首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 2 micron plasmid of Saccharomyces cerevisiae codes for a site-specific recombinase, the FLP protein, that catalyzes efficient recombination across two 599-base-pair (bp) inverted repeats of the plasmid DNA both in vivo and in vitro. We analyzed the interaction of the purified FLP protein with the target sequences of two point mutants that exhibit impaired FLP-mediated recombination in vivo. One mutation lies in one of the 13-bp repeat elements that had been previously shown to be protected from DNase digestion by the FLP protein. This mutation dramatically reduces FLP-mediated recombination in vitro and appears to act by reducing the binding of FLP protein to its target sequence. The second mutation lies within the 8-bp core region of the FLP target sequence. The FLP protein introduces staggered nicks surrounding this 8-bp region, and these nicks are thought to define the sites of strand exchange. The mutation in the core region abolishes recombination with a wild-type site. However, recombination between two mutated sites is very efficient. This result suggests that proper base pairing between the two recombining sites is an important feature of FLP-mediated recombination.  相似文献   

2.
The yeast 2-micron circle plasmid encodes a protein, FLP, that mediates site-specific recombination across the two FLP-binding sites of the plasmid. We have used a novel technique, "exonuclease-treated substrate analysis," to determine the minimal duplex DNA sequence needed for this recombination event. A linear DNA containing two FLP sites in a direct orientation was treated with the double-strand specific 3'-exonuclease, exonuclease III, to generate molecules with a nested set of single-strand deletions that extended into one of the FLP sites. The DNA was then end-labeled at the sites of the deletions and used as a substrate for recombination in vitro. FLP-mediated recombination between two FLP sites excised a restriction endonuclease cleavage site from the DNA. Comparison of the fragments produced by restriction enzyme digestion of untreated and FLP-treated DNA showed to the nucleotide the duplex DNA sequence required for FLP-mediated recombination. To examine essential sequences in the opposite DNA strand, similar experiments were done using the 5'-exonuclease encoded by phage T7. The minimal essential duplex DNA sequence lies within the region of the FLP site that was previously shown to be protected from nuclease digestion in the presence of FLP. A modified form of this technique can be used to study the minimal sequence requirements of site-specific DNA binding proteins.  相似文献   

3.
The occurrence of reciprocal exchange of flanking DNA during gene conversion between the repeated segments of the yeast plasmid, 2-micron circle has been examined. The conversion event is induced by making a double-stranded gap within one of the repeats in vitro and allowing the gap to be repaired in vivo. The repair takes place with frequent recombination of flanking markers. Neither the topology of the plasmid substrates (linear or circular) nor the relative orientation of the repeats affects the association rule significantly. These events are reminiscent of meiotic gene conversion between homologous chromosomes but contrast sharply with mitotic or meiotic intrachromosomal gene conversion. It would appear that the difference between the outcomes of intramolecular gene conversion on a chromosome and on a plasmid gapped in vitro does not result from the different physical states of intracellular versus transformed DNA. A gene conversion event in a 2-micron circle : : Tn5 plasmid mediated by the 2-micron circle recombinase (FLP) in vivo, which is formally analogous to the yeast mating type interconversion, often results in recombination of flanking markers. The reaction can be mimicked, in the absence of FLP, by gapping the plasmid within one of the 2-micron circle repeats in vitro and carrying out gap repair in vivo.  相似文献   

4.
Contact points between the FLP protein of the yeast 2-micron plasmid and its recombination site have been defined. Important features of the region previously defined as the minimal recombination site in vitro include a pair of 13-base pair inverted repeats separated by an 8-base pair spacer. The two FLP protein-binding sites within this region are 12 base pairs in length. In each case they include the internal 11 base pairs of one of the 13-base pair repeats, as well as the adjacent base pair within the spacer. The internal 6 base pairs within the spacer are not involved in binding or recognition by FLP protein. When the size of the spacer is increased or decreased by one base pair, the distance between the cleavage points is also increased or decreased correspondingly by one base pair. Points of cleavage are unaffected by changes in the spacer sequence. Specific contact points involving purine residues, identified by methylation protection and recombination interference experiments, are located in both the major and minor grooves of the DNA. Additional contact points between FLP protein and phosphate groups in the phosphate-deoxyribose backbone are clustered near the cleavage sites.  相似文献   

