首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The mammalian MYPT family consists of the products of five genes, denoted MYPT1, MYPT2, MBS85, MYPT3 and TIMAP, which function as targeting and regulatory subunits to confer substrate specificity and subcellular localization on the catalytic subunit of type 1δ protein serine/threonine phosphatase (PP1cδ). Family members share several conserved domains, including an RVxF motif for PP1c binding and several ankyrin repeats that mediate protein–protein interactions. MYPT1, MYPT2 and MBS85 contain C-terminal leucine zipper domains involved in dimerization and protein–protein interaction, whereas MYPT3 and TIMAP are targeted to membranes via a C-terminal prenylation site. All family members are regulated by phosphorylation at multiple sites by various protein kinases; for example, Rho-associated kinase phosphorylates MYPT1, MYPT2 and MBS85, resulting in inhibition of phosphatase activity and Ca2+ sensitization of smooth muscle contraction. A great deal is known about MYPT1, the myosin targeting subunit of myosin light chain phosphatase, in terms of its role in the regulation of smooth muscle contraction and, to a lesser extent, non-muscle motile processes. MYPT2 appears to be the key myosin targeting subunit of myosin light chain phosphatase in cardiac and skeletal muscles. MBS85 most closely resembles MYPT2, but little is known about its physiological function. Little is also known about the physiological role of MYPT3, although it is likely to target myosin light chain phosphatase to membranes and thereby achieve specificity for substrates involved in regulation of the actin cytoskeleton. MYPT3 is regulated by phosphorylation by cAMP-dependent protein kinase. TIMAP appears to target PP1cδ to the plasma membrane of endothelial cells where it serves to dephosphorylate proteins involved in regulation of the actin cytoskeleton and thereby control endothelial barrier function. With such a wide range of regulatory targets, MYPT family members have been implicated in diverse pathological events, including hypertension, Parkinson’s disease and cancer.  相似文献   

2.
Myosin phosphatase target subunit 1 (MYPT1), together with catalytic subunit of type1 δ isoform (PP1cδ) and a small 20-kDa regulatory unit (M20), form a heterotrimeric holoenzyme, myosin phosphatase (MP), which is responsible for regulating the extent of myosin light chain phosphorylation. Here we report the identification and characterization of a molecular interaction between Seven in absentia homolog 2 (SIAH2) and MYPT1 that resulted in the proteasomal degradation of the latter in mammalian cells, including neurons and glia. The interaction involved the substrate binding domain of SIAH2 (aa 116-324) and a central region of MYPT1 (aa 445-632) containing a degenerate consensus Siah-binding motif RLAYVAP (aa 493-499) evolutionally conserved from fish to humans. These findings suggest a novel mechanism whereby the ability of MP to modulate myosin light chain might be regulated by the degradation of its targeting subunit MYPT1 through the SIAH2-ubiquitin-proteasomal pathway. In this manner, the turnover of MYPT1 would serve to limit the duration and/or magnitude of MP activity required to achieve a desired physiological effect.  相似文献   

3.
The reaction of ethyl vinyl ether and 2,3,4,6-tetra-O-acetyl-β-d-glucopyranose (1) in the presence of Hg-(OAc)2 and toluene-p-sulphonic acid as catalysts yielded the acetylated vinyl, l-ethoxyethyl, and l-ethoxybut-3-enyl glycosides in varying proportions. Crystalline l-ethoxybut-3-enyl 2,3,4,6-tetra-O-acetyl-β-d-glucopyranoside (2), vinyl 2,3,4,6-tetra-O-acetyl-α-d-glucopyranoside (3), and l-ethoxyethyl 2,3,4,6-tetra-O-acetyl-β-d-glucopyranoside (4) were isolated by chromatography. Compound 4 was also prepared by the reaction of 1 with cold acetaldehyde diethyl acetal containing a trace of acetic acid, and its α anomer (5) by the reaction of 1 with boiling acetaldehyde diethyl acetal containing a trace of acetic acid. Each deacetylated d-glucoside was cleaved by the corresponding d-glucosidase, to yield d-glucose and either acetaldehyde (from deacetylated 3-5) or but-3-enal (from deacetylated 2).  相似文献   

