首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The molecular interactions driving reactive center loop (RCL) insertion are of considerable interest in gaining a better understanding of the serpin inhibitory mechanism. Previous studies have suggested that interactions in the proximal hinge/breach region may be critical determinants of RCL insertion in serpins. In this study, conformational and functional changes in plasminogen activator inhibitor-2 (PAI-2) following incubation with a panel of synthetic RCL peptides indicated that the P14 residue is critical for RCL insertion, and hence inhibitory activity, in PAI-2. Only RCL peptides with a P14 threonine were able to induce the stressed to relaxed transition and abolish inhibitory activity in PAI-2, indicating that RCL insertion into beta-sheet A of PAI-2 is dependent upon this residue. The recently solved crystal structure of relaxed PAI-2 (PAI-2.RCL peptide complex) allowed detailed analysis of molecular interactions involving P14 related to RCL insertion. Of most interest is the rearrangement of hydrogen bonding around the breach region that accompanies the stressed to relaxed transition, in particular the formation of a side chain hydrogen bond between the threonine at P14 and an adjacent tyrosine on strand 2 of beta-sheet B in relaxed PAI-2. Structural alignment of known serpin sequences showed that this pairing (or the equivalent serine/threonine pairing) is highly conserved ( approximately 87%) in inhibitory serpins and may represent a general structural basis for serpin inhibitory activity.  相似文献   

2.
BACKGROUND: Plasminogen activator inhibitor 2 (PAI-2) is a member of the serpin family of protease inhibitors that function via a dramatic structural change from a native, stressed state to a relaxed form. This transition is mediated by a segment of the serpin termed the reactive centre loop (RCL); the RCL is cleaved on interaction with the protease and becomes inserted into betasheet A of the serpin. Major questions remain as to what factors facilitate this transition and how they relate to protease inhibition. RESULTS: The crystal structure of a mutant form of human PAI-2 in the stressed state has been determined at 2.0 A resolution. The RCL is completely disordered in the structure. An examination of polar residues that are highly conserved across all serpins identifies functionally important regions. A buried polar cluster beneath betasheet A (the so-called 'shutter' region) is found to stabilise both the stressed and relaxed forms via a rearrangement of hydrogen bonds. CONCLUSIONS: A statistical analysis of interstrand interactions indicated that the shutter region can be used to discriminate between inhibitory and non-inhibitory serpins. This analysis implied that insertion of the RCL into betasheet A up to residue P8 is important for protease inhibition and hence the structure of the complex formed between the serpin and the target protease.  相似文献   

3.
The serpin plasminogen activator inhibitor-1 (PAI-1) is a potential therapeutic target in cardiovascular and cancerous diseases. PAI-1 circulates in blood as a complex with vitronectin. A PAI-1 variant (N-((2-(iodoacetoxy)ethyl)-N-methyl)amino-7-nitrobenz-2-oxa-3-diazole (NBD) P9 PAI-1) with a fluorescent tag at the reactive center loop (RCL) was used to study the effects of vitronectin and monoclonal antibodies (mAbs) directed against alpha-helix F (Mab-2 and MA-55F4C12) on the reactions of PAI-1 with tissue-type and urokinase-type plasminogen activators. Both mAbs delay the RCL insertion and induce an increase in the stoichiometry of inhibition (SI) to 1.4-9.5. Binding of vitronectin to NBD P9 PAI-1 does not affect SI but results in a 2.0-6.5-fold decrease in the limiting rate constant (klim) of RCL insertion for urokinase-type plasminogen activator at pH 6.2-8.0 and for tissue-type plasminogen activator at pH 6.2. Binding of vitronectin to the complexes of NBD P9 PAI-1 with mAbs results in a decrease in klim and in a 1.5-22-fold increase in SI. Thus, vitronectin and mAbs demonstrated additivity in the effects on the reaction with target proteinases. The same step in the reaction mechanism remains limiting for the rate of RCL insertion in the absence and presence of Vn and mAbs. We hypothesize that vitronectin, bound to alpha-helix F on the side opposite to the epitopes of the mAbs, potentiates the mAb-induced delay in RCL insertion and the associated substrate behavior by selectively decreasing the rate constant for the inhibitory branch of PAI-1 reaction (ki). These results demonstrate that mAbs represent a valid approach for inactivation of vitronectin-bound PAI-1 in vivo.  相似文献   