5.
Most laboratory strains of the yeast Saccharomyces cerevisiae contain many copies of an autonomously replicating plasmid called 2-micron circle DNA. This plasmid codes for a site-specific recombinase, the FLP protein which promotes recombination across two 599-base pair inverted repeats of the plasmid DNA. We have cloned the FLP gene under the control of a strong Escherichia coli promoter and have hyperproduced the protein in that organism. Cell-free extracts from this source promote highly efficient site-specific recombination in vitro and we have used this activity to purify the FLP protein substantially. The enzyme acts efficiently on circular and linear substrates and requires only monovalent or divalent cations for activity.  相似文献   

6.
The 2-micron plasmid of the yeast Saccharomyces cerevisiae encodes a site-specific recombinase (FLP) that promotes inversion across a unique site contained in each of the 599-base-pair inverted repeats of the plasmid. We have studied the topological changes generated in supercoiled substrates after exposure to the purified FLP protein in vitro. When a supercoiled substrate bearing two FLP target sequences in inverse orientation is treated with FLP, the products are multiply knotted structures that arise as a result of random entrapment of interdomainal supercoils. Likewise, a supercoiled substrate bearing two target sequences in direct orientation yields multiply interlocked catenanes as the product. Both types of substrate seem to be able to undergo repeated rounds of recombination that result in products of further complexity. The FLP protein also acts as a site-specific topoisomerase during the recombination reaction.  相似文献   

7.
The FLP recombinase, encoded by the 2 micron plasmid of Saccharomyces cerevisiae, promotes efficient recombination in vivo and in vitro between its specific target sites (FLP sites). It was previously determined that FLP interacts with DNA sequences within its target site (B. J. Andrews, G. A. Proteau, L. G. Beatty, and P. D. Sadowski. Cell 40:795-803, 1985), generates a single-stranded break on both DNA strands within the FLP site, and remains covalently attached to the 3' end of each break. We now show that the FLP protein is bound to the 3' side of each break by an O-phosphotyrosyl residue and that it appears that the same tyrosyl residue(s) is used to attach to either DNA strand within the FLP site.  相似文献   

8.
The FLP protein, a site-specific recombinase encoded by the 2 micron plasmid of yeast, has been purified to near homogeneity from extracts of E. coli cells in which the protein has been expressed. The purification is a three column procedure, the final step employing affinity chromatography. The affinity ligand consists of a DNA polymer with multiple FLP protein binding sites arranged in tandem repeats. This protocol yields 2 mg of FLP protein which is 85% pure. The purified protein is highly active, stable for several months at -70 degrees C and free of detectable nucleases. The molecular weight and N-terminal sequence are identical to that predicted for the FLP protein by the DNA sequence of the gene. Purified FLP protein primarily, but not exclusively, promotes intramolecular recombination. Intermolecular recombination becomes the dominant reaction when E. coli extracts containing no FLP protein are added to the reaction mixture. These extracts are not specifically required for recombination, but demonstrate that some properties previously attributed to FLP protein can be assigned to contaminating proteins present in E. coli.  相似文献   

9.
I Canosa  F Rojo    J C Alonso 《Nucleic acids research》1996,24(14):2712-2717
The beta recombinase from the broad host range Grampositive plasmid pSM19035 catalyzes intramolecular site-specific recombination between two directly or inversely oriented recombination sites in the presence of a chromatin-associated protein (Hbsu). The recombination site had been localized to a 447 bp DNA segment from pSM19035. This segment includes a 90 bp region that contains two adjacent binding sites (I and II) for beta protein dimers. Using in vitro recombination assays, we show that this 90 bp region is necessary and sufficient for beta protein-mediated recombination; this defines the six site as the region required for beta protein binding. The point of crossing over has been localized to the center of site I. Hbsu has a strong binding affinity for an unknown site located within the 447 bp segment containing the six site. We discuss the possibility that Hbsu recognizes an altered DNA structure, rather than a specific sequence, generated in the synaptic complex.  相似文献   