4.
Polo-like kinase 1 (Plk1) is an instrumental kinase that modulates many aspects of the cell cycle. Previous investigations have indicated that Plk1 is a target of the DNA damage response, and Plk1 inhibition is dependent on ATM/ATR and Chk1. But the exact mechanism remains elusive. In a proteomic screen to identify Chk1-interacting proteins, we found that myosin phosphatase targeting protein 1 (MYPT1) was present in the immunocomplex. MYPT1 is phosphorylated by CDK1, thus recruiting protein phosphatase 1β (PP1cβ) to dephosphorylate and inactivate Plk1. Here we identified that Chk1 directly interacts with MYPT1 and preferentially phosphorylates MYPT1 at Ser20, which is essential for MYPT1-PP1cβ interaction and subsequent Plk1 dephosphorylation. Phosphorylation of Ser20 is abolished during mitotic damage when Chk1 is inhibited. The degradation of MYPT1 is also regulated by Chk1 phosphorylation. Our results thus unveil the underlying machinery that attenuates Plk1 activity during mitotic damage through Chk1-induced phosphorylation of MYPT1.  相似文献   

5.
Protein phosphatase-1M (PP1M, myosin phosphatase) consists of a PP1 catalytic subunit (PP1c) and the myosin phosphatase target subunit-1 (MYPT1). RhoA-activated kinase (ROK) regulates PP1M via inhibitory phosphorylation of MYPT1. Using multidisciplinary approaches, we have studied the roles of PP1M and ROK in neurotransmission. Electron microscopy demonstrated the presence of MYPT1 and ROK in both pre- and post-synaptic terminals. Tautomycetin (TMC), a PP1-specific inhibitor, decreased the depolarization-induced exocytosis from cortical synaptosomes. trans-4-[(1R)-1-aminoethyl]-N-4-pyridinylcyclohexanecarboxamide dihydrochloride, a ROK-specific inhibitor, had the opposite effect. Mass spectrometry analysis identified several MYPT1-bound synaptosomal proteins, of which interactions of synapsin-I, syntaxin-1, calcineurin-A subunit, and Ca(2+) /calmodulin-dependent kinase II with MYPT1 were confirmed. In intact synaptosomes, TMC increased, whereas Y27632 decreased the phosphorylation levels of MYPT1(Thr696) , myosin-II light chain(Ser19) , synapsin-I(Ser9) , and syntaxin-1(Ser14) , indicating that PP1M and ROK influence their phosphorylation status. Confocal microscopy indicated that MYPT1 and ROK are present in the rat ventral cochlear nucleus both pre- and post-synaptically. Analysis of the neurotransmission in an auditory glutamatergic giant synapse demonstrated that PP1M and ROK affect neurotransmission via both pre- and post-synaptic mechanisms. Our data suggest that both PP1M and ROK influence synaptic transmission, but further studies are needed to give a full account of their mechanism of action.  相似文献   

6.
The syntheses of 2,3,4,6-tetra-O-acetyl-1-S-dimethylarsino-1-thio-β-D-glucopyranose (3), 2,3,4,6-tetra-O-acetyl-1-Se-dimethylarsino-1-seleno-β-D-glucopyranose (4), 1-S-dimethylarsino-1-thio-β-D-glucopyranose (5), and -1-Se-dimethylarsino-1-seleno-β-D-glucopyranose (7) are described. The n.m.r., Raman, and mass-spectral properties of the compounds are given. 3-O-Diethylarsino-1,2:5,6-di-O-isopropylidene-α-D-glucofuranose has also been prepared, but characterized only by n.m.r. spectroscopy.  相似文献   

7.
Endotoxins activate Toll-like receptors and reprogram cells to be refractory to secondary exposure. Here we found that activation of different Toll-like receptors elicited a time- and dose-dependent increase in the levels of the protein phosphatase 2A catalytic subunit (PP2Ac) but not its partner A subunit. We purified the lipopolysaccharide-induced form of PP2A by chromatography plus immunoprecipitation and used mass spectrometry to identify VCP/p97 as a novel partner for PP2Ac. Endogenous VCP/p97 and PP2Ac were co-immunoprecipitated from primary murine macrophages and human lymphocytes. GST-VCP/p97 bound purified PP2A in pulldown assays, showing direct protein-protein interaction. Endotoxin conditioning of macrophages induced formation of 3-nitrotyrosine in the PP2Ac associated with VCP/p97, a response severely reduced in macrophages from iNOS knock-out mice. The reaction of purified PP2A with peroxynitrite dissociated the A subunit, and 3-nitro-Tyr284 was identified in PP2Ac by mass spectrometry. Myc-PP2Ac (Y284F) expressed in cells was resistant to peroxynitrite-induced nitration and reduction of A subunit binding. Transient expression of either VCP/p97 or PP2Ac was sufficient to elevate levels of the dual specificity phosphatase DUSP1, reduce p38 MAPK activation, and suppress tumor necrosis factor-α release. We propose that VCP/p97-mediated Tyr nitration of PP2A increases the levels of phosphatases PP2A and DUSP1 to contribute to the refractory response of conditioned cells.  相似文献   

