首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the early juveniles of Ciona intestinalis, primordial germ cells arise on the degenerated mass of the resorbed tadpole tail, and assemble to form a discrete gonad rudiment. The present study elucidated the morphological sequences during differentiation of the gonad rudiment into the testis and ovary. In 11- to 12-day juveniles, the gonad rudiment, an elongate sac, divided into the testicular and ovarian rudiments. The testicular rudiment separated as a round vesicle from the thickened wall of the elongate sac. The original sac, after separation of the round vesicle, developed into the ovary. In the testicular rudiment, germ cells formed a continuous central mass without association of somatic cells, while in the ovarian rudiment, each germ cell was associated with somatic cells within the epithelium composing the wall of the rudiment. In 13- to 15-day juveniles the testicular rudiment changed into branched tubes ending in club-shaped follicles. Cells characterized by many flattened cisternae of rough endoplasmic reticulum (distal cells) constituted the distal wall of each follicle. Spermatogenic cells were freely present in the follicular lumen, but the largest spermatogonia were in contact with the distal cells. Both in the testicular and ovarian rudiments, germ cells entered meiosis in 18-day juveniles. A novel body (periesophageal body) was found just beneath the ventral margin of the esophageal opening. It comprised irregular follicles made up of one cell type whose cytoplasm, filled with round vesicles and Golgi complexes, was suggestive of an endocrine function. Fragments derived from the periesophageal body were present around the developing ovary.  相似文献   

2.
In the just-metamorphosed juveniles of Ciona intestinalis, a round mass of tissue debris derived from the resorbed tadpole tail is situated in the broad space enclosed by the peritoneal membrane and the epidermis around the ventral side of the esophagus. In living juveni es, the origin of the gonad rudiment was traced back to the mass of tissue debris. Electron microscopically, the round mass was a clump of irregular-shaped phagocytotic cells engulfing degenerated cell fragments. On the surface of the cell clump, a small number of singly occurring round cells were found and identified as primordial germ cells on the basis of morphological continuity to obvious germ cells in later stages. Presence of nuage around the nucleus characterized the germ cells. In a few days the germ cells assembled to form a solid slender body (gonad rudiment) together with smaller somatic cells. The gonad rudiment left the space around the esophagus, moving into the narrow mesenteric space connecting the stomach and intestine on the fourth day after metamorphosis. It gradually increased in size by proliferation of the germ cells and somatic cells. The solid gonad rudiment changed into an oval vesicle with an eccentrically located cavity on about the seventh day after metamorphosis. The vesicle comprised a thinner wall made of a simple epithelium without germ cells and a thicker wall containing germ cells and somatic cells.  相似文献   

3.
4.
革胡子鲇原始生殖细胞的起源、迁移及性腺分化   总被引:19,自引:0,他引:19  
革胡子鲇又称埃及胡子鲇,是一种多次产卵类型的硬骨鱼。作者用组织学、组织化学、电子显微镜等方法对革胡子鲇的原始生殖细胞(Primordial germ cells,PGCs)的起源、特征、迁移方式和性腺分化进行了研究。实验结果:PGCs来源于内胚层;PGCs的细胞质中存在着一种与生殖细胞有关的电子致密物--生殖质(Germ plasm);PGCs在迁移过程中有主动迁移的能力;PGCs到达生殖嵴的部位后,与生殖上皮细胞(Epithelisl cells)一起共同形成原始性腺;原始性腺分别逐步向精巢和卵巢分化;生殖质与性腺的分化有密切关系;卵巢的分化比精巢早。    相似文献   

