首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 268 毫秒
1.
Penetration of cabbage roots by Heterodera schachtii was suppressed 50-77% in loamy sand naturally infested with the nematophagous fungus Hirsutella rhossiliensis. When Heterodera schachtii was incubated in the suppressive soil without plants for 2 days, 40-63% of the juveniles had Hirsutella rhossiliensis spores adhering to their cuticles. Of those with spores, 82-92% were infected. Infected nematodes were killed and filled with hyphae within 2-3 days. Addition of KCl to soil did not increase infection of Heterodera schachtii by Hirsutella rhossiliensis. The percentage of infection was lower when nematodes were touched to two spores and incubated in KCl solution than when nematodes naturally acquired two spores in soil.  相似文献   

2.
A spore assay was developed to measure the relative density of spores of the nematophagous fungus Hirsutella rhossiliensis in soil. Orchard soil containing H. rhossiliensis-parasitized Criconemella xenoplax was placed in vials and incubated for 0-120 days before the addition of probe nematodes, Heterorhabditis heliothidis juveniles. After 18 hours, H. heliothidis were extracted from the soil and examined for adhering spores of H. rhossiliensis. No spores were detected when H. heliothidis were added to freshly mixed soil, but the percentage of H. heliothidis with spores increased rapidly if soil was incubated undisturbed. Because mixing soil detaches spores from phialides, the results indicate that spores must be attached to phialides to adhere to nematodes. The spore assay was compared with a plate assay that measures the population density of H. rhossiliensis-parasitized C. xenoplax. Results from the two assays were highly correlated, suggesting that spores occur in three phases: reserves in nematodes that may be converted into spores; spores on phialides and therefore capable of adhering to nematodes; and spores detached from phialides and thus incapable of adhering to nematodes.  相似文献   

3.
Experiments were conducted to determine whether the addition of organic matter to soil increased numbers of bacterivorous nematodes and parasitic activity of the nematophagous fungus Hirsutella rhossiliensis. In a peach orchard on loamy sand, parasitism of the plant-parasitic nematode Criconemella xenoplax by H. rhossiliensis was slightly suppressed and numbers of C. xenoplax were not affected by addition of 73 metric tons of composted chicken manure/ha. In the laboratory, numbers of bacterivorous nematodes (especially Acrobeloides spp.) and fungivorous nematodes increased but parasitism of nematodes by H. rhossiliensis usually decreased with addition of wheat straw or composted cow manure to a loamy sand naturally infested with H. rhossiliensis. These results do not support the hypothesis that organic amendments will enhance parasitism of nematodes by H. rhossiliensis.  相似文献   

4.
Numbers of cyst and root-knot nematodes and percentage parasitism by the nematophagous fungus Hirsutella rhossiliensis were quantified in microplots over 2 years. The microplots contained either sugarbeets in loam infested with Heterodera schachtii or tomatoes in sand infested with Meloidogyne javanica. The fungus was added to half of the microplots for each crop. Although H. rhossiliensis established in both microplot soils, the percentage of nematodes parasitized did not increase with nematode density and nematode numbers were not affected by the fungus. The results indicate that long-term interactions between populations of the fungus and cyst or root-knot nematodes will not result in biological control.  相似文献   

5.
We evaluated the ability of the nematode-pathogenic fungus Hirsutella rhossiliensis (Deuteromycotina: Hyphomycetes) to reduce root penetration and population increase of Pratylenchus penetrans on potato. Experiments were conducted at 24 C in a growth chamber. When nematodes were placed on the soil surface 8 cm from a 14-day-old potato cutting, the fungus decreased the number entering roots by 25%. To determine the effect of the fungus on population increase after the nematodes entered roots, we transplanted potato cuttings infected with P. penetrans into Hirsutella-infested and uninfested soil. After 60 days, the total number of nematodes (roots and soil) was 20 ± 4% lower in Hirsutella-infested than in uninfested soil.  相似文献   