4.
Plasminogen activator inhibitor 1 (PAI-1) is the main inhibitor of plasminogen activators and plays an important role in many pathophysiological processes. Like other members of the serpin family, PAI-1 has a reactive center consisting of a mobile loop (RCL) with P1 and P1' residues acting as a "bait" for cognate protease. In contrast to the other serpins, PAI-1 loses activity by spontaneous conversion to an inactive latent form. This involves full insertion of the RCL into beta-sheet A. To search for molecular determinants that could be responsible for conversion of PAI-1 to the latent form, we studied the conformation of the RCL in active PAI-1 in solution. Intramolecular distance measurements by donor-donor energy migration and probe quenching methods reveal that the RCL is located much closer to the core of PAI-1 than has been suggested by the recently resolved X-ray structures of stable PAI-1 mutants. Disulfide bonds can be formed in double-cysteine mutants with substitutions at positions P11 or P13 of the RCL and neighboring residues in beta-sheet A. This suggests that the RCL may be preinserted up to residue P13 in active PAI-1, and possibly even to residue P11. We propose that the close proximity of the RCL to the protein core, and the ability of the loop to preinsert into beta-sheet A is a possible reason for PAI-1 being able to convert spontaneously to its latent form.  相似文献   

5.
The structure of the serpin, plasminogen activator inhibitor type-2 (PAI-2), in a complex with a peptide mimicking its reactive center loop (RCL) has been determined at 1.6-A resolution. The structure shows the relaxed state serpin structure with a prominent six-stranded beta-sheet. Clear electron density is seen for all residues in the peptide. The P1 residue of the peptide binds to a well defined pocket at the base of PAI-2 that may be important in determining the specificity of protease inhibition. The stressed-to-relaxed state (S --> R) transition in PAI-2 can be modeled as the relative motion between a quasirigid core domain and a smaller segment comprising helix hF and beta-strands s1A, s2A, and s3A. A comparison of the Ramachandran plots of the stressed and relaxed state PAI-2 structures reveals the location of several hinge regions connecting these two domains. The hinge regions cluster in three locations on the structure, ensuring a cooperative S --> R transition. We hypothesize that the hinge formed by the conserved Gly(206) on beta-strand s3A in the breach region of PAI-2 effects the S --> R transition by altering its backbone torsion angles. This torsional change is due to the binding of the P14 threonine of the RCL to the open breach region of PAI-2.  相似文献   

6.
BACKGROUND: The inhibitors that belong to the serpin family are widely distributed regulatory molecules that include most protease inhibitors found in blood. It is generally thought that serpin inhibition involves reactive-centre cleavage, loop insertion and protease translocation, but different models of the serpin-protease complex have been proposed. In the absence of a spatial structure of a serpin-protease complex, a detailed understanding of serpin inhibition and the character of the virtually irreversible complex have remained controversial. RESULTS: We used a recently developed method for making precise distance measurements, based on donor-donor energy migration (DDEM), to accurately triangulate the position of the protease urokinase-type plasminogen activator (uPA) in complex with the serpin plasminogen activator inhibitor type 1 (PAI-1). The distances from residue 344 (P3) in the reactive-centre loop of PAI-1 to residues 185, 266, 313 and 347 (P1') were determined. Modelling of the complex using this distance information unequivocally placed residue 344 in a position at the distal end from the initial docking site with the reactive-centre loop fully inserted into beta sheet A. To validate the model, seven single cysteine substitution mutants of PAI-1 were used to map sites of protease-inhibitor interaction by fluorescence depolarisation measurements of fluorophores attached to these residues and cross-linking using a sulphydryl-specific cross-linker. CONCLUSIONS: The data clearly demonstrate that serpin inhibition involves reactive-centre cleavage followed by full-loop insertion whereby the covalently linked protease is translocated from one pole of the inhibitor to the opposite one.  相似文献   

