首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
C Mann  J M Buhler  I Treich  A Sentenac 《Cell》1987,48(4):627-637
Yeast RNA polymerases A and C share an approximately equal to 40 kd subunit. We have identified, sequenced, and mutagenized in vitro the AC40 subunit gene. The RPC40 gene is unique in the yeast genome and is required for cell viability. This gene contains an open reading frame encoding a 37.6 kd protein having no significant homology with bacterial RNA polymerase subunits. The promoter region contains a 19 bp sequence also present in the largest subunit of RNA polymerase C. It also contains a well-conserved RPG box, a sequence found in the promoter region of many genes encoding the translational apparatus. A novel, plasmid-shuffling method was developed to isolate a large number of RPC40 ts mutants. One of these, ts4, was shown to be defective in the synthesis of RNA polymerases A and C at the restrictive temperature. In contrast, RNA polymerase B was made normally.  相似文献   

2.
RPA190, the gene coding for the largest subunit of yeast RNA polymerase A   总被引:33,自引:0,他引:33  
Yeast RNA polymerases are being extensively studied at the gene level. The entire gene encoding the largest subunit of RNA polymerase A, A190, was isolated and characterized in detail. Southern hybridization and gene disruption experiments showed that the RPA190 gene is unique in the haploid yeast genome and essential for cell viability. Nuclease S1 mapping was used to identify mRNA 5' and 3' termini. RPA190 encodes a polypeptide chain of 186,270 daltons in a large uninterrupted reading frame. A dot matrix comparison of the deduced amino acid sequence of subunit A190 with Escherichia coli beta' and cognate subunits B220 and C160 from yeast RNA polymerases B and C showed a conserved pattern of homology regions (I-VI). A potential DNA-binding site (zinc-binding motif) is conserved in the N-terminal region I. Remarkably, the A190 subunit does not harbor the heptapeptide repeated sequence present in the B220 subunit. The sequence of the A190 subunit diverges from B220 and C160 by the presence of two hydrophilic domains inserted between homology regions I and II, and V and VI. From their codon usage and third base pyrimidine bias, RNA polymerase genes RPA190, RPB220, RPC160, and RPC40 fall among yeast genes expressed at an average level. The RPA190 5'-flanking region contains features present in other polymerase genes that might function in regulation.  相似文献   

3.
4.
The gene, rpb1, encoding the largest subunit of RNA polymerase II has been cloned from Schizosaccharomyces pombe using the corresponding gene, RPB1, of Saccharomyces cerevisiae as a cross-hybridization probe. We have determined the complete sequence of this gene, and parts of PCR-amplified rpb1 cDNA. The predicted coding sequence, interrupted by six introns, encodes a polypeptide of 1,752 amino acid residues in length with a molecular weight of 194 kilodaltons. This polypeptide contains eight conserved structural domains characteristic of the largest subunit of RNA polymerases from other eukaryotes and, in addition, 29 repetitions of the C-terminal heptapeptide found in all the eukaryotic RNA polymerase II largest subunits so far examined.  相似文献   

5.
The RPC31 gene encoding the C31 subunit of Saccharomyces cerevisiae RNA polymerase C (III) has been isolated, starting from a C-terminal fragment cloned on a lambda gt11 library. It is unique on the yeast genome and lies on the left arm of chromosome XIV, very close to a NotI site. Its coding sequence perfectly matches the amino acid sequence of two oligopeptides prepared from purified C31. It is also identical to the ACP2 gene previously described as encoding an HMG1-like protein (W. Haggren and D. Kolodrubetz, Mol. Cell. Biol. 8:1282-1289, 1988). Thus, ACP2 and RPC31 are allelic and encode a subunit of RNA polymerase C. The c31 protein has a highly acidic C-terminal tail also found in several other chromatin-interacting proteins, including animal HMG1. Outside this domain, however, there is no appreciable homology to any known protein. The growth phenotypes of a gene deletion, of insertions, and of nonsense mutations indicate that the C31 protein is strictly required for cell growth and that most of the acidic domain is essential for its function. Random mutagenesis failed to yield temperature-sensitive mutants, but a slowly growing mutant was constructed by partial suppression of a UAA nonsense allele of RPC31. Its reduced rate of tRNA synthesis in vivo relative to 5.8S rRNA supports the hypothesis that the C31 protein is a functional subunit of RNA polymerase C.  相似文献   