6.
Eleven fungal isolates were tested in agar dishes for pathogenicity to Pratylenchus penetrans. Of the fungi that produce adhesive conidia, Hirsutella rhossiliensis was a virulent pathogen; Verticillium balanoides, Drechmeria coniospora, and Nematoctonus sp. were weak or nonpathogens. The trapping fungi, Arthrobotrys dactyloides, A. oligospora, Monacrosporium dlipsosporum, and M. cionopagum, killed most of the P. penetrans adults and juveniles added to the fungus cultures. An isolate of Nematoctonus that forms adhesive knobs trapped only a small proportion of the nematodes. In 17-cm³ vials, soil moisture influenced survival of P. penetrans in the presence of H. rhossiliensis; nematode survival decreased with diminishing soil moisture. Hirsutella rhossiliensis and M. ellipsosporum were equally effective in reducing numbers of P. penetrans by 24-25% after 4 days in sand. After 25 days in soil artificially infested with H. rhossiliensis, numbers of P. penetrans were reduced by 28-53%.  相似文献   

7.
Hirsutella rhossiliensis, a nematophagous fungus, has shown potential in biocontrol of plant-parasitic nematodes. Monitoring the population dynamics of a biocontrol agent in soil requires comprehensive techniques and is essential to understand how it works. Bioassay based on the fungal parasitism on the juveniles of soybean cyst nematode, Heterodera glycines, can be used to evaluate the activity of the fungus but fails to quantify fungal biomass in soil. A real-time polymerase chain reaction (PCR) assay was developed to quantify the fungal population density in soil. The assay detected as little as 100 fg of fungal genomic DNA and 40 conidia g−1 soil, respectively. The parasitism bioassay and the real-time PCR assay were carried out to investigate the presence, abundance and activity of H. rhossiliensis in soil after application of different inoculum levels. Both of the percentage of assay nematodes parasitized by H. rhossiliensis based on the parasitism bioassay and the DNA yield of the fungus quantified by real-time PCR increased significantly with the increase of the inoculum levels. The DNA yield of the fungus was positively correlated with the percentage of assay nematodes parasitized by H. rhossiliensis. The combination of the two is useful for monitoring fungal biomass and activity in soil.  相似文献   

8.
Hirsutella rhossiliensis and Verticillium chlamydosporium infected second-stage juveniles (J2) and eggs of Meloidogyne hapla, respectively, in petri dishes and in organic soil in pots planted to lettuce in the greenhouse. In vitro, H. rhossiliensis produced 78 to 124 spores/infected J2 of M. hapla. The number of J2 in roots of lettuce seedlings decreased exponentially with increasing numbers of vegetative colonies of H. rhossiliensis in the soil. At an infestation of 8 M. hapla eggs/cm³ soil, 1.9 colonies of H. rhossiliensis/cm³ soil were needed for a 50% decrease in J2 penetration of lettuce roots. Egg-mass colonization with V. chlamydosporium varied from 16% to 43% when soil was infested with 8 M. hapla eggs and treated with 5,000 or 10,000 chlamydospores of V. chlamydosporium/cm³ soil. This treatment resulted in fewer J2 entering roots of bioassay lettuce seedlings planted in the infested soils after harvesting the first lettuce plants 7 weeks after infestation with M. hapla. Hirsutella rhossiliensis (0 to 4.3 colonies/cm3 soil), V. chlamydosporium (500 to 10,000 chlamydospores/cm3 soil), or their combination, added to organic soils with 8 M. hapla eggs/cm³ soil, generally did not affect lettuce weight, root galling, or egg production of M. hapla. However, when lettuce was replanted in a mix of infested and uninfested soil (1:3 and 1:7, v:v), egg production was lower in soils with V. chlamydosporium than in soils without the fungus. Both fungi have potential to reduce the M. hapla population, but at densities below 8 eggs/cm³ soil.  相似文献   