10.
DNA重组酶FLP存在于酵母2μ质粒上,能识别34bp的FRT位点,并根据2个FRT位点的相对方向完成位点间DNA序列的交换、重组、删除与逆转,在现代分子生物学理论研究与基因工程技术开发中具有广泛应用。构建了在原核大肠杆菌中高效表达FLP重组酶的表达载体pQE32-flpe并建立起相应的原核高效表达体系,在原核细菌大肠杆菌M15菌株中实现FLP酶蛋白的高效表达,同时建立了相应的纯化方法。纯化时先用硫酸铵沉淀法富集FLP酶蛋白,经透析脱盐后再用镍离子鳌合微柱(0.5~1.0mL)亲合层析梯度洗脱的方法获得纯化的FLP酶蛋白。通过构建含有2个方向相同的FRT序列位点的质粒pUC18-FRT-gfp-FRT和含有1个FRT位点的表达载体pET30a-FRT,并分别以其为底物来检测FLP重组酶的删除、交换与重组功能的活性。结果表明,该方法不仅能有效表达FLP酶蛋白,并能行之有效地纯化FLP酶蛋白,以及检测纯化的FLP酶蛋白对DNA序列的删除、重组与交换功能。该方法简单易行并能获得有活性的FLP酶蛋白,为深入研究其机理以及研发相应的DNA重组技术提供重要参考。  相似文献   

11.
FLP-mediated recombination in the vector mosquito, Aedes aegypti.   总被引:5,自引:2,他引:3       下载免费PDF全文
The activity of a yeast recombinase, FLP, on specific target DNA sequences, FRT, has been demonstrated in embryos of the vector mosquito, Aedes aegypti. In a series of experiments, plasmids containing the FLP recombinase under control of a heterologous heat-shock gene promoter were co-injected with target plasmids containing FRT sites into preblastoderm stage mosquito embryos. FLP-mediated recombination was detected between (i) tandem repeats of FRT sites leading to the excision of specific DNA sequences and (ii) FRT sites located on separate plasmids resulting in the formation of heterodimeric or higher order multimeric plasmids. In addition to FRT sites originally isolated from the yeast 2 microns plasmid, a number of synthetic FRT sites were also used. The synthetic sites were fully functional as target sites for recombination and gave results similar to those derived from the yeast 2 microns plasmid. This successful demonstration of yeast FLP recombinase activity in the mosquito embryo suggests a possible future application of this system in establishing transformed lines of mosquitoes for use in vector control strategies and basic studies.  相似文献   

12.
The FLP recombinase is encoded by the yeast plasmid 2 microns circle and catalyses a site-specific recombination reaction that results in inversion of a segment of the 2 micron plasmid. We describe a method for the isolation of inactivating mutations in the FLP gene. The analysis of the recombination and binding activity of defective FLP proteins in vitro resulted in the identification of two classes of mutations: those that completely abolish FLP function by interfering with DNA binding and others that block recombination after the binding step. We have shown that FLP-mediated recombination is accompanied by bending of the DNA target and that mutations in the FLP recombinase that block bending also eliminate recombination.  相似文献   

13.
Activity of the c-myc Replicator at an Ectopic Chromosomal Location   总被引:5,自引:0,他引:5       下载免费PDF全文
DNA replication starts at multiple discrete sites across the human chromosomal c-myc region, including two or more sites within 2.4 kb upstream of the c-myc gene. The corresponding 2.4-kb c-myc origin fragment confers autonomously replicating sequence (ARS) activity on plasmids, which specifically initiate replication in the origin fragment in vitro and in vivo. To test whether the region that displays plasmid replicator activity also acts as a chromosomal replicator, HeLa cell sublines that each contain a single copy of the Saccharomyces cerevisiae FLP recombinase target (FRT) sequence flanked by selectable markers were constructed. A clonal line containing a single unrearranged copy of the transduced c-myc origin was produced by cotransfecting a donor plasmid containing the 2.4-kb c-myc origin fragment and FRT, along with a plasmid expressing the yeast FLP recombinase, into cells containing a chromosomal FRT acceptor site. The amount of short nascent DNA strands at the chromosomal acceptor site was quantitated before and after targeted integration of the origin fragment. Competitive PCR quantitation showed that the c-myc origin construct substantially increased the amount of nascent DNA relative to that at the unoccupied acceptor site and to that after the insertion of non-myc DNA. The abundance of nascent strands was greatest close to the c-myc insert of the integrated donor plasmid, and significant increases in nascent strand abundance were observed at sites flanking the insertion. These results provide biochemical and genetic evidence for the existence of chromosomal replicators in metazoan cells and are consistent with the presence of chromosomal replicator activity in the 2.4-kb region of c-myc origin DNA.  相似文献   