7.
Mechanism-based inhibition of proteinases by serpins involves enzyme acylation and fast insertion of the reactive center loop (RCL) into the central beta-sheet of the serpin, resulting in mechanical inactivation of the proteinase. We examined the effects of ligands specific to alpha-helix F (alphaHF) of plasminogen activator inhibitor-1 (PAI-1) on the stoichiometry of inhibition (SI) and limiting rate constant (k(lim)) of RCL insertion for reactions with beta-trypsin, tissue-type plasminogen activator (tPA), and urokinase. The somatomedin B domain of vitronectin (SMBD) did not affect SI for any proteinase or k(lim) for tPA but decreased the k(lim) for beta-trypsin. In contrast to SMBD, monoclonal antibodies MA-55F4C12 and MA-33H1F7, the epitopes of which are located at the opposite side of alphaHF, decreased k(lim) and increased SI for every enzyme. These effects were enhanced in the presence of SMBD. RCL insertion for beta-trypsin and tPA is limited by different subsequent steps of PAI-1 mechanism as follows: enzyme acylation and formation of a loop-displaced acyl complex (LDA), respectively. Stabilization of LDA through the disruption of the exosite interactions between PAI-1 and tPA induced an increase in the k(lim) but did not affect the SI. Thus it is unlikely that LDA contributes significantly to the outcome of the serpin reaction. These results demonstrate that the rate of RCL insertion is not necessarily correlated with SI and indicate that an intermediate, different from LDA, which forms during the late steps of PAI-1 mechanism, and could be stabilized by ligands specific to alphaHF, controls bifurcation between the inhibitory and the substrate pathways.  相似文献   

8.
The serpin plasminogen activator inhibitor-1 (PAI-1) is a fast and specific inhibitor of the plasminogen activating serine proteases tissue-type and urokinase-type plasminogen activator and, as such, an important regulator in turnover of extracellular matrix and in fibrinolysis. PAI-1 spontaneously loses its antiproteolytic activity by inserting its reactive centre loop (RCL) as strand 4 in beta-sheet A, thereby converting to the so-called latent state. We have investigated the importance of the amino acid sequence of alpha-helix F (hF) and the connecting loop to s3A (hF/s3A-loop) for the rate of latency transition. We grafted regions of the hF/s3A-loop from antithrombin III and alpha1-protease inhibitor onto PAI-1, creating eight variants, and found that one of these reversions towards the serpin consensus decreased the rate of latency transition. We prepared 28 PAI-1 variants with individual residues in hF and beta-sheet A replaced by an alanine. We found that mutating serpin consensus residues always had functional consequences whereas mutating nonconserved residues only had so in one case. Two variants had low but stable inhibitory activity and a pronounced tendency towards substrate behaviour, suggesting that insertion of the RCL is held back during latency transition as well as during complex formation with target proteases. The data presented identify new determinants of PAI-1 latency transition and provide general insight into the characteristic loop-sheet interactions in serpins.  相似文献   

9.
The serpin plasminogen activator inhibitor-1 (PAI-1) slowly converts to an inactive latent form by inserting a major part of its reactive center loop (RCL) into its beta-sheet A. A murine monoclonal antibody (MA-33B8), raised against the human plasminogen activator (tPA).PAI-1 complex, rapidly inactivates PAI-1. Results presented here indicate that MA-33B8 induces acceleration of the active-to-latent conversion. The antibody-induced inactivation of PAI-1 labeled with the fluorescent probe N, N'-dimethyl-N-(acetyl)-N'-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) ethylene diamine (NBD) at P9 in the RCL caused a fluorescence enhancement and shift identical to those accompanying the spontaneous conversion of the P9.NBD PAI-1 to the latent form. Like latent PAI-1, antibody-inactivated PAI-1 was protected from cleavage by elastase. The rate constants for MA-33B8 binding, measured by NBD fluorescence or inactivation, were similar (1.3-1.8 x 10(4) M-1 s-1), resulting in a 4000-fold faster inactivation at 4.2 microM antibody binding sites. The apparent antibody binding rate constant, at least 1000 times slower than one limited by diffusion, indicates that exposure of its epitope depends on an unfavorable equilibrium of PAI-1. Our observations are consistent with this idea and suggest that the equilibrium involves partial insertion of the RCL into sheet A: latent, RCL-cleaved, and tPA-complexed PAI-1, which are inactive loop-inserted forms, bound much faster than active PAI-1 to MA-33B8, whereas two loop-extracted forms of PAI-1, modified to prevent loop insertion, did not bind or bound much more weakly to the antibody.  相似文献   