9.
Twenty-one isolates of 18 fungal species were tested on water agar for their pathogenicity to eggs of Heterodera glycines. An egg-parasitic index (EPI) for each of these fungi was recorded on a scale from 0 to 10, and hatch of nematode eggs was determined after exposure to the fungi on water agar for 3 weeks at 24 C. The EPI for Verticillium chlamydosporium was 7.6, and the fungus reduced hatch 74%. Pyrenochaeta terrestris and two sterile fungi also showed a high EPI and reduced hatch 42-73%. Arthrobotrys dactyloides, Fusarium oxysporum, Paecilomyces lilacinus, Stagonospora heteroderae, Neocosmospora vasinfecta, Fusarium solani, and Exophiala pisciphila were moderately pathogenic to eggs (EPI was 2.0-4.5, and hatch was reduced 21-56%). Beauveria bassiana, Hirsutella rhossiliensis, Hirsutella thompsonii, Dictyochaeta heteroderae, Dictyochaeta coffeae, Gliocladium catenulatum, and Cladosporium sp. showed little parasitism of nematode eggs but reduced hatch. A negative correlation was observed between hatch and fungal parasitism of eggs. Fusarium oxysporum, H. rhossiliensis, P. lilacinus, S. heteroderae, V. chlamydosporium, and sterile fungus 1 also were tested in soil in a greenhouse test. After 3 months, the nematode densities were lower in soil treated with H. rhossiliensis and V. chlamydosporium than in untreated soil. The nematode population densities were correlated negatively with the EPI, but not with the percentage of cysts colonized by the fungi. Plant weights and heights generally increased in the soil treated with the fungi.  相似文献   

10.
The role of microbes associated with chicken litter in the suppression of Meloidogyne arenaria in amended soil was investigated. Amended soil treatments were prepared, including combinations of sterile and nonsterile chicken litter and soil. Microbial biomass in different treatments was compared by measuring carbon dioxide evolution. There was less CO₂ evolved in sterile litter than in nonsterile litter treatments. Tomato seedlings cv. Rutgers were transplanted into soil mixtures and inoculated with 2,000 M. arenaria eggs. After 10 days, fewer second-stage juveniles (J2) had penetrated the roots in soils amended with nonsterile litter than sterile litter. The effects of sterile and nonsterile litter-amended soil solutions on M. arenaria eggs and J2 were observed over a period of 6 days. A lower percentage of eggs remained apparently healthy in nonsterile than in sterile-amended soil solutions over 6 days. Microbial degradation of the egg shells was apparent. Fewer J2 survived in sterile- and nonsterile-amended-soil solutions as compared to water controls.  相似文献   

11.
The impact of the nematode-parasitic fungus Hirsutella rhossiliensis on the effectiveness of Steinernema carpocapsae, S. glaseri, and Heterorhabditis bacteriophora against Galleria mellonella larvae was assessed in the laboratory. The presence of Hirsutella conidia on the third-stage (J3) cuticle of S. carpocapsae and H. bacteriophora interfered with infection of insect larvae. Conidia on the J3 cuticle of S. glaseri and on the ensheathing second-stage cuticle of H. bacteriophora did not reduce the nematodes'' ability to infect larvae. The LD₅₀ values for S. carpocapsae, S. glaseri, and H. bacteriophora in sand containing H. rhossiliensis were not different from those in sterilized sand when Galleria larvae were added at the same time as the nematodes. However, when Galleria larvae were added 3 days after the nematodes, the LD₅₀ of S. glaseri was higher in Hirsutella-infested sand than in sterilized sand, whereas the LD₅₀ of H. bacteriophora was the same in infested and sterilized sand. Although the LD₅₀ of S. carpocapsae was much higher in Hirsutella-infested sand than in sterilized sand, the data were too variable to detect a significant difference. These data suggest that H. bacteriophora may be more effective than Steinernema species at reducing insect pests in habitats with abundant nematode-parasitic fungi.  相似文献   

12.
The entomogenous nematode Steinernema feltiae was encapsulated in an alginate matrix containing a tomato seed. When these capsules were placed on 0.8% agar for 7 days, the seed germinated and ca. 20% of the nematodes escaped from the capsules, whereas only 0.1% escaped from capsules without seeds. When capsules containing nematodes and a seed were planted into sterilized or nonsterilized soil, nematodes escaped to infect Galleria mellonella larvae. When seed in capsules containing ca. 274 nematodes per capsule were planted in nonsterilized soil, Galleria mortality was 90% 1 week later. Galleria mortality declined to 27%, 23%, and 0% in weeks 2, 4, and 8 postplant, respectively. In sterilized soil, Galleria mortality was 96% and did not differ significantly from the nonsterilized soil in week 1, but was significantly higher in sterilized soil over nonsterilized soil for week 2 (81%) and week 4 (51%). When capsules containing nematodes only were used, Galleria mortality was 71% in sterilized soil 1 week after planting and 58%, 33%, and 12% in weeks 2, 4, and 8 postplant, respectively. In nonsterilized soil, Galleria mortality was 8%, 30%, 21%, and 28% after 1, 2, 4, and 8 weeks, respectively, using only encapsulated nematodes. When the number of nematodes per capsule was increased to ca. 817, Galleria mortality was 92 % or higher in sterilized soil from week 1 to week 4.  相似文献   

