首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To further explore the structure activity relationships (SARs) of our previously discovered antifungal lead compound (1), a series of biphenyl imidazole analogues were designed, synthesized and evaluated for their in vitro antifungal activity. Many of the synthesized compounds showed excellent activity against Candida albicans and Candida tropicalis. Among these compounds, 2-F substituted analogue 12m displayed the most remarkable in vitro activity against C. albicans, C. neoformans, A. fumigatus and fluconazole-resistant C. alb. strains, which is superior or comparable to the activity of the reference drugs fluconazole and itraconazole. Notably, the compound 12m exhibited low inhibition profiles for various human cytochrome P450 isoforms and showed low toxicity to mammalian A549 cells and U87 cells. The SARs and binding mode established in this study will be useful for further lead optimization.  相似文献   

2.
A series of fourteen novel synthesized arylazothiazole and arylhydrazothiazole derivatives were tested for their antifungal activity and structure-activity relationship. The activity of the compounds depends mainly on the side chains of the nucleus compound. The antifungal activity was more significant when both side chains are aromatic?>?one aromatic and one aliphatic and substituted aromatic with CH3 or OCH3?>?non-substituted?>?substituted aromatic with chloro- or nitro-groups. Thiazole derivatives 7a, 7c, 7e, 7f, 7?g, 7i, 7?m, and 11a showed the most effective as antifungal compounds and were comparable with fluconazole as antifungal reference drug when investigated against Candida albicans, Microsporum gypseum and Trichophyton mentagrophytes. The minimum inhibitory concentration (MIC) reached 2?µg/mL in the case of C. albicans for compounds 7a, 7b, 7c and 11a and measured 4?µg/mL in the case of M. gypseum and T. mentagrophytes for the same compounds. The minimum fungicidal concentration (MFC) for the same compounds was 4?µg/mL for C. albicans and ranged from 8 to 32?µg/mL for the other two fungi. The results revealed that compounds 7c and 11a were the most antifungal compounds against the test fungi regarding keratinase activity and ergosterol biosynthesis. The in vivo efficacy of synthesized thiazoles 7c and 11a applied at their respective MFC was more effective in the treatment of skin infection of guinea pigs previously inoculated with the test fungi as compared with fluconazole. The Molecular Operating Environment (MOE) software was used to analyze the docking poses and binding energies of compound 11a and keratinase. The computational studies supported the biological activity results.  相似文献   

3.
Based on the HTS hit compound 1a, an inhibitor of β-1,6-glucan synthesis, we synthesized novel pyridobenzimidazole derivatives and evaluated their antifungal activity. Among the compounds synthesized, we identified the potent compound 15e, which exhibits excellent activity superior to fluconazole against both Candida glabrata and Candida krusei. From the SAR study, we revealed essential moieties for antifungal activity.  相似文献   

4.
Diversity-oriented synthesis of derivatives of natural products is an important approach for the discovery of novel drugs. In this paper, a series of novel 3,4-diaryl-1H-pyrazoles and 3,5-diaryl-1H-pyrazoles derivatives were synthesized through the one-pot reaction of flavones and isoflavones with the hydrazine hydrate and substituted hydrazine hydrate. Some of these novel compounds exhibited antifungal effects against Candida albicans SC5314, and displayed more potent inhibitory activities against the efflux-pump-deficient strain DSY654. In addition, compounds 25, 28 and 32a displayed outstanding reversal activity of azole resistance against clinical azole-resistant Candida albicans in combination with fluconazole (FLC), with FICI values ranging from 0.012 to 0.141. The preliminary structure-activity relationship (SAR) of these compounds was also discussed. In conclusion, this study provides several novel agents that displayed potent antifungal activities alone or together with fluconazole, which makes progress for development of antifungal drugs.  相似文献   

5.
A series of novel potentially antifungal hybrids of 5-flucytosine and fluconazole were designed, synthesized and characterized by 1H NMR, 13C NMR, IR and HRMS spectra. Bioactive assay manifested that some prepared compounds showed moderate to good antifungal activities in comparison with fluconazole and 5-flucytosine. Remarkably, the 3,4-dichlorobenzyl hybrid 7h could inhibit the growth of C. albicans ATCC 90023 and clinical resistant strain C. albicans with MIC values of 0.008 and 0.02?mM, respectively. The active molecule 7h could not only rapidly kill C. albicans but also efficiently permeate membrane of C. albicans. Molecular docking study revealed that compound 7h could interact with the active site of CACYP51 through hydrogen bond. Quantum chemical studies were also performed to explain the high antifungal activity. Further preliminary mechanism research suggested that molecule 7h could intercalate into calf thymus DNA to form a steady supramolecular complex, which might block DNA replication to exert the powerful bioactivities.  相似文献   