8.
Wound healing is a complex sequence of cellular and molecular processes such as inflammation, cell migration, proliferation and differentiation. ROCK is a widely investigated Ser/Thr kinase with important roles in rearranging the actomyosin cytoskeleton. ROCK inhibitors have already been approved to improve corneal endothelial wound healing. The purpose of this study was to investigate the functions of myosin phosphatase (MP or PPP1CB), a type-1 phospho-Ser/Thr-specific protein phosphatase (PP1), one of the counter enzymes of ROCK, in skin homeostasis and wound healing. To confirm our hypotheses, we applied tautomycin (TM), a selective PP1 inhibitor, on murine skin that caused the arrest of wound closure. TM suppressed scratch closure of HaCaT human keratinocytes without having influence on the survival of the cells. Silencing of, the regulatory subunit of MP (MYPT1 or PPP1R12A), had a negative impact on the migration of keratinocytes and it influenced the cell-cell adhesion properties by decreasing the impedance of HaCaT cells. We assume that MP differentially activates migration and differentiation of keratinocytes and plays a key role in the downregulation of transglutaminase-1 in lower layers of skin where no differentiation is required. MAPK Proteome Profiler analysis on human ex vivo biopsies with MYPT1-silencing indicated that MP contributes to the mediation of wound healing by regulating the Akt signaling pathway. Our findings suggest that MP plays a role in the maintenance of normal homeostasis of skin and the process of wound healing.  相似文献   

9.
The interactions of the catalytic subunit of type 1 protein phosphatase (PP1c) and the N-terminal half (residues 1-511) of myosin phosphatase target subunit 1 (MYPT1) were studied. Biotinylated MYPT1 derivatives were immobilized on streptavidin-biosensor chips, and binding parameters with PP1c were determined by surface plasmon resonance (SPR). The affinity of binding of PP1c was: MYPT11-296 > MYPT11-38 > MYPT123-38. No binding was detected with MYPT11-34, suggesting a critical role for residues 35-38, i.e. the PP1c binding motif. Binding of residues 1-22 was inferred from: a higher affinity binding to PP1c for MYPT11-38 compared to MYPT123-38, as deduced from SPR kinetic data and ligand competition assays; and an activation of the myosin light chain phosphatase activity of PP1c by MYPT11-38, but not by MYPT123-38. Residues 40-296 (ankyrin repeats) in MYPT11-296 inhibited the phosphorylase phosphatase activity of PP1c (IC50 = 0.2 nM), whereas MYPT11-38, MYPT123-38 or MYPT11-34 were without effect. MYPT140-511, which alone did not bind to PP1c, showed facilitated binding to the complexes of PP1c-MYPT11-38 and PP1c-MYPT123-38. The inhibitory effect of MYPT140-511 on the phosphorylase phosphatase activity of PP1c also was increased in the presence of MYPT11-38. The binding of MYPT1304-511 to complexes of PP1c and MYPT11-38, or MYPT11-296, was detected by SPR. These results suggest that within the N-terminal half of MYPT1 there are at least four binding sites for PP1c. The essential interaction is with the PP1c-binding motif and the other interactions are facilitated in an ordered and cooperative manner.  相似文献   