5.
A fundamental yet unexplored question in stem cell biology is how the fate of tissue stem cells is initially determined during development. In Drosophila, germline stem cells (GSCs) descend from a subset of primordial germ cells (PGCs) at the onset of oogenesis. GSC determination may occur at the onset of oogenesis when a subset of PGCs is induced to become GSCs by contacting niche cells. Alternatively, the GSC fate could be predetermined for a subset of PGCs before oogenesis, due to either their interaction with specific somatic cells in the embryonic/larval gonads, or their inherently heterogeneous potential in becoming GSCs, or both. Here, we show that anterior somatic cells in the embryonic gonad already differ from posterior somatic cells and are likely to be the precursors of niche cells in the adult ovary. Furthermore, only pole cells in the anterior half of the embryonic gonad give rise to the PGCs that frequently acquire contact with nascent niche cells in the late larval ovary. Eventually, only these contacting PGCs become GSCs, whereas non-contacting PGCs directly differentiate into cystoblasts. The strong preference of these 'anterior PGCs' towards contacting niche cells does not require DE-cadherin-mediated adhesion and is not correlated with either orientation or rate of their divisions. These data suggest that the GSC fate is predetermined before oogenesis. The predetermination probably involves soma/pole-cell interaction in the anterior half of the embryonic gonad, followed by an active homing mechanism during PGC proliferation to maintain the contact between the 'anterior PGCs' and anterior somatic cells.  相似文献   

6.
The postembryonic development of the gonad in the hermaphroditic appendicularian O. gracilis was studied using transmission electron microscopy. The primordial germ cells were detected first in 10-h-old larvae and represent migrating primordial germ syncytium (mPGS) localized in the hemocoel of the tail/trunk junction and several haemocoel areas of the digestive compartment. The mPGS consisted of primordial germ nuclei (PGN) 2 μm in diameter, and elongate somatic-line nuclei 1.8 μm in diameter. In 12.5-h-old juveniles the gonad primordium 40 × 90 μm in size, was separated by a narrow space of haemocoel between the gut and the epidermis of the reproductive compartment. The gonad primordium consisted of the central syncytial part of primordial germ nuclei (PGN), enclosing a single layer of somatic epithelium. In 3-day-old juveniles, the gonad was differentiated into testis and ovary. The testis, 400 × 550 μm in size, is a syncytium of spermatogonial nuclei, covered by a single layer of somatic epithelium. The ovaries, 350 × 850 μm in size, consist of a syncytium with nurse nuclei and meiotic nuclei. The hermaphroditic gonad originates from extragonadal mPGS. Early gonadogenesis in appendicularians has ultrastructural features in common with early gonadogenesis in ascidians.  相似文献   

7.
In Drosophila, primordial germ cells (PGCs) are set aside from somatic cells and subsequently migrate through the embryo and associate with somatic gonadal cells to form the embryonic gonad. During larval stages, PGCs proliferate in the female gonad, and a subset of PGCs are selected at late larval stages to become germ line stem cells (GSCs), the source of continuous egg production throughout adulthood. However, the degree of similarity between PGCs and the self-renewing GSCs is unclear. Here we show that many of the genes that are required for GSC maintenance in adults are also required to prevent precocious differentiation of PGCs within the larval ovary. We show that following overexpression of the GSC-differentiation gene bag of marbles (bam), PGCs differentiate to form cysts without becoming GSCs. Furthermore, PGCs that are mutant for nanos (nos), pumilio (pum) or for signaling components of the decapentaplegic (dpp) pathway also differentiate. The similarity in the genes necessary for GSC maintenance and the repression of PGC differentiation suggest that PGCs and GSCs may be functionally equivalent and that the larval gonad functions as a "PGC niche".  相似文献   

8.
The ontogenetic development of gonads from embryo to adult was observed histologically in the viviparous teleost, Gambusia affinis. Primordial germ cells (PGCs) appeared in the subendodermal space of the embryo 14 days before birth, and then transferred to the dorsal mesentery to form paired genital ridges 12 days before birth. The PGCs proliferated in the genital ridge, forming gonadal primordia 10 days before birth. All gonadal primordia differentiated to the ovary containing oocytes 2 days before birth, but then redifferentiated to the ovary and testis just after birth. This indicates that the mosquitofish is a juvenile hermaphroditic species. The characteristics of gonadal sex differentiation just after birth were enlargement of the oocytes in females, and invasion of somatic cells from the hilar region to an inner portion of the gonad in males. The paired ovary fused at the basal area 5 days after birth, then on the ventral and dorsal portions, developing into a single ovary 10 days after birth. During this time a single ovarian cavity was formed on the dorsal portion of the ovary. The paired testes fused only at the basal area and became a single testis having two main lobes 10 days after birth. The oocytes gradually developed and began vitellogenesis 100 days after birth, but did not reach maturation until 110 days after birth. Spermatogenic cells formed cysts at 20 days, began meiosis at 70 days, and matured to form sperm balls 90 days after birth. The male fish sexually matured earlier than the female.  相似文献   