6.
A series of new thioether/sulfone compounds containing 1,2,3-thiadiazole and 1,3,4-oxadiazole/1,3,4-thiadiazole moiety were synthesized, the structures of all products were confirmed by IR, 1H NMR, 13C NMR, and element analysis. Preliminary antifungal activity test showed that compound 8a exhibited moderate antifungal activity against Fusarium oxysporum at 50 μg/mL. Preliminary antiviral activity results showed that compounds 7a, 7c, 7d, 8a, and 9a displayed high antiviral activity against tobacco mosaic virus. The present work demonstrates that thioether/sulfone heterocyclic derivatives could be considered as new lead compounds for antiviral studies.  相似文献   

7.
On the basis of the active site of lanosterol 14α-demethylase from Candida albicans (CACYP51), a series of new azoles were designed and synthesized. All the new azoles show excellent in vitro activity against most of the tested pathogenic fungi, which represent a class of promising leads for the development of novel antifungal agents. The MIC80 value of compounds 8c, 8i and 8n against C. albicans is 0.001 μg/mL, indicating that these compounds are more potent than fluconazole, itraconazole and voriconazole. Flexible molecular docking was used to analyze the structure–activity relationships (SARs) of the compounds. The designed compounds interact with CACYP51 through hydrophobic, van der Waals and hydrogen-bonding interactions.  相似文献   

8.
Based on our previous discovery and SAR study on the lead compounds 7d, 5 and berberine which can significantly enhance the susceptibility of fluconazole against fluconazole-resistant Candida albicans, a series of 3-(benzo[d][1,3]dioxol-5-yl)-N-(substituted benzyl)propanamides were designed, synthesized, and evaluated for their in vitro synergistic activity in combination with fluconazole. The series 2af were designed by replacing the amide moiety of the lead compound 7d with retro-amide moiety, and compounds 2a and 2b showed more activity than the lead 7d. Furthermore, introducing biphenyl moiety into series 2df afforded series 3ar, most of which exhibited significantly superior activity to the series 2df. Especially, compound 3e, at a concentration of 1.0 µg/ml, can enhance the susceptibility of fluconazole against fluconazole-resistant Candida albicans from 128.0 µg/ml to 0.125–0.25 µg/ml. A clear SAR of the compounds is discussed.  相似文献   

9.
A series of acetophenone derivatives (10a10i, 11, 12a12g, 13a13g, 14a14d and 15a15l) were designed, synthesized and evaluated for antifungal activities in vitro and in vivo. The antifungal activities of 53 compounds were tested against several plant pathogens, and their structure–activity relationship was summarized. Compounds 10a10f displayed better antifungal effects than two reference fungicides. Interestingly, the most potent compound 10d exhibited antifungal properties against Cytospora sp., Botrytis cinerea, Magnaporthe grisea, with IC50 values of 6.0–22.6?µg/mL, especially Cytospora sp. (IC50?=?6.0?µg/mL). In the in vivo antifungal assays, 10d displayed the significant protective efficacy of 55.3% to Botrytis cinerea and 73.1% to Cytospora sp. The findings indicated that 10d may act as a potential pesticide lead compound that merits further investigation.  相似文献   

10.
The design, synthesis, in vitro evaluation, and conformational study of nitrosopyrimidine derivatives acting as antifungal agents are reported. Different compounds structurally related with 4,6-bis(alkyl or arylamino)-5-nitrosopyrimidines were evaluated. Some of these nitrosopyrimidines have displayed a significant antifungal activity against human pathogenic strains. In this paper, we report a new group of nitrosopyrimidines acting as antifungal agents. Among them, compounds 2a, 2b and 15, the latter obtained from a molecular modeling study, exhibited antifungal activity against Candida albicans, Candida tropicalis and Cryptococcus neoformans. We have performed a conformational and electronic analysis on these compounds by using quantum mechanics calculations in conjunction with Molecular Electrostatic Potentials (MEP) obtained from B3LYP/6–31G(d) calculations. Our experimental and theoretical results have led us to identify a topographical template which may provide a guide for the design of new nitrosopyrimidines with antifungal effects.  相似文献   