10.
Myosin II association with actin, which triggers contraction, is regulated by orchestrated waves of phosphorylation/dephosphorylation of the myosin regulatory light chain. Blocking myosin regulatory light chain phosphorylation with small molecule inhibitors alters the shape, adhesion, and migration of many types of smooth muscle and cancer cells. Dephosphorylation is mediated by myosin phosphatase (MP), a complex that consists of a catalytic subunit (protein phosphatase 1c, PP1c), a large subunit (myosin phosphatase targeting subunit, MYPT), and a small subunit of unknown function. MYPT functions by targeting PP1c onto its substrate, phosphorylated myosin II. Using RNA interference, we show here that stability of PP1c β and MYPT1 is interdependent; knocking down one of the subunits decreases the expression level of the other. Associated changes in cell shape also occur, characterized by flattening and spreading accompanied by increased cortical actin, and cell numbers decrease secondary to apoptosis. Of the three highly conserved isoforms of PP1c, we show that MYPT1 binding is restricted to PP1c β, and, using chimeric analysis and site-directed mutations, that the central region of PP1c β confers the isoform-specific binding. This finding was unexpected because the MP crystal structure has been solved and was reported to identify the variable, C-terminal domain of PP1c β as being the region key for isoform-specific interaction with MYPT1. These findings suggest a potential screening strategy for cardiovascular and cancer therapeutic agents based on destabilizing MP complex formation and function.  相似文献   

11.
El-Toukhy A  Given AM  Ogut O  Brozovich FV 《FEBS letters》2006,580(24):5779-5784
In avian smooth muscles, GTPgammaS produces a Rho kinase mediated increase in PHI-1 phosphorylation and force, but whether this correlation is causal is unknown. We examined the effect of phosphorylated PHI-1 (P-PHI-1) on force and myosin light chain (MLC(20)) phosphorylation at a constant [Ca(2+)]. P-PHI-1, but not PHI-1, increased MLC(20) phosphorylation and force, and phosphorylation of PHI-1 increased the interaction of PHI-1 with PP1c. Microcystin induced a dose-dependent reduction in the binding of PHI-1 to PP1c. These results suggest PHI-1 inhibits myosin light chain phosphatase by interacting with the active site of PP1c to produce a Ca(2+) independent increase in MLC(20) phosphorylation and force.  相似文献   

12.
A lactosaminyl donor, 3,6-di-O-acetyl-2-deoxy-2-phthalimido-4-O-(2,3,4,6-tetra-O-acetyl-β-d-galactopyranosyl)-β-d- glucopyranosyl chloride, was synthesized in 10 steps, starting from 1,3,4,6-tetra-O-acetyl-2-deoxy-2-phthalimido-β-d-glucopyranose. Benzyl 3,6-di-O-benzyl-2-deoxy-2-phthalimido-β-d-glucopyranoside was prepared by regioselective benzylation at the primary hydroxyl group by the stannyl method, and was used as a key intermediate.
  相似文献   

13.
2-(6-Aminohexanamido)ethyl 1-thio-β-d-galactopyranoside (5) and 1-thio-β-d-glucopyranoside (9) were prepared by the following scheme: 2,3,4,6-tetra-O-acetyl-1-thio-β-d-aldopyranoses, generated from 2-S-(2,3,4,6-tetra-O-acetyl-β-d-aldopyranosyl)-2-thiopseudourea hydrobromides, were aminoethylated with ethylenimine, followed by N-acylation of the products with 6-(trifluoroacetamido)hexanoic acid (1), and O-deacylation. These reactions could be carried out consecutively without isolation of intermediates, and the products obtained after gel chromatography were de(trifluoroacetyl)ated to obtain the final products. The chain lengths of the aglycons were further extended by repeating the acylation and the de(trifluoroacetyl)ation. An analog containing glycerol in lieu of a sugar was prepared by a similar reaction-scheme.  相似文献   

14.
Major sites for Rho-kinase on the myosin phosphatase target subunit (MYPT1) are Thr695 and Thr850. Phosphorylation of Thr695 inhibits phosphatase activity but the role of phosphorylation at Thr850 is not clear and is evaluated here. Phosphorylation of both Thr695 and Thr850 by Rho-kinase inhibited activity of the type 1 phosphatase catalytic subunit. Rates of phosphorylation of the two sites were similar and efficacy of inhibition following phosphorylation was equivalent for each site. Phosphorylation of each site on MYPT1 was detected in A7r5 cells, but Thr850 was preferred by Rho-kinase and Thr695 was phosphorylated by an unidentified kinase(s).  相似文献   

