首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kreyling J  Haei M  Laudon H 《Oecologia》2012,168(2):577-587
Snow regimes affect biogeochemistry of boreal ecosystems and are altered by climate change. The effects on plant communities, however, are largely unexplored despite their influence on relevant processes. Here, the impact of snow cover on understory community composition and below-ground production in a boreal Picea abies forest was investigated using a long-term (8-year) snow cover manipulation experiment consisting of the treatments: snow removal, increased insulation (styrofoam pellets), and control. The snow removal treatment caused longer (118 vs. 57 days) and deeper soil frost (mean minimum temperature −5.5 vs. −2.2°C) at 10 cm soil depth in comparison to control. Understory species composition was strongly altered by the snow cover manipulations; vegetation cover declined by more than 50% in the snow removal treatment. In particular, the dominant dwarf shrub Vaccinium myrtillus (−82%) and the most abundant mosses Pleurozium schreberi (−74%) and Dicranum scoparium (−60%) declined strongly. The C:N ratio in V. myrtillus leaves and plant available N in the soil indicated no altered nitrogen nutrition. Fine-root biomass in summer, however, was negatively affected by the reduced snow cover (−50%). Observed effects are attributed to direct frost damage of roots and/ or shoots. Besides the obvious relevance of winter processes on plant ecology and distribution, we propose that shifts in the vegetation caused by frost damage may be an important driver of the reported alterations in biogeochemistry in response to altered snow cover. Understory plant performance clearly needs to be considered in the biogeochemistry of boreal systems in the face of climate change.  相似文献   

2.
Most plant species are spatially aggregated and here the importance of taking the spatial variation into account when analyzing plant cover data is demonstrated in a general stochastic model where both the within-site and the among-site spatial variation of species cover data are parameterized. Using a generalised binomial distribution (or Pólya–Eggenberger distribution), where the among-site variation in mean cover is modeled by a zero-inflated beta distribution, it is possible to adequately analyze hierarchical plant cover data and link the estimates to the underlying ecological processes. The model is demonstrated in a case-study of pin-point cover data of Erica tetralix from 1148 wet heathland plots at 84 Danish sites, and it is shown that both parameter estimates and the conclusions of hypotheses testing critically depend on the correct modeling of the observed spatial variation. Finally, statistical power simulations of plant cover measurements are presented, which will be useful for planning ecological experiments and monitoring programs.  相似文献   

3.
Abstract. This paper describes the effect of artificial plant cover on plant colonization of a bare peat surface, resulting from peat harvesting. Plant species colonization was compared on plots supplied with plastic models simulating Vaccinium vitis-idaea plants and plots without this artificial cover. After two growing seasons, species composition and total biomass of the established plant cover were similar in the two plot types. However, the number of established seedlings in the plots with artificial cover was significantly higher than that in the plots without cover. Out of 13 species observed four differed significantly in their performance on the two plot types. Betula spec. had both higher seedling numbers and higher biomass on the test plots; Deschampsia cespitosa had a higher biomass, whereas the seedlings were too numerous to be counted; Salix phylicifolia had higher seedling numbers. On the contrary, the number of seedlings of Epilobium angustifoliwn was lower on plots with artificial cover. It is suggested that colonization by Betula, D. cespitosa and S. phylicifolia was facilitated mainly by the improved microclimatic and soil moisture conditions under the artificial plant cover. On the other hand, germination of E. angustifolium may be negatively influenced by the increased shade on the test plots.  相似文献   

4.
Two parallel approaches to the analysis of vegetation based on plant geography are being developed in modern science. In European countries, there is ecologo-morphological classification (EMC), in Russia--comparative floristics (CF). The development of CF in many theoretical aspects is similar to EMC. One of the reason of parallel development is late penetration of EMC ideas into Russia. The objective reason of this phenomenon is extremely low endemism of floras that were traditionally studied by Russian geobotanic schools, viz. steps and forests. The high level of endemism in central European floras (especially in Alps) allows to transform the principles of floristic division to vegetation classification. During last 20 years the Russian deviate of EMC demonstrates deviation with theoretical basement of EMC--conception of typical species, using non-differentiate block of diagnostic species. That does not provide any new content either to syntaxa and coenofloras that exist in European classifications or to the method of partial floras in CF.  相似文献   