11.
In an attempt to find novel azole antifungal agents with improved activity and broader spectrum, computer modeling was used to design a series of new azoles with piperidin-4-one O-substituted oxime side chains. Molecular docking studies revealed that they formed hydrophobic and hydrogen-bonding interactions with lanosterol 14α-demethylase of Candida albicans (CACYP51). In vitro antifungal assay indicates that most of the synthesized compounds showed good activity against tested fungal pathogens. In comparison with fluconazole, itraconazole and voriconazole, several compounds (such as 10c, 10e, and 10i) show more potent antifungal activity and broader spectrum, suggesting that they are promising leads for the development of novel antifungal agents.  相似文献   

12.
In the present investigation, new chloroquinoline derivatives bearing vinyl benzylidene aniline substituents at 2nd position were synthesized and screed for biofilm inhibitory, antifungal and antibacterial activity. The result of biofilm inhibition of C. albicans suggested that compounds 5j (IC50 value?=?51.2?μM) and 5a (IC50 value?=?66.2?μM) possess promising antibiofilm inhibition when compared with the standard antifungal drug fluconazole (IC50?=?40.0?μM). Two compounds 5a (MIC?=?94.2?μg/mL) and 5f (MIC?=?98.8?μg/mL) also exhibited good antifungal activity comparable to standard drug fluconazole (MIC?=?50.0?μg/mL). The antibacterial screening against four strains of bacteria viz. E. coli, P. aeruginosa, B. subtilis, and S. aureus suggested their potential antibacterial activity and especially all the compounds except 5g were found more active than the standard drug ciprofloxacin against B. subtilis. To further gain insights into the possible mechanism of these compounds in biofilm inhibition through the agglutinin like protein (Als), molecular docking and molecular dynamics simulation studies were carried out. Molecular modeling studies suggested the clear role in inhibition of this protein and the resulting biofilm inhibitory activity.  相似文献   

13.
Sodium bisulfite has been reported first time for the synthesis of 2,5-disubstituted 1,3,4-oxadiazole using microwave and conventional method in ethanol-water. The yields obtained are in the range of 90-95% using microwave and 87-91% using conventional method. All the synthesized compounds (8a-8s) are novel and were evaluated for their in vitro antifungal activity. SAR for the series has been developed by comparing their MIC values with miconazole and fluconazole. Some of the compounds from the series like 8k was equipotent with miconazole against Candida albicans and Fusarium oxysporum. Also compound 8n was equipotent with miconazole against F. oxysporum.  相似文献   

14.
A number of 1H-1,2,4-triazole alcohols containing N-(halobenzyl)piperazine carbodithioate moiety have been designed and synthesized as potent antifungal agents. In vitro bioassays against different Candida species including C. albicans, C. glabrata, C. parapsilosis, C. krusei, and C. tropicalis revealed that the N-(4-chlorobenzyl) derivative (6b) with MIC values of 0.063–0.5 µg/mL had the best profile of activity, being 4–32 times more potent than fluconazole. Docking simulation studies confirmed the better fitting of compound 6b in the active site of lanosterol 14α-demethylase (CYP51) enzyme, the main target of azole antifungals. Particularly, the potential of compound 6b against fluconazole-resistant isolates along with its minimal toxicity against human erythrocytes and HepG2 cells make this prototype compound as a good lead for discovery of potent and safe antifungal agents.  相似文献   

15.
A series of 8,9-disubstituted adenines (4, 5, 8), 6-substituted aminopurines (10–13) and 9-(p-fluorobenzyl/cyclopentyl)-6-substituted aminopurines (16, 17, 19–30) have been prepared and the antimicrobial activities of these compounds against Staphylococcus aureus, methicillin-resistant S. aureus (MRSA, standard and clinical isolate), Bacillus subtilis, Escherichia coli and Candida albicans were evaluated. 6-[(N-phenylaminoethyl)amino]-9H-purine (12) which has no substitution at N-9 position and 9-cyclopentyl-6-[(4-fluorobenzyl)amino]-9H-purine (24) exhibited excellent activity against C. albicans with MIC 3.12 μg/mL. These compounds displayed better antifungal activity than that of standard oxiconazole. Furthermore, compound 22 carrying 4-chlorobenzylamino group at the 6-position of the purine moiety exhibited comparable antibacterial activity with that of the standard ciprofloxacin against both of the drug-resistant bacteria (MRSA, standard and clinical isolate).  相似文献   