9.
Ascidian embryos sequester a specific cytoplasm, called the postplasm, at the posterior pole, where many maternal RNAs and proteins accumulate. Although the postplasm is thought to act as the germ plasm, it is also highly enriched in several factors essential for somatic cell development, and how the postplasm components regulate both germ and somatic cell differentiation remains elusive. Using a vasa homolog, CiVH, and other postplasmic components as markers, we found that the postplasm-containing blastomeres, the B7.6 cells, undergo an asymmetric cell division during gastrulation to produce two distinct daughter cells: B8.11 and B8.12. Most of the postplasmic components segregate only into the B8.11 cells, which never coalesce into the gonad. By contrast, the maternal CiVH RNA and protein are specifically distributed into the B8.12 cells, which divide further and are incorporated into the gonad in juveniles. In the B8.12 cells, CiVH production is upregulated from the maternal RNA source, resulting in the formation of perinuclear CiVH granules, which may be the nuage, a hallmark of germ cells in many animal species. We propose that the redistribution of specific maternal molecules into the B8.12 cells is essential for germ-cell specification in ascidians.  相似文献   

10.
The presence of germ cells in the early gonad is important for sexual fate determination and gonadal development in vertebrates. Recent studies in zebrafish and medaka have shown that a lack of germ cells in the early gonad induces sex reversal in favor of a male phenotype. However, it is uncertain whether the gonadal somatic cells or the germ cells are predominant in determining gonadal fate in other vertebrate. Here, we investigated the role of germ cells in gonadal differentiation in goldfish, a gonochoristic species that possesses an XX-XY genetic sex determination system. The primordial germ cells (PGCs) of the fish were eliminated during embryogenesis by injection of a morpholino oligonucleotide against the dead end gene. Fish without germ cells showed two types of gonadal morphology: one with an ovarian cavity; the other with seminiferous tubules. Next, we tested whether function could be restored to these empty gonads by transplantation of a single PGC into each embryo, and also determined the gonadal sex of the resulting germline chimeras. Transplantation of a single GFP-labeled PGC successfully produced a germline chimera in 42.7% of the embryos. Some of the adult germline chimeras had a developed gonad on one side that contained donor derived germ cells, while the contralateral gonad lacked any early germ cell stages. Female germline chimeras possessed a normal ovary and a germ-cell free ovary-like structure on the contralateral side; this structure was similar to those seen in female morphants. Male germline chimeras possessed a testis and a contralateral empty testis that contained some sperm in the tubular lumens. Analysis of aromatase, foxl2 and amh expression in gonads of morphants and germline chimeras suggested that somatic transdifferentiation did not occur. The offspring of fertile germline chimeras all had the donor-derived phenotype, indicating that germline replacement had occurred and that the transplanted PGC had rescued both female and male gonadal function. These findings suggest that the absence of germ cells did not affect the pathway for ovary or testis development and that phenotypic sex in goldfish is determined by somatic cells under genetic sex control rather than an interaction between the germ cells and somatic cells.  相似文献   