13.
We tested the hypothesis that isolates of Hirsutella rhossiliensis from host nematodes in the family Hoplolaimidae (Rotylenchus robustus and Hoplolaimus galeatus) would be more virulent to R. robustus than would isolates from host nematodes not in the Hoplolaimidae (Heterodera schachtii and Criconemella xenoplax). Nematodes were touched to 10-20 spores of different isolates and incubated at 20 C in 4.5 mM KC1; the percentage of nematodes colonized (filled with hyphae) was determined after 2, 5, 10, 20, and 30 days. The hypothesis was rejected because isolates from H. schachtii and C. xenoplax were equivalent or better at parasitizing R. robustus than were isolates from R. robustus and H. galeatus. In addition, the R. robustus and H. galeatus isolates were as pathogenic to C. curvata as they were to R. robustus, but produced fewer spores per colonized nematode (H. schachtii) than did the other isolates.  相似文献   

14.
The responses of second-stage juveniles (J2) of Meloidogyne incognita race 3 to calcium alginate pellets containing hyphae of the nematophagous fungi Monacrosporiura cionopagum, M. ellipsosporum, and Hirsutella rhossiliensis were examined using cylinders (38-mm-diam., 40 or 72 mm long) of sand (94% <250-μm particle size). Sand was wetted with a synthetic soil solution (10% moisture, 0.06 bar water potential). A layer of 10 or 20 pellets was placed 4 or 20 mm from one end of the cylinder. After 3, 5, or 13 days, J2 were put on both ends, on one end, or in the center; J2 were extracted from 8-ram-thick sections 1 or 2 days later. All three fungal pellets were repellent; pellets without fungi were not. Aqueous extracts of all pellets and of sand in which fungal pellets had been incubated were repellent, but acetone extracts redissolved in water were not. Injection of CO₂ (20 μl/minute) into the pellet layer attracted J2 and increased fungal-induced mortality. In vials containing four randomly positioned pellets and 17 cm³ of sand or loamy sand, the three fungi suppressed the invasion of cabbage roots by M. javanica J2. Counts of healthy and parasitized nematodes observed in roots or extracted from soil indicated that, in the vial assay, the failure of J2 to penetrate roots resulted primarily from parasitism rather than repulsion. Data were similar whether fungal inoculum consisted of pelletized hyphae or fungal-colonized Steinernema glaseri. Thus, the results indicate that nematode attractants and repellents can have major or negligible effects on the biological control efficacy of pelletized nematophagous fungi. Factors that might influence the importance of substances released by the pellets include the strength, geometry, and duration of gradients; pellet degradation by soil microflora; the nematode species involved; and attractants released by roots.  相似文献   

15.
The endoparasitic nematophagous fungus Meria coniospora reduced root-knot nematode galling on tomatoes in greenhouse pot trials. The fungus was introduced to pots by addition of conidia at several inoculum levels directly to the soil or addition of nematodes infected with M. coniospora to the soil; both methods reduced root galling by root-knot nematodes. These studies represent a part of a recently initiated effort to evaluate the potential of endoparasitic nematophagous fungi for biocontrol of nematodes.  相似文献   

16.
This study was to determine whether Arthrobotrys flagrans, A. oligospora, and Meria coniospora would control the root-knot nematode Meloidogyne hapla on alfalfa and tomato. Alfalfa seeds were coated with a fungus-rye powder in 2% cellulose and were planted in infested soil. Three-week-old seedlings from seed treated with M. coniospora had 60% and 58% fewer galls in two experiments than did seedlings from untreated seeds. Numbers of J2 in the soil were not reduced. Plant growth did not improve. When seed of tomato were coated with M. coniospora and planted in M. hapla-infested soil, roots had 34% fewer galls and 47% fewer J2 in the soil at 28 days. After 56 days there was no reduction in J2 numbers. Plant growth did not improve. When roots of tomato transplants were dusted with M. coniospora fungus-rye powder or sprayed with a spore suspension before planting in M. hapla-infested soil, 42% and 35%, respectively, fewer galls developed in 28 days on treated roots than on roots not treated with fungus. The numbers of J2 extracted from roots or recovered from soil were not reduced, however, and plant growth did not improve.  相似文献   