16.
On the basis of the active site of lanosterol 14α-demethylase from Candida albicans (CACYP51), a series of 1-(2-(2,4-difluorophenyl)-2-hydroxy-3-(1H-1,2,4-triazol-1-yl)propyl)-1H-1,2,4-triazol-5(4H)-one derivatives were synthesized as fluconazole analogs. Results of the preliminary antifungal tests against eight human pathogenic fungi in vitro showed that these compounds exhibited activities to some extent, and some displayed excellent antifungal activities against C. albicans than reference drug fluconazole. Flexible molecular docking was used to analyze the structure-activity relationships (SARs) of the target compounds. The designed compounds interact with CACYP51 through hydrophobic, van der Waals and hydrogen-bonding interactions.  相似文献   

17.
During our efforts to develop new antifungal agents, a number of hybrid molecules containing furanones and fluconazole pharmacophores were designed and synthesized. The new chemical entities thus synthesized were tested for their potential as antifungal agents against various fungal strains and it was observed that the compounds with general structure 7 were potent inhibitors of Candida albicans ATCC 24433, Candida glabrata ATCC 90030, Candida tropicalis ATCC 750 and Candida neoformans ATCC 34664 while the fluconazole analogues 12 exhibited antifungal activity against Candida albicans ATCC 24433 and Candida glabrata ATCC 90030. The structure-activity relationship for these compounds is discussed. The synthetic strategies used in the present work have potential to prepare a large number of compounds for further refinement of structures to obtain molecules suitable for development as antifungal drugs.  相似文献   

18.
A series of novel 1-methyl-3-substituted quinazoline-2,4-dione derivatives were designed, synthesized, and characterized by 1H NMR, 13C NMR and MS spectral data. Their inhibition against chitin synthase (CHS) and antifungal activities were evaluated in vitro. Results showed compounds 5b, 5c, 5e, 5f, 5j, 5k, 5l, and 5o had strong inhibitory potency against CHS. Compound 5c, which has the highest potency among these compounds, had a half-inhibition concentration (IC50) of 0.08 mmol/L, while polyoxin B as positive drug had IC50 of 0.18 mmol/L. These IC50 values of compounds 5i, 5m, 5n, and 5s were greater than 0.75 mmol/L, which revealed that those compounds had weak inhibition activity against CHS. Moreover, most of these compounds exhibited moderate to excellent antifungal activities. In detail, to Candida albicans, the activities of compound 5g and 5k were 8-fold stronger than that of fluconazole and 4-fold stronger than that of polyoxin B; to Aspergillus flavus, the activities of 5g, 5l and 5o were16-fold stronger than that of fluconazole and 8-fold stronger than that of polyoxin B; to Cryptococcus neoformans, the minimum-inhibition-concentration (MIC) values of compounds 5c, 5d, 5e and 5l were comparable to those of fluconazole and polyoxin B. The antifungal activities of these compounds were positively correlated to their IC50 values against CHS. Furthermore, these compounds had negligible actions to bacteria. Therefore, these compounds were promising selective antifungal agents.  相似文献   

19.
A new series of triazole compounds possessing an amide-part were efficiently synthesized and their in vitro antifungal activities were investigated. The amide analogs showed excellent in vitro activity against Candida, Cryptococcus and Aspergillus species. The MICs of compound 23d against C. albicans ATCC24433, C. neoformans TIMM1855 and A. fumigatus ATCC26430 were ?0.008, 0.031 and 0.031 μg/mL, respectively, (MICs of fluconazole: 0.5, >4 and >4 μg/mL; MICs of itraconazole: 0.125, 0.25, 0.25 μg/mL). Furthermore, compound 23d was stable under acidic conditions.  相似文献   

20.
A novel series of 1,2,3 triazole compounds possessing 1,2,4 oxadiazole ring were efficiently synthesized. Synthesized compounds were evaluated for their in vitro antifungal activities using standard cup plate method. SAR for the series has been developed by comparing their MIC values with miconazole and fluconazole. Compound 11a from the series was more potent than miconazole against Candida albicans (MIC-20) and Aspergillus flavus (MIC-10) whereas equipotent with miconazole against Fusarium oxysporum (MIC-25) and Aspergillus niger (MIC-12.5). Also compound 11h was more potent than miconazole against Candida albicans (MIC-20) and Aspergillus niger (MIC-10) and equipotent with miconazole against Fusarium oxysporum. Compound 11h was equipotent with fluconazole against Aspergillus niger (MIC-10).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号