10.
The binding of plasminogen activator inhibitor-1 (PAI-1) to serine proteinases, such as tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA), is mediated by the exosite interactions between the surface-exposed variable region-1, or 37-loop, of the proteinase and the distal reactive center loop (RCL) of PAI-1. Although the contribution of such interactions to the inhibitory activity of PAI-1 has been established, the specific mechanistic steps affected by interactions at the distal RCL remain unknown. We have used protein engineering, stopped-flow fluorimetry, and rapid acid quenching techniques to elucidate the role of exosite interactions in the neutralization of tPA, uPA, and beta-trypsin by PAI-1. Alanine substitutions at the distal P4' (Glu-350) and P5' (Glu-351) residues of PAI-1 reduced the rates of Michaelis complex formation (k(a)) and overall inhibition (k(app)) with tPA by 13.4- and 4.7-fold, respectively, whereas the rate of loop insertion or final acyl-enzyme formation (k(lim)) increased by 3.3-fold. The effects of double mutations on k(a), k(lim), and k(app) were small with uPA and nonexistent with beta-trypsin. We provide the first kinetic evidence that the removal of exosite interactions significantly alters the formation of the noncovalent Michaelis complex, facilitating the release of the primed side of the distal loop from the active-site pocket of tPA and the subsequent insertion of the cleaved reactive center loop into beta-sheet A. Moreover, mutational analysis indicates that the P5' residue contributes more to the mechanism of tPA inhibition, notably by promoting the formation of a final Michaelis complex.  相似文献   

11.
Plasminogen activator inhibitor-1 (PAI-1) belongs to the serpin family of serine proteinase inhibitors. Serpins inhibit their target proteinases by an ester bond being formed between the active site serine of the proteinase and the P1 residue of the reactive centre loop (RCL) of the serpin, followed by insertion of the RCL into beta-sheet A of the serpin. Concomitantly, there are conformational changes in the flexible joint region lateral to beta-sheet A. We have now, by site-directed mutagenesis, mapped the epitope for a monoclonal antibody, which protects the inhibitory activity of PAI-1 against inactivation by a variety of agents acting on beta-sheet A and the flexible joint region. Curiously, the epitope is localized in alpha-helix C and the loop connecting alpha-helix I and beta-strand 5A, on the side of PAI-1 opposite to beta-sheet A and distantly from the flexible joint region. By a combination of site-directed mutagenesis and antibody protection against an inactivating organochemical ligand, we were able to identify a residue involved in conferring the antibody-induced conformational change from the epitope to the rest of the molecule. We have thus provided evidence for communication between secondary structural elements not previously known to interact in serpins.  相似文献   