11.
The continuous production of mammalian sperm is maintained by the proliferation and differentiation of spermatogonial stem cells that originate from primordial germ cells (PGCs) in the early embryo. Although spermatogonial stem cells arise from PGCs, it is not clear whether fetal male germ cells function as spermatogonial stem cells able to produce functional sperm. In the present study, we examined the timing and mechanisms of the commitment of fetal germ cells to differentiate into spermatogonial stem cells by transplantation techniques. Transplantation of fetal germ cells into the seminiferous tubules of adult testis showed that donor germ cells, at 14.5 days postcoitum (dpc), were able to initiate spermatogenesis in the adult recipient seminiferous tubules, whereas no germ cell differentiation was observed in the transplantation of 12.5-dpc germ cells. These results indicate that the commitment of fetal germ cells to differentiate into spermatogonial stem cells initiates between embryonic days 12.5 and 14.5. Furthermore, the results suggest the importance of the interaction between germ cells and somatic cells in the determination of fetal germ cell differentiation into spermatogonial stem cells, as normal spermatogenesis was observed when a 12.5-dpc whole gonad was transplanted into adult recipient testis. In addition, sperm obtained from the 12.5- dpc male gonadal explant had the ability to develop normally if injected into the cytoplasm of oocytes, indicating that normal development of fetal germ cells in fetal gonadal explant occurred in the adult testicular environment.  相似文献   

12.
In Amphiprion frenatus , a protandric hermaphrodite, male sex inversion is characterized by a decrease of spermatogenic activity in the ovotestis followed by a degeneration of male gevm cells and an increase of oogenic activity. Among female germ cells, undifferentiated primordial germ cells (PGCs) were identified; their participation in building up the ovary is suggested. In addition, the unusual association of juveniles with a single adull member or juvenile groupings lacking the presence of a monogamous pair, induced in juveniles the anticipated sex differentiations (in either male or female orientation) in which not only spermatogonia and oogonia but also PGCs are involved.  相似文献   

13.
Metamorphosis of ascidians is a dynamic event by which a nonfeeding, mobile tadpole larva is transformed into a filter-feeding, fixed juvenile. This process usually begins with the settlement of the larva and is followed by a series of coordinated morphogenetic movements that rearrange organs, tissues, and cells. To identify genes that are involved in the initiation of metamorphosis, we conducted differential screening between mRNAs of swimming larvae and those of juveniles in Ciona intestinalis. This screening permitted the isolation of cDNA clones for genes whose expression is upregulated during metamorphosis, and the characterization of four such genes (Ci-meta3, Ci-meta4, Ci-meta5 and Ci-meta6) is reported here. Ci-meta3 encodes a protein with a domain found in Sp1a and the RYanodine receptor. This gene is not expressed in early swimming larvae but is expressed in the endoderm region and part of the retractile tail region in metamorphosing juveniles. The predicted proteins encoded by Ci-meta4, Ci-meta5 and Ci-meta6 do not contain any known consensus motifs, nor do they show any similarity to known proteins. Ci-meta4 and Ci-meta5 are expressed weakly in mesenchyme cells of the early larva and strongly in the metamorphosing juvenile, while Ci-meta6 is expressed in the mesenchyme in the late larva. In addition, we characterized 53 independent cDNA clones whose expression was downregulated during the period from early swimming larvae to metamorphosing juveniles by taking advantage of the Ciona intestinalis cDNA project database and BLAST searches. The expression patterns of some of these clones were changed during the larval period.  相似文献   

14.
Although the overall pattern and timing of gonadal sex differentiation have been established in a considerable number of teleosts, the ultrastructure of early stages of gonadal development is not well documented. In this study, gonads from larval and juvenile stages of laboratory-reared Cichlasoma dimerus were examined at the light-microscopic and ultrastructural levels. This freshwater species adapts easily to captivity and spawns with high frequency during 8 months of the year, providing an appropriate model for developmental studies. Larvae and juveniles were kept at a water temperature of 26.5 +/- 1 degrees C and a 12:12 hour photoperiod. Gonadal development was documented from 14-100 days postfertilization, covering the period of histologically discernible sex differentiation. Gonadal tissue was processed according to standard techniques for light and electron microscopy. C. dimerus, a perciform teleost, is classified as a differentiated gonochorist, in which an indifferent gonad develops directly into a testis or ovary. On day 14, the gonadal primordium consists of a few germ cells surrounded by enveloping somatic cells. Ovarian differentiation precedes testicular differentiation, as usual in teleost fishes. The earliest signs of differentiation, detected from day 42 onward, include the onset of meiotic activity in newly formed oocytes, which is soon accompanied by increased oogonial mitotic proliferation and the somatic reorganization of the presumptive ovary. The ovarian cavity is completely formed by day 65. Numerous follicles containing perinucleolar oocytes are observed by day 100. In contrast, signs of morphological differentiation in the presumptive testis are not observed until day 72. By day 100, the unrestricted lobular organization of the testis is evident. The latest stage of spermatogenesis observed by this time of testicular development is spermatocyte II.  相似文献   