14.
The 2 mu plasmid of the yeast Saccharomyces cerevisiae encodes a site-specific recombination system consisting of the FLP protein and two inverted recombination sites on the plasmid. The minimal fully functional substrate for in-vitro recombination in this system consists of two FLP protein binding sites separated by an eight base-pair spacer sequence. We have used site-directed mutagenesis to generate every possible mutation (36 in all) within 11 base-pairs of one FLP protein binding site and the base-pair immediately flanking it. The base-pairs within the binding site can be separated into three classes on the basis of these results. Thirty of the 36 sequence changes, including all three at seven different positions (class I) produce a negligible or modest effect on FLP protein-promoted recombination. In particular, most transition mutations are well-tolerated in this system. In only one case do all three possible mutations produce large effects (class II). At three positions, clustered near the site at which DNA is cleaved by FLP protein, one of the two possible transversions produces a large effect on recombination, while the other two changes produce modest effects (class III). For seven mutants for which FLP protein binding was measured, a direct correlation between decreases in recombination activity and in binding was observed. Positive effects on the reaction potential of mutant sites are observed when the other FLP binding site in a single recombination site is unaltered or when the second recombination site in a reaction is wild-type. This suggests a functional interaction between FLP binding sites both in cis and in trans. When two mutant recombination sites (each with 1 altered FLP binding site) are recombined, the relative orientation of the mutations (parallel or antiparallel) has no effect on the result. These results provide an extensive substrate catalog to complement future studies in this system.  相似文献   

15.
The FLP recombinase interacts with its target sequence with the formation of three distinct DNA-protein complexes. The first complex leaves neither a DNase footprint nor is the DNA protected from methylation by dimethyl sulfate. We have found, however, that the FLP protein is bound predominantly to only one of the three 13 base-pair (bp) symmetry elements. This asymmetric loading of the FLP site seems to require the presence of an adjacent directly repeated 13 bp element. We speculate that this asymmetric filling of the target site may be accompanied by the unique order of cleavage and exchange of DNA strands.  相似文献   

16.
Tn4430 is a distinctive transposon of the Tn3 family that encodes a tyrosine recombinase (TnpI) to resolve replicative transposition intermediates. The internal resolution site of Tn4430 (IRS, 116 bp) contains two inverted repeats (IR1 and IR2) at the crossover core site, and two additional TnpI binding motifs (DR1 and DR2) adjacent to the core. Deletion analysis demonstrated that DR1 and DR2 are not required for recombination in vivo and in vitro. Their function is to provide resolution selectivity to the reaction by stimulating recombination between directly oriented sites on a same DNA molecule. In the absence of DR1 and/or DR2, TnpI-mediated recombination of supercoiled DNA substrates gives a mixture of topologically variable products, while deletion between two wild-type IRSs exclusively produces two-noded catenanes. This demonstrates that TnpI binding to the accessory motifs DR1 and DR2 contributes to the formation of a specific synaptic complex in which catalytically inert recombinase subunits act as architectural elements to control recombination sites pairing and strand exchange. A model for the organization of TnpI/IRS recombination complex is presented.  相似文献   