6.
7.
8.
RPC53 is shown to be an essential gene encoding the C53 subunit specifically associated with yeast RNA polymerase C (III). Temperature-sensitive rpc53 mutants were generated and showed a rapid inhibition of tRNA synthesis after transfer to the restrictive temperature. Unexpectedly, the rpc53 mutants preferentially arrested their cell division in the G1 phase as large, round, unbudded cells. The RPC53 DNA sequence is predicted to code for a hydrophilic M(r)-46,916 protein enriched in charged amino acid residues. The carboxy-terminal 136 amino acids of C53 are significantly similar (25% identical amino acid residues) to the same region of the human BN51 protein. The BN51 cDNA was originally isolated by its ability to complement a temperature-sensitive hamster cell mutant that undergoes a G1 cell division arrest, as is true for the rpc53 mutants.  相似文献   

9.
10.
《Gene》1998,221(1):11-16
Both the rpb9 gene and its cDNA encoding the subunit 9 of RNA polymerase II were cloned from the fission yeast Schizosaccharomyces pombe. From the DNA sequences, Rpb9 was predicted to consist of 113 amino acid residues with a molecular mass of 13 175. S. pombe Rpb9 is 47, 40 and 36% identical in amino acid sequence to the corresponding subunits from Saccharomyces cerevisiae, human and Drosophila melanogaster, respectively. Previously, we failed to detect Rpb9 in the purified RNA polymerase II by amino-terminal micro-sequencing of proteolytic fragments of subunits separated by SDS-gel electrophoresis. After Western blot analysis using antibodies raised against the protein product of the newly isolated rpb9 gene, we found that the purified RNA polymerase II contains Rpb9.  相似文献   

11.
Eukaryotic RNA polymerases I and III share two distinct α-related subunits that show limited homology to the α subunit of Escherichia coli RNA polymerase, which forms a homodimer to nucleate the assembly of prokaryotic RNA polymerase. To gain insight into the functions of α-related subunits in eukaryotes, we have previously identified the α-related small subunit RPA17 of RNA polymerase I (and III) in Schizosaccharomyces pombe, and have shown that it is a functional homolog of Saccharomyces cerevisiae AC19. In an extension of that study, we have now isolated and characterized rpa42 +, which encodes the α-related large subunit RPA42 of S. pombe RNA polymerase I, by virtue of the fact that its product interacts with RPA17 in the yeast two-hybrid system. We have found that rpa42 + encodes a polypeptide with an apparent molecular mass of 42?kDa, which shows 58% identity to the AC40 subunit shared by RNA polymerases I and III in S. cerevisiae. Furthermore, we have shown that rpa42 + complements a temperature-sensitive mutation in RPC40 the gene that encodes AC40 in S. cerevisiae and which is essential for cell growth. Finally, we have shown that neither RPA42 nor RPA17 can self-associate. These results provide evidence that the two distinct α-related subunits, RPA42 and RPA17, of RNA polymerases I and III are functionally conserved between S. pombe and S. cerevisiae, and suggest that heterodimer formation between them is essential for the assembly of RNA polymerases I and III in eukaryotes.  相似文献   

12.
RNA polymerases of cyanobacteria contain a novel core subunit, gamma, which is absent from the RNA polymerases of other eubacteria. The genes encoding the three largest subunits of RNA polymerase, including gamma, have been isolated from the cyanobacterium Anabaena sp. strain PCC 7120. The genes are linked in the order rpoB, rpoC1, rpoC2 and encode the beta, gamma, and beta' subunits, respectively. These genes are analogous to the rpoBC operon of Escherichia coli, but the functions of rpoC have been split in Anabaena between two genes, rpoC1 and rpoC2. The DNA sequence of the rpoC1 gene was determined and shows that the gamma subunit corresponds to the amino-terminal half of the E. coli beta' subunit. The gamma protein contains several conserved domains found in the largest subunits of all bacterial and eukaryotic RNA polymerases, including a potential zinc finger motif. The spliced rpoC1 gene from spinach chloroplast DNA was expressed in E. coli and shown to encode a protein immunologically related to Anabaena gamma. The similarities in the RNA polymerase gene products and gene organizations between cyanobacteria and chloroplasts support the cyanobacterial origin of chloroplasts and a divergent evolutionary pathway among eubacteria.  相似文献   

13.
Casein kinase II of Saccharomyces cerevisiae contains two distinct catalytic subunits, alpha and alpha', which must be encoded by separate genes (R. Padmanabha and C. V. C. Glover, J. Biol. Chem. 262:1829-1835, 1987). The gene encoding the 42-kilodalton alpha subunit has been isolated by screening a yeast genomic library with oligonucleotide probes synthesized on the basis of the N-terminal amino acid sequence of the polypeptide. This gene (designated CKA1) contains an intron-free open reading frame of 372 amino acid residues. The deduced amino acid sequence is 67% identical to the alpha subunit of Drosophila melanogaster casein kinase II. The CKA1 gene product appears to be distantly related to other known protein kinases but exhibits highest similarity to the CDC28 gene product and its homolog in other species. Gene replacement techniques have been used to generate a null cka1 mutant allele. Haploid and diploid strains lacking a functional CKA1 gene appear to be phenotypically wild type, presumably because of the presence of the alpha' gene. Interestingly, the CKA1 gene appears to be single copy in the yeast genome; i.e., the alpha' gene, whose existence is known from biochemical studies and protein sequencing, cannot be detected by low-stringency hybridization.  相似文献   