12.
Plasminogen activator inhibitor type 1 (PAI-1) is a member of the serine protease inhibitor (serpin) superfamily. Its highly mobile reactive-center loop (RCL) is thought to account for both the rapid inhibition of tissue-type plasminogen activator (t-PA), and the rapid and spontaneous transition of the unstable, active form of PAI-1 into a stable, inactive (latent) conformation (t(1/2) at 37 degrees C, 2.2 hours). We determined the amino acid residues responsible for the inherent instability of PAI-1, to assess whether these properties are independent and, consequently, whether the structural basis for inhibition and latency transition is different. For that purpose, a hypermutated PAI-1 library that is displayed on phage was pre-incubated for increasing periods (20 to 72 hours) at 37 degrees C, prior to a stringent selection for rapid t-PA binding. Accordingly, four rounds of phage-display selection resulted in the isolation of a stable PAI-1 variant (st-44: t(1/2) 450 hours) with 11 amino acid mutations. Backcrossing by DNA shuffling of this stable mutant with wt PAI-1 was performed to eliminate non-contributing mutations. It was shown that the combination of mutations at positions 50, 56, 61, 70, 94, 150, 222, 223, 264 and 331 increases the half-life of PAI-1 245-fold. Furthermore, within the limits of detection the stable mutants isolated are functionally indistinguishable from wild-type PAI-1 with respect to the rate of inhibition of t-PA, cleavage by t-PA, and binding to vitronectin. These stabilizing mutations constitute largely reversions to the stable "serpin consensus sequence" and are located in areas implicated in PAI-1 stability (e.g. the vitronectin-binding domain and the proximal hinge). Collectively, our data provide evidence that the structural requirements for PAI-1 loop insertion during latency transition and target proteinase inhibition can be separated.  相似文献   

13.
The serine protease inhibitor (serpin), plasminogen activator inhibitor‐1 (PAI‐1), is an important biomarker for cardiovascular disease and many cancers. It is therefore a desirable target for pharmaceutical intervention. However, to date, no PAI‐1 inhibitor has successfully reached clinical trial, indicating the necessity to learn more about the mechanics of the serpin. Although its kinetics of inhibition have been extensively studied, less is known about the latency transition of PAI‐1, in which the solvent‐exposed reactive center loop (RCL) inserts into its central β‐sheet, rendering the inhibitor inactive. This spontaneous transition is concomitant with a large translocation of the RCL, but no change in covalent structure. Here, we conjugated the fluorescent probe, NBD, to single positions along the RCL (P13‐P5′) to detect changes in solvent exposure that occur during the latency transition. The results support a mousetrap‐like RCL‐insertion that occurs with a half‐life of 1–2 h in accordance with previous reports. Importantly, this study exposes unique transitions during latency that occur with a half‐life of ~5 and 25 min at the P5′ and P8 RCL positions, respectively. We hypothesize that the process detected at P5′ represents s1C detachment, while that at P8 results from a steric barrier to RCL insertion. Together, these findings provide new insights by characterizing multiple steps in the latency transition.  相似文献   

14.
Plasminogen activator inhibitor-1 (PAI-1), an inhibitor of urokinase plasminogen activator, is paradoxically associated with a poor prognosis in breast cancer. PAI-1 is linked to several processes in the metastatic cascade. However, the role of PAI-1 in metastatic processes, which may be independent of protease inhibitory activity, is not fully understood. We report herein that PAI-1, when added exogenously to or stably transfected in human MDA-MB-435 breast carcinoma cells, had disparate effects on adhesion to extracellular matrix proteins and motility in vitro. Specifically, exogenously added PAI-1 inhibited cell adhesion to vitronectin but not fibronectin, in agreement with the literature. By contrast, stably transfected PAI-1 stimulated adhesion to both proteins. Wild-type PAI-1 was required for this stimulation, because expression of a non-protease inhibitory P14 (T333R) PAI-1 mutant failed to enhance adhesion. Compared with non-inhibitory PAI-1, wild-type PAI-1 also increased cell motility in chemotaxic assays. Furthermore, stable transfection of a related serine protease inhibitor, plasminogen activator inhibitor-3 (PAI-3, or protein C inhibitor) gave results similar to wild-type PAI-1. The stimulatory activity of PAI-3 was not seen with a non-protease inhibitory P14 PAI-3 mutant (T341R). We show that a downstream effect of endogenous wild-type PAI-1 and PAI-3 overexpression, but not their non-inhibitory counterparts, was the altered expression of alpha(2), alpha(3), alpha(4), alpha(5), and beta(1) integrin subunits. Additionally, blocking antibodies to beta(1) integrin inhibited PAI-1-induced adhesion. Our data provide experimental support for the stimulatory and inhibitory effects of PAI-1 in metastasis and introduce PAI-3 as another serpin potentially important in malignant disease.  相似文献   