15.
Mouse primordial germ cells (PGCs) migrate from the base of the allantois to the genital ridge. They proliferate both during migration and after their arrival, until initiation of the sex-differentiation of fetal gonads. Then, PGCs enter into the prophase of the first meiotic division in the ovary to become oocytes, while those in the testis become mitotically arrested to become prospermatogonia. Growth regulation of mouse PGCs has been studied by culturing them on feeder cells. They show a limited period of proliferation in vitro and go into growth arrest, which is in good correlation with their developmental changes in vivo. However, in the presence of multiple growth signals, PGCs can restart rapid proliferation and transform into pluripotent embryonic germ (EG) cells. Observation of ectopic germ cells and studies of reaggregate cultures suggested that both male and female PGCs show cell-autonomous entry into meiosis and differentiation into oocytes if they were set apart from the male gonadal environments. Recently, we developed a two-dimensional dispersed culture system in which we can examine transition from the mitotic PGCs into the leptotene stage of the first meiotic division. Such entry into meiosis seems to be programmed in PGCs before reaching the genital ridges and unless it is inhibited by putative signals from the testicular somatic cells.  相似文献   

16.
The organization of the body cavities is an important morphological trait that can be used for establishing the phylogenetic relationships between different groups of animals. In the present study, the hemocoel and coelomic systems of 10‐hr‐old juveniles and adults of the hermaphroditic oikopleurid Oikopleura gracilis were examined using light and transmission electron microscopy. The trunk hemocoel in 10‐hr‐old juveniles was represented by small clefts containing layers of extracellular matrix of adjacent tissues or interstices with migrating primordial germ syncytium. The wide hemocoel in the tail contained extracellular strands, subdividing the hemocoel into hemal sinuses. In adults, a large hemocoel appeared in the trunk and tail, and also contained extracellular strands. The hermaphroditic gonad was surrounded by its own lining, separating it from the hemocoel. The gamete‐filled cavity in the ovary and testis appeared only at late‐stage gonadogenesis, when the pre‐spawning reduction of syncytium occurred in the gonads. The true coelom in 10‐hr‐old juveniles and adults was represented by the pericardium. The lining of the pericardium consisted of myoepithelial and peritoneal cells. In the myoepithelial cells of 10‐hr‐old juveniles, myofibrils had been formed. The myoepithelial cells of adults had several parallel rows of completely differentiated myofibrils. The substantial reduction of the coelomic and circulatory systems in O. gracilis evidently results from the extreme shortening of ontogeny in appendicularians. Development in O. gracilis from early juvenile to adult involves the following steps, which also suggest how the tunicate heart may have evolved: a single‐layered coelomic sac gives rise to a grooved pericardium with an open hemal sinus (simple heart). In ascidians, this simple heart in turn gives rise to a closed tubular, double‐layered heart–pericardial complex, with a separate pericardial cavity and a closed heart, whose wall is formed by specialized myocardium.  相似文献   

17.
In all vertebrate groups, the progenitors of the germ line, the primordial germ cells (PGCs) arise extragonadally and move to the developing gonad early in embryonic development. We have examined the behavior of isolated pregonadal and gonadal PGCs in vitro on feeder layers of an embryo-derived cell line. Histochemically and serologically identified pregonadal germ cells are found to be actively motile in vitro and, furthermore, show behavior characteristic of invasive cells. PGCs isolated from the developing gonad, however, show little locomotory activity and are not invasive on the same cellular substrate. These observations suggest that PGCs undergo a major change in phenotype at the time of their entry into the gonad anlagen.  相似文献   