14.
Eukaryotic RNA polymerases I and III consist of multiple subunits. Each of these enzymes includes two distinct and evolutionarily conserved subunits called α-related subunits which are shared only by polymerases I and III. The α-related subunits show limited homology with the α-subunit of prokaryotic RNA polymerase. To gain further insight into the structure and function of α-related subunits, we cloned and characterized a gene from Schizosaccharomyces pombe that encodes a protein of 17?kDa which can functionally replace AC19 – an α-related subunit of RNA polymerases I and III of Saccharomyces cerevisiae– and was thus named rpa17 +. RPA17 has 125 amino acids and shows 63% identity to AC19 over a 108-residue stretch, whereas the N-terminal regions of the two proteins are highly divergent. Disruption of rpa17 + shows that the gene is essential for cell growth. Sequence comparison with other α-related subunits from different species showed that RPA17 contains an 81-amino acid block that is evolutionarily conserved. Deletion analysis of the N- and C-terminal regions of RPA17 and AC19 confirms that the 81-amino acid block is important for the function of the α-related subunits.  相似文献   

15.
We have set out to clone the trypanosomal gene encoding the largest subunit of RNA polymerase I. We screened a genomic library with a synthetic oligonucleotide probe encoding an eleven amino acid sequence motif, YNADFDGDEMN, which has been found in all eukaryotic RNA polymerase largest subunit genes analyzed so far. We isolated the Trp11 locus and determined the complete sequence of the gene encoded within this locus. The deduced amino acid sequence contains the highly conserved RNA polymerase domains as well as the previously identified RNA polymerase I-specific hydrophilic insertions. Therefore, the gene most closely resembles the largest subunit of RNA polymerase I.  相似文献   

16.
17.
18.
《Gene》1996,172(2):211-215
We have sequenced a cDNA and a gene, AtRPC14, from Arabidopsis thaliana (At) (ecotype Columbia) that encode a protein related to the yeast RNA polymerases (Pol) I and III subunits, yAC19. Polyclonal antibodies raised against the recombinant At polypeptide (AtC14) bind to the Pol I and/or III subunits of about 13–15 kDa, but do not bind to any Pol II subunit in Pol purified from cauliflower, wheat or At. The amino acid (aa) sequence derived from the AtRPC14 cDNA and genomic clones consists of 122 aa, as compared to the 142 aa in the yeast yAC19 subunit and 143 aa in a putative Caenorhabditis elegans CeAC16 subunit. AtC14, yAC19 and CeAC16 contain a conserved sequence of about 85 aa which is related to two motifs in the α subunit of Escherichia coli (Ec) Pol. AtC14 lacks a highly charged N terminus of about 50 aa found in both yAC19 and CeAC16, but has a highly charged C terminus of about 30 aa not found in yAC19 and CeAC16.  相似文献   

19.
The structural gene of the Paracoccus denitrificans NADH-ubiquinone oxidoreductase encoding a homologue of the 75-kDa subunit of bovine complex I (NQO3) has been located and sequenced. It is located approximately 1 kbp downstream of the gene coding for the NADH-binding subunit (NQO1) [Xu, X., Matsuno-Yagi, A., and Yagi, T. (1991) Biochemistry 30, 6422-6428] and is composed of 2019 base pairs and codes for 673 amino acid residues with a calculated molecular weight of 73,159. The M(r) 66,000 polypeptide of the isolated Paracoccus NADH dehydrogenase complex is assigned the NQO3 designation on the basis of N-terminal protein sequence analysis, amino acid analysis, and immuno-cross-reactivity. The encoded protein contains a putative tetranuclear iron-sulfur cluster (probably cluster N4) and possibly a binuclear iron-sulfur cluster. An unidentified reading frame (URF3) which is composed of 396 base pairs and possibly codes for 132 amino acid residues was found between the NQO1 and NQO3 genes. When partial DNA sequencing of the regions downstream of the NQO3 gene was performed, sequences homologous to the mitochondrial ND-1, ND-5, and ND-2 gene products of bovine complex I were found, suggesting that the gene cluster carrying the Paracoccus NADH dehydrogenase complex contains not only structural genes encoding water-soluble subunits but also structural genes encoding hydrophobic subunits.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号