymes, heated at 90 and 105 °C, respectively. Total phenolic and phospholipid contents in the enzyme-treated rapeseed oils correlated significantly (p < 0.0000001) with antioxidant capacities of oils (R2 = 0.8710 and 0.6581, respectively). Experimental results of the antioxidant capacity, total phenolic, tocopherol and phospholipid contents were close to the predicted values calculated from the polynomial response surface models equations (R2 = 0.9727, 0.9870, 0.8390 and 0.9706 for the cellulolytic enzyme-assisted rapeseed oils and R2 = 0.9148, 0.9489, 0.9426 and 0.9479 for the pectolytic enzyme-assisted rapeseed oils). The optimum rapeseed moisture content, enzyme concentration and conditioning temperature for the cellulolytic and pectolytic enzyme-treated rapeseed oils were 11% and 9.7%, 0.08% and 0.1%, and 120 °C, respectively.  相似文献   

19.
The aim of present work was to assess the total phenolic content (TPC), total flavonoid content (TFC), phenolic compounds and antioxidant properties of various extracts of three Ceropegia spp.: Ceropegia spiralis, Ceropegia panchganiensis and Ceropegia evansii from Western Ghats of India. TPC of the samples varied from 0.3 ± 0.2 to 28.5 ± 0.3 mg TAE/g FW, whereas, TFC of the samples ranged between 0.1 ± 0.1 and 15.3 ± 0.3 mg RE/g FW. The major phenolic compounds identified were gallic acid, vanillin, cathechol and ferulic acid. All the extracts possess 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging activity, ferric reducing antioxidant power (FRAP) as well as metal chelating ability and this was also supported by significant correlation with TPC and TFC. To the best of our knowledge, this is the first paper presenting comprehensive data on TPC, TFC, phenolic profile and antioxidant properties of the Ceropegia spp.  相似文献   

20.
Annona crassiflora Mart., whose fruit is popularly known as araticum, is a member of the Annonaceae family found in the Brazilian Cerrado. Although this plant has several medicinal uses, its bioactive molecules are not fully understood. A bioguided assay was performed to identify the main bioactive compounds of A. crassiflora fruit peel from the ethanol extract fractions with antioxidant capacity and α-amylase, α-glucosidase and glycation inhibitory activities. Ethyl acetate and n-butanol fractions showed, respectively, higher antioxidant capacity (DPPH IC50 1.5 ± 0.1 and 0.8 ± 0.1 μg mL−1, ORAC 3355 ± 164 and 2714 ± 79 μmol trolox eq/g, and FRAP 888 ± 16 and 921 ± 9 μmol trolox eq/g) and inhibitory activities against α-amylase (IC50 4.5 ± 0.8 and 1.7 ± 0.3 μg mL−1), α-glucosidase (IC50 554.5 ± 158.6 and 787.8 ± 140.6 μg mL−1) and glycation (IC50 14.3 ± 3.3 and 16.0 ± 4.2 μg mL−1), and lower cytotoxicity, compared to the other fractions and crude ethanol extract. The HPLC-ESI-MS/MS analysis identified various biomolecules known as potent antioxidants, such as chlorogenic acid, (epi)catechin, procyanidins, caffeoyl-hexosides, quercetin-glucosides and kaempferol. The fruit peel of A. crassiflora, a specie from Cerrado, the Brazilian Savanna, provided a source of antioxidant compounds with properties to block carbohydrate digestive enzymes and formation of glycation products. Thus, there is potential to use the by-products of araticum in order to identify and isolate phytochemicals for application in nutraceutical supplements, food additives and pharmaceuticals products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号