18.
How germ cell specification occurs remains a fundamental question in embryogenesis. The embryos of several model organisms contain germ cell determinants (germ plasm) that segregate to germ cell precursors. In other animals, including mice, germ cells form in response to regulative mechanisms during development. To investigate germ cell determination in urodeles, where germ plasm has never been conclusively identified, we cloned a DAZ-like sequence from axolotls, Axdazl. Axdazl is homologous to Xdazl, a component of Xenopus germ plasm found in the vegetal pole of oocytes and eggs. Axdazl RNA is not localized in axolotl oocytes, and, furthermore, these oocytes do not contain the mitochondrial cloud that localizes Xdazl and other germ plasm components in Xenopus. Maternal Axdazl RNA is inherited in the animal cap and equatorial region of early embryos. At gastrula, neurula, and tailbud stages, Axdazl RNA is widely distributed. Axdazl first shows cell-specific expression in primordial germ cells (PGCs) approaching the gonad at stage 40, when nuage (germ plasm) appears in PGCs. These results suggest that, in axolotls, germ plasm components are insufficient to specify germ cells.  相似文献   

19.
In ascidians, the events of metamorphosis transform the non-feeding, mobile tadpole larva into a filter-feeding, fixed juvenile, and the process involves rearrangements of cells, two organs and physiological changes. Differential screening was used to isolate two genes that are not expressed in swimming larvae but are expressed immediately after the initiation of metamorphosis in Ciona intestinalis. One of the genes, Ci-meta1, encodes a polypeptide with a putative secretion signal sequence, 6 epidermal growth factor (EGF)-like repeats and 13 calcium-binding EGF-like repeats. The gene begins to be expressed immediately after the beginning of metamorphosis in the adhesive organ and is likely to be associated with the signal response for metamorphosis. Another gene named Ci-meta2 encodes a protein with a putative secretion signal and three thrombospondin type-1 repeats. Ci-meta2 gene expression begins at the larval stage and is upregulated in the metamorphosing juveniles. Ci-meta2 expression is found in three regions; the adhesive organ which is also associated with settlement, the neck region between the trunk and the tail of the larva which is associated with tail resorption, and dorsal regions of the trunk which correspond to the location of the siphon primordium. This gene may be involved in the dynamic arrangement of cells during ascidian metamorphosis.  相似文献   

20.
Retinoic acid (RA) is a meiosis-inducing factor. Primordial germ cells (PGCs) in the developing ovary are exposed to RA, resulting in entry into meiosis. In contrast, PGCs in the developing testis enter mitotic arrest to differentiate into prospermatogonia. Sertoli cells express CYP26B1, an RA-metabolizing enzyme, providing a simple explanation for why XY PGCs do not initiate meios/is. However, regulation of entry into mitotic arrest is likely more complex. To investigate the mechanisms that regulate male germ cell differentiation, we cultured XX and XY germ cells at 11.5 and 12.5 days postcoitus (dpc) with an RA receptor inhibitor. Expression of Stra8, a meiosis initiation gene, was suppressed in all groups. However, expression of Dnmt3l, a male-specific gene, during embryogenesis was elevated but only in 12.5-dpc XY germ cells. This suggests that inhibiting RA signaling is not sufficient for male germ cell differentiation but that the male gonadal environment also contributes to this pathway. To define the influence of Sertoli cells on male germ cell differentiation, Sertoli cells at 12.5, 15.5, and 18.5 dpc were aggregated with 11.5 dpc PGCs, respectively. After culture, PGCs aggregated with 12.5 dpc Sertoli cells increased Nanos2 and Dnmt3l expression. Furthermore, these PGCs established male-specific methylation imprints of the H19 differentially methylated domains. In contrast, PGCs aggregated with Sertoli cells at late embryonic ages did not commit to the male pathway. These findings suggest that male germ cell differentiation is induced both by inhibition of RA signaling and by molecule(s) production by embryonic age-specific Sertoli cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号