17.
The fungus Hirsutella rhossiliensis is an obligate pathogen with a broad host range among nematodes. Microbivorous nematodes are abundant around plant roots and may serve as hosts for the fungus. Our objective was to determine the influence of the bacterial-feeding nematode Teratorhabditis dentifera on the abundance of H. rhossiliensis. Experiments were conducted in a growth chamber with pots containing pasteurized soil, the fungus, and potato plants. The abundance of infectious conidia was compared in pots with and without T. dentifera after 50 or 70 days. The nematode reached high densities (10-40/cm3 soil) but had no effect on the abundance of conidia. Many individuals were dauer juveniles, a stage that acquired conidia but did not become infected. To test whether this life stage could deplete the pool of conidia in soil, different proportions of dauer juveniles with (resistant) and without (susceptible) a sheath were added to H. rhossiliensis-infested soil. The number of conidia in the soil decreased with an increasing proportion of resistant nematodes. Different stages of T. dentifera appear to have opposing effects on H. rhossiliensis; while adults and regular juveniles acquire conidia, become infected, and produce new infectious conidia, dauer juveniles can deplete the supply of conidia.  相似文献   

18.
Gliocladium virens was isolated from slash pine trees symptomatic and asymptomatic for pine wilt disease with frequencies of 24% and 10%, respectively. Populations of Bursaphelenchus xylophilus, the nematode incitant of this disease, reproduced on this fungus and inhibited its growth. Growth inhibition of the fungus was characterized by an absence of sporulation and by the formation of chains of dark, thick-walled, chlamydospore-like cells. Population increase during a 12-day period following infestation of cultures of the fungus with 10,000 nematodes averaged 3-fold at 16 C, 9-fold at 20 C, and 24-fold at 24 C. In greenhouse studies, nematode recovery from slash pine seedlings coinoculated with both organisms was significantly greater than that obtained from seedlings inoculated with the nematode alone.  相似文献   

19.
Laboratory microcosms were used to: i) measure the effects of soil moisture on survival of Steinernema riobravis and ii) investigate the suitability of using microcosms to study motility and survival of these nematodes. Nematodes recovered from soil contained in petri dishes declined by more than 95% during 7 days, whereas nematodes recovered from the inner surfaces of dishes increased 35-fold. After 7 days in dishes, >20 times as many nematodes were recovered from dish surfaces than from soil. Nematodes exhibited a negative geotropism; greater numbers of nematodes were recovered from the lid surfaces than from the surfaces of dishes. Survivorship of nematodes in soil in plastic centrifuge tubes was somewhat greater than in petri dishes, and fewer nematodes ascended above the soil line in tubes than dishes. Downward migration of nematodes was inversely related to soil column diameter, possibly due to relatively unimpeded movement along container surfaces. An assay was developed by which nematodes were rinsed from the inner surfaces of centrifuge tubes into the soil. The resulting slurry was then processed on Baermann trays to recover motile nematodes. Nematode survival in soil in centrifuge tubes was higher at soil moistures between 2-4% than at lower (0.5-1.0%) and higher (4.0-12.0%) moisture levels. Survival of S. riobravis may be enhanced by quiescence induced by moisture deficits.  相似文献   

20.
Infective juveniles (J3) of the entomogenous nematodes Steinernema feltiae DD-136 (ca. 10,000 J3/100 ml) and S. glaseri (ca. 2,500 J3/100 ml) were incubated in steam-sterilized and nonsterilized sandy soil and bark compost for 8 weeks at 25 C. The nematodes were recovered by a two-step extraction procedure at 1-week intervals, and their infectivity to lepidopterous larvae (Spodoptera litura and Galleria mellonella) and their effect on the population and community of native nematodes in soil were determined. Survival of inoculated nematodes and mortality of insects were enhanced in sterilized media. Nonsterilized bark compost proved to be equally as suitable a medium as sterilized compost. In nonsterilized soil, the survival curve of S.feltiae declined more rapidly than that or S. glaseri which was less infective to insects despite its greater persistence even in nonsterilized soil. Soon after the addition of steinernematids to soil, the population of native nematodes showed a fluctuation with an increase in rhabditids and a decrease in other kinds of nematodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号