17.
Double-strand breaks in DNA are known to promote recombination in Saccharomyces cerevisiae. Yeast mating type switching, which is a highly efficient gene conversion event, is apparently initiated by a site-specific double-strand break. The 2 micrograms circle site-specific recombinase, FLP, has been shown to make double-strand breaks in its substrate DNA. By using a hybrid 2 micrograms circle::Tn5 plasmid, a portion of which resembles, in its DNA organization, the active (MAT) and the silent (HML) yeast mating type loci, it is shown that FLP mediates a conversion event analogous to mating type switching. Whereas the FLP site-specific recombination is not dependent on the RAD52 gene product, the FLP-induced conversion is abolished in a rad52 background. The FLP-promoted conversion in vivo can be faithfully reproduced by making a double-stranded gap in vitro in the vicinity of the FLP site and allowing the gap to be repaired in vivo.  相似文献   

18.
The FLP recombinase of the 2 mu plasmid of Saccharomyces cerevisiae binds to a target containing three 13 base-pair symmetry elements called a, b and c. The symmetry elements b and c are in direct orientation while the a element is in inverted orientation with respect to b and c on the opposite side of an eight base-pair core region. Each symmetry element acts as a binding site for the FLP protein. The FLP protein can form three different complexes with the FLP recognition target (FRT site) according to the number of elements within the site that are occupied by the FLP protein. Binding of FLP to the FRT site induces DNA bending. We have measured the angles of bends caused by the binding of the FLP protein to full and partial FRT sites. We find that FLP induces three types of bend in the FRT-containing DNA. The type I bend is approximately 60 degrees and results from a molecule of FLP bound to one symmetry element. The type II bend is greater than 144 degrees and results from FLP molecules bound to symmetry elements a and b. The type III bend is approximately 65 degrees and results from FLP proteins bound to symmetry elements b and c. Certain FLP proteins that are defective in recombination can generate the type I and type III bends but are impaired in their ability to induce the type II bend. We discuss the role of bending in FLP-mediated recombination.  相似文献   

19.
The R gene product (R protein) of Zygosaccharomyces rouxii plasmid pSR1 catalyzes site-specific recombination within a 58 base-pair (bp) sequence present in the 959 bp inverted repeats of this plasmid. The R protein was produced in Escherichia coli and partially purified. The partially purified protein catalyzed site-specific recombination in vitro without the supply of an energy source. Recombination resulted in intramolecular inversion or deletion, depending on whether the orientations of the two recombination sites on the substrate plasmid were the same or opposite. Presumably, R protein is the only protein required for the recombination reaction. A circular DNA molecule appears to be a better substrate than a linear molecule in R-mediated in vitro intramolecular recombination. The R protein binds to a set of six 12 bp elements within the inverted repeats of pSR1. Two of these 12 bp elements are arranged in an inverted configuration with a 7 bp spacer in the 58 bp sequence. The R protein mediates strand cleavage in vitro at the junction between the 12 bp elements and the 7 bp spacer. The cleavage sites on the top and bottom strands are staggered and flanked by polypurine tracts that form part of the 12 bp elements.  相似文献   

20.
The mobile element staphylococcal cassette chromosome mec (SCCmec), which carries mecA, the gene responsible for methicillin resistance in staphylococci, inserts into the chromosome at a specific site, attB, mediated by serine recombinases, CcrAB and CcrC, encoded on the element. This study sought to determine the sequence specificity for CcrB DNA binding in vitro and for CcrAB-mediated SCCmec insertion in vivo. CcrB DNA binding, as assessed in vitro by electrophoretic mobility shift assay (EMSA), revealed that a 14-bp sequence (CGTATCATAAGTAA; the terminal sequence of the orfX gene) was the minimal requirement for binding, containing an invariant sequence (TATCATAA) found in all chromosomal (attB) and SCCmec (attS) integration sites. The sequences flanking the minimal attB and attS binding sites required for insertion in vivo were next determined. A plasmid containing only 37 bp of attS and flanking sequences was required for integration into the attB site at 92% efficiency. In contrast, at least 200 bp of sequence within orfX, 5' to the attB core, and 120 bp of specific sequence 3' to the orfX stop site and attB core were required for the highest insertion frequency. Finally, an attS-containing plasmid was inserted into wild-type Staphylococcus aureus strains without integrated SCCmec (methicillin susceptible) at various frequencies which were determined both by sequences flanking the att site and by the presence of more than one att site on either the chromosome or the integration plasmid. This sequence specificity may play a role in the epidemiology of SCCmec acquisition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号