15.
Phosphorylation of myosin II plays an important role in many cell functions, including smooth muscle contraction. The level of myosin II phosphorylation is determined by activities of myosin light chain kinase and myosin phosphatase (MP). MP is composed of 3 subunits: a catalytic subunit of type 1 phosphatase, PPlc; a targeting subunit, termed myosin phosphatase target subunit, MYPT; and a smaller subunit, M20, of unknown function. Most of the properties of MP are due to MYPT and include binding of PP1c and substrate. Other interactions are discussed. A recent discovery is the existence of an MYPT family and members include, MYPT1, MYPT2, MBS85, MYPT3 and TIMAP. Characteristics of each are outlined. An important discovery was that the activity of MP could be regulated and both activation and inhibition were reported. Activation occurs in response to elevated cyclic nucleotide levels and various mechanisms are presented. Inhibition of MP is a major component of Ca2+-sensitization in smooth muscle and various molecular mechanisms are discussed. Two mechanisms are cited frequently: (1) Phosphorylation of an inhibitory site on MYPT1, Thr696 (human isoform) and resulting inhibition of PP1c activity. Several kinases can phosphorylate Thr696, including Rho-kinase that serves an important role in smooth muscle function; and (2) Inhibition of MP by the protein kinase C-potentiated inhibitor protein of 17 kDa (CPI-17). Examples where these mechanisms are implicated in smooth muscle function are presented. The critical role of RhoA/Rho-kinase signaling in various systems is discussed, in particular those vascular smooth muscle disorders involving hypercontractility.  相似文献   

16.
Teruya T  Simizu S  Kanoh N  Osada H 《FEBS letters》2005,579(11):2463-2468
According to the chemical genetic approach, small molecules that bind directly to proteins are used to analyze protein function, thereby enabling the elucidation of complex mechanisms in mammal cells. Thus, it is very important to identify the molecular targets of compounds that induce a unique phenotype in a target cell. Phoslactomycin A (PLMA) is known to be a potent inhibitor of protein Ser/Thr phosphatase 2A (PP2A); however, the inhibitory mechanism of PP2A by PLMA has not yet been elucidated. Here, we demonstrated that PLMA directly binds to the PP2A catalytic subunit (PP2Ac) in cells by using biotinylated PLMA, and the PLMA-binding site was identified as the Cys-269 residue of PP2Ac. Moreover, we revealed that the Cys-269 contributes to the potent inhibition of PP2Ac activity by PLMA. These results suggest that PLMA is a PP2A-selective inhibitor and is therefore expected to be useful for future investigation of PP2A function in cells.  相似文献   

17.
Deoxycytidine kinase (dCK) is a critical enzyme for activation of anticancer nucleoside analogs. Its activity is controlled via Ser-74 phosphorylation. Here, we investigated which Ser/Thr phosphatase dephosphorylates Ser-74. In cells, the PP1/PP2A inhibitor okadaic acid increased both dCK activity and Ser-74 phosphorylation at concentrations reported to specifically target PP2A. In line with this, purified PP2A, but not PP1, dephosphorylated recombinant pSer-74-dCK. In cell lysates, the Ser-74-dCK phosphatase activity was found to be latent, Mn2+-activated, responsive to PP2A inhibitors, and diminished after PP2A-immunodepletion. Use of siRNAs allowed concluding definitively that PP2A constitutively dephosphorylates dCK in cells and negatively regulates its activity.  相似文献   

18.
α-d-Glucopyranosyl α-d-xylopyranoside has been synthesized in 49% yield by treatment of 2,3,4-tri-O-benzyl-α-d-xylopyranosyl bromide with 2,3,4,6-tetra-O-acetyl-d-glucopyranose in nitromethane-benzene with mercuric cyanide and bromide, followed by catalytic hydrogenolysis and O-deacetylation. Condensation with 2,3,4,6-tetra-O-acetyl-α-d-mannopyranosyl bromide in acetonitrile-dichloromethane with mercuric cyanide, followed by catalytic hydrogenolysis and O-deacetylation, gave α-d-glucopyranosyl α-d-mannopyranoside and β-d-glucopyranosyl β-d-mannopyranoside in 44 and 25% yield, respectively. The mixture was resolved by column chromatography of the fully acetylated derivatives. Selective acetylation of the di-O-benzylidene derivative of trehalose with N-acetylimidazole, followed by oxidation with dimethyl sulfoxide-acetic anhydride at C-3 and stereoselective reduction gave, after removal of the protecting groups, α-d-allopyranosyl α-d-glucopyranoside in 20% overall yield. The structure of the compounds was confirmed by 1H- and 13C-n.m.r., and mass spectrometry. α-d-Glucopyranosyl α-d-xylopyranoside and α-d-allopyranosyl α-d-glucopyranoside are less efficient substrates than trehalose for cockchafer trehalase, but α-d-glucopyranosyl α-d-mannopyranoside is a competitive inhibitor of the enzyme.  相似文献   