15.
Maspin is a member of the serpin family of protease inhibitors and is a tumor suppressor gene acting at the level of tumor invasion and metastasis. This in vivo activity correlates with the ability of maspin to inhibit cell migration in vitro. This behavior suggests that maspin inhibits matrix-degrading proteases, such as those of the plasminogen activation system, in a similar manner to the serpin PAI-1. However, there is controversy concerning the protease inhibitory activity of maspin. It is devoid of activity against a wide range of proteases, in common with other non-inhibitory serpins, but has recently been reported to inhibit plasminogen activators associated with cells and other biological surfaces (Sheng, S. J., Truong, B., Fredrickson, D., Wu, R. L., Pardee, A. B., and Sager, R. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 499-504; McGowen, R., Biliran, H., Jr., Sager, R., and Sheng, S. (2000) Cancer Res. 60, 4771-4778). We have compared the effects of maspin with those of PAI-1 in a range of situations in which plasminogen activation is potentiated, reflecting the biological context of this proteolytic system: urokinase-type plasminogen activator bound to its receptor on the surface of tumor cells, tissue-type plasminogen activator specifically bound to vascular smooth muscle cells, fibrin, and the prion protein. Maspin was found to have no inhibitory effect in any of these situations, in contrast to the efficient inhibition observed with PAI-1, but nevertheless maspin inhibited the migration of both tumor and vascular smooth muscle cells. We conclude that maspin is a non-inhibitory serpin and that protease inhibition does not account for its activity as a tumor suppressor.  相似文献   

16.
Considerable progress in understanding the mechanism of inhibition of proteinases by serpins has been obtained from different biochemical studies. These studies reveal that stable serpin/proteinase complex formation involves insertion of the reactive-site loop of the serpin and occurs at the acyl-enzyme stage. Even though no three-dimensional structure of a serpin/proteinase complex is resolved, structural information is available on some of the individual compounds. Molecular modeling techniques combined with recently acquired biochemical/biophysical data were used to provide insight into the stable complex formation between plasminogen activator inhibitor-1 (PAI-1) and the target proteinases: tissue-type plasminogen activator, urokinase-type plasminogen activator, and thrombin. This study reveals that PAI-1 initially interacts with its target proteinase when its reactive-site loop is solvent exposed and thereby accessible for the proteinase. Stable complex formation, however, involves the insertion of the reactive-site loop up to P7 and results in a tight binding geometry between PAI-1 and its target proteinase. The influence of different biologically relevant molecules on PAI-1/proteinase complex formation and the differences in inhibition rate constants observed for the different proteinases can be explained from these models.  相似文献   

17.
Plasminogen activator inhibitor-1 (PAI-1) is a specific inhibitor of the serine proteases tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA). To systematically investigate the roles of the reactive center P1 and P1' residues in PAI-1 function, saturation mutagenesis was utilized to construct a library of PAI-1 variants. Examination of 177 unique recombinant proteins indicated that a basic residue was required at P1 for significant inhibitory activity toward uPA, whereas all substitutions except proline were tolerated at P1'. P1Lys variants exhibited lower inhibition rate constants and greater sensitivity to P1' substitutions than P1Arg variants. Alterations at either P1 or P1' generally had a larger effect on the inhibition of tPA. A number of variants that were relatively specific for either uPA or tPA were identified. P1Lys-P1'Ala reacted 40-fold more rapidly with uPA than tPA, whereas P1Lys-P1'Trp showed a 6.5-fold preference for tPA. P1-P1' variants containing additional mutations near the reactive center demonstrated only minor changes in activity, suggesting that specific amino acids in this region do not contribute significantly to PAI-1 function. These findings have important implications for the role of reactive center residues in determining serine protease inhibitor (serpin) function and target specificity.  相似文献   