19.
Reversible phosphorylation of the retinoblastoma protein (pRb) is an important regulatory mechanism in cell cycle progression. The role of protein phosphatases is less understood in this process, especially concerning the regulatory/targeting subunits involved. It is shown that pretreatment of THP-1 leukemic cells with calyculin-A (CL-A), a cell-permeable phosphatase inhibitor, attenuated daunorubicin (DNR)-induced cell death and resulted in increased pRb phosphorylation and protection against proteolytic degradation. Protein phosphatase-1 catalytic subunits (PP1c) dephosphorylated the phosphorylated C-terminal fragment of pRb (pRb-C) slightly, whereas when PP1c was complexed to myosin phosphatase target subunit-1 (MYPT1) in myosin phosphatase (MP) holoenzyme dephosphorylation was stimulated. The pRb-C phosphatase activity of MP was partially inhibited by anti-MYPT1(1-296) implicating MYPT1 in targeting PP1c to pRb. MYPT1 became phosphorylated on both inhibitory sites (Thr695 and Thr850) upon CL-A treatment of THP-1 cells resulting in the inhibition of MP activity. MYPT1 and pRb coprecipitated from cell lysates by immunoprecipitation with either anti-MYPT1 or anti-pRb antibodies implying that pRb-MYPT1 interaction occurred at cellular levels. Surface plasmon resonance-based experiments confirmed binding of pRb-C to both PP1c and MYPT1. In control and DNR-treated cells, MYPT1 and pRb were predominantly localized in the nucleus exhibiting partial colocalization as revealed by immunofluorescence using confocal microscopy. Upon CL-A treatment, nucleo-cytoplasmic shuttling of both MYPT1 and pRb, but not PP1c, was observed. The above data imply that MP, with the targeting role of MYPT1, may regulate the phosphorylation level of pRb, thereby it may be involved in the control of cell cycle progression and in the mediation of chemoresistance of leukemic cells.  相似文献   

20.
Dephosphorylation of actin-binding proteins by a specialized form of protein Ser/Thr phosphatase type-1 (PP1) regulates smooth muscle contraction and morphology and motility of nonmuscle cells. This myosin and ezrin/radixin/moesin (ERM)-targeted phosphatase comprises the delta isoform PP1 catalytic subunit plus a primary regulatory subunit called myosin phosphatase targeting (MYPT1). We reconstructed myosin/ERM phosphatase in living rat embryo fibroblasts (REF52 cells) by transient expression of epitope-tagged MYPT1 (myc-MYPT1) plus HA-tagged PP1. Unexpectedly, wild-type myc-MYPT1 expressed alone accumulated predominantly in the nucleus, as visualized by immunofluorescent microscopy, whereas if coexpressed with HA-PP1, it was localized in the cytosol and deposited on cytoskeleton myofilaments. The F38A mutation of MYPT1 that eliminates PP1 binding gave nuclear localization of myc-MYPT1, even when coexpressed with HA-PP1. Thus, expression of both subunits was necessary to form myosin/ERM phosphatase in situ and mediate myofilament localization. The results indicate there is little endogenous PP1 available for interaction or interchange with ectopic regulatory subunits in living cells. We concluded that myosin binding by the C-terminal domain of MYPT1 is not sufficient to override nuclear import in fibroblasts, but the binding of PP1 to myc-MYPT1 neutralizes nuclear import. Full-length myc-MYPT1 plus HA-PP1 induced only subtle changes in organization of the actin cytoskeleton, however coexpression of myc-MYPT1(1-300) with HA-PP1 dispersed stress fibers without major alteration in morphology and myc-MYPT1(1-498) disrupted the cytoskeleton and produced radically extended cells that appeared like neurons. Based on these responses, we conclude that the MYPT1 C-terminus functions as an auto-inhibitory domain, and a central domain in MYPT1 can mediate extensive reorganization of the actin cytoskeleton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号