18.
Plasminogen activator inhibitor-1 (PAI-1) belongs to the serine protease inhibitor (serpin) protein family, which has a common tertiary structure consisting of three beta-sheets and several alpha-helices. Despite the similarity of its structure with those of other serpins, PAI-1 is unique in its conformational lability, which allows the conversion of the metastable active form to a more stable latent conformation under physiological conditions. For the conformational conversion to occur, the reactive center loop (RCL) of PAI-1 must be mobilized and inserted into the major beta-sheet, A sheet. In an effort to understand how the structural conversion is regulated in this conformationally labile serpin, we modulated the length of the RCL of PAI-1. We show that releasing the constraint on the RCL by extension of the loop facilitates a conformational transition of PAI-1 to a stable state. Biochemical data strongly suggest that the stabilization of the transformed conformation is owing to the insertion of the RCL into A beta-sheet, as in the known latent form. In contrast, reducing the loop length drastically retards the conformational change. The results clearly show that the constraint on the RCL is a factor that regulates the conformational transition of PAI-1.  相似文献   

19.
The inhibitors that belong to the serpin family are suicide inhibitors that control the major proteolytic cascades in eucaryotes. Recent data suggest that serpin inhibition involves reactive centre cleavage followed by loop insertion, whereby the covalently linked protease is translocated away from the initial docking site. However under certain circumstances, serpins can also be cleaved like a substrate by target proteases. In this report we have studied the conformation of the reactive centre of plasminogen activator inhibitor type 1 (PAI-1) mutants with inhibitory and substrate properties. The polarized steady-state and time-resolved fluorescence anisotropies were determined for BODIPY(R) probes attached to the P1' and P3 positions of the substrate and active forms of PAI-1. The fluorescence data suggest an extended orientational freedom of the probe in the reactive centre of the substrate form as compared to the active form, revealing that the conformation of the reactive centres differ. The intramolecular distance between the P1' and P3 residues in reactive centre cleaved inhibitory and substrate mutants of PAI-1, were determined by using the donor-donor energy migration (DDEM) method. The distances found were 57+/-4 A and 63+/-3 A, respectively, which is comparable to the distance obtained between the same residues when PAI-1 is in complex with urokinase-type plasminogen activator (uPA). Following reactive centre cleavage, our data suggest that the core of the inhibitory and substrate forms possesses an inherited ability of fully inserting the reactive centre loop into beta-sheet A. In the inhibitory forms of PAI-1 forming serpin-protease complexes, this ability leads to a translocation of the cognate protease from one pole of the inhibitor to the opposite one.  相似文献   

20.
The "serpin" plasminogen activator inhibitor 1 (PAI-1) is the fast acting inhibitor of plasminogen activators (tissue-type (t-PA) and urokinase type-PA) and is an essential regulatory protein of the fibrinolytic system. Its P1-P1' reactive center (R346 M347) acts as a "bait" for tight binding to t-PA/urokinase-type PA. In vivo, PAI-1 is encountered in complex with vitronectin, an interaction known to stabilize its activity but not to affect the second-order association rate constant (k1) between PAI-1 and t-PA. Nevertheless, by using PAI-1 reactive site variants (R346M, M347S, and R346M M347S), we show that the binding of vitronectin to the PAI-1 mutant proteins improves plasminogen activator inhibition. In the absence of vitronectin the PAI-1 R346M mutants are virtually inactive toward t-PA (k1 less than 1 x 10(3) M-1 s-1). In contrast, in the presence of vitronectin the rate of association increases about 1,000-fold (k1 of 6-8 x 10(5) M-1 s-1). This inhibition coincides with the formation of serpin-typical, sodium dodecyl sulfide-stable t-PA.PAI-1 R346M (R346M M347S) complexes. As evidenced by amino acid sequence analysis, the newly created M346-M/S347 peptide bond is susceptible to attack by t-PA, similar to the wild-type R346-M347 peptide bond, indicating that in the presence of vitronectin M346 functions as an efficient P1 residue. In addition, we show that the inhibition of t-PA and urokinase-type PA by PAI-1 mutant proteins is accelerated by the presence of the nonprotease A chains of the plasminogen activators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号