5.
A total of 41 stands was sampled for species composition and 29 of these stands for plant standing crop and net annual production at 7 sites on 6 arctic islands. Fourteen additional sites on 10 islands were studied in less detail.
Through polar ordination, three groupings were recognized: polar barrens with an average species richness of 6, a phytomass of 24 g m−2, and a net annual production of 0.8 g m−2. Comparable data for the cushion plant and snowflush communities were 9, 120, 3 and 13 species, 400 g m−2, phytomass and 41 g m−2 net production respectively. Cryptogams are minor except within showflush communities.
The soils show no horizon development, arc alkaline, and are very tow in organic matter, nitrogen, and phosphorus. It is believed that the combination of limited soil moisture in mid-summer and very low nutrient levels are the primary reason for such low plant cover and plant production in these predominantly polar barren landscapes. Geologic substrate with an abundance of frost-shattered rock and topographic position are factors that control the limited availability of water.  相似文献   

6.
Abstract. A method is described for the determination of plant species cover in herbaceous plant communities by means of image analysis. It is a computerized extension of the quadrat-charting method. The method was tested with four different computer systems for three different vegetation types, a shady lawn, a pioneer vegetation and a forest floor. We compared the results with vertical point-intercept analyses of the same stands. Image analysis revealed a high accuracy of the method ranging from < ± 1 to about ± 2% cover depending on the dominance of the species being analysed. The method is particularly suitable for the analysis of low herbaceous or unsaturated vegetation, dominance stands of broad-leaved plant species and for the analysis of cover changes in permanent plots.  相似文献   

7.
The line-point transect method has been used to estimate plant cover for about nine decades. In particular, the method is often used to determine baseline plant cover and monitor for changes in plant cover over time. In such cases, detection of change requires both the initial transect starting position and angle of orientation are exact in relocation without error. A study was conducted on influences of errors in basal cover estimates that resulted from inexact relocation and orientation of a resample transect. Simulation studies of actual field data showed that variation in plant cover estimates from relocated line-point transects increased with each source of error and combinations of these errors. Relocated transects resulted in unbiased estimates of total-plant cover only when means over all transects are used to detect changes over time. Substantial errors were observed when the mean cover of individually relocated transect was compared to its original transect.  相似文献   

8.
Different types of relationship between herbaceous species richness and several parameters indicating abundance of plant material (herbaceous, woody plants, litter and bare ground cover) are presented. The data were obtained from 50 sites along a 300 km strip running from E to W within Spain and Portugal. Each site was representative of the silvo-pastoral landscape of the Mediterranean type ecosystems of the Iberian peninsula, and contained two neighboring patches, one of grassland and the other of shrubland. 3,600 20 × 20 cm subplots were randomly located (72 per site, 36 per patch) crossing the boundary grassland/shrubland. This approach allowed us to analyze the richness-occupation relationship of the space from different points of view: among and within the sites, and among and within the grassland and shrubland plant communities. We found a unimodal relationship between richness-cover similar to the one generally accepted between richness and biomass. Our results show that the dependence of this relationship varies depending on the spatial scale of the analysis and on the type of data used. When the whole region is taken into account, significant unimodal relationships are found between richness and herbaceous cover, litter and bare ground, and a negative linear relationship with woody plant cover. Within the sites there are mainly linear or non-significant relationships. But the results also depend on the type of communities analyzed. In pastures, the unimodal relationship represents the combination of positive and negative linear responses for low and high cover values, respectively. The value for herbaceous cover in which maximum richness occurs is around 60%. In shrublands, this value for cover also corresponds to maximum species richness, although the possibilities of reaching it are limited by other variables, such as woody plant cover. This implies that, on not considering variability at local scale, the relationship is linear and positive. This paper shows the existence of a common model related to herbaceous cover, but this model has multiple controlling factors that act differently in each type of community.  相似文献   

9.
Anthropogenic environmental change can increase exotic species performance and reduce native biodiversity. Nutrient enrichment may favor exotic plants with higher growth rates. Warming may increase the performance of exotic species from warmer native ranges and/or decrease the performance of locally adapted native species. However, community level impacts of nutrient enrichment and warming may depend on their combined effects on individual species and species interactions. We conducted a factorial 11-month field experiment that manipulated 1) plant origin: native, exotic (species from warmer and nutrient rich habitats), or native-&-exotic; 2) nutrients: ambient or high; and 3) temperature: ambient, +1 °C, or +2 °C. Elevated nutrients increased biomass and exotic plant proportional cover. Exotic diversity was higher with elevated nutrients. Native and exotic biomass responses to elevated nutrients were smaller in native-&-exotic treatments. Elevated nutrients increased the relative abundance of two exotic and decreased one exotic and three native species in native-&-exotic treatments. The predicted exotic to native biomass ratio was higher than the observed ratio, indicating that native plants reduced the potential growth of exotic plants in native-&-exotic treatments. Warming had no effect on plant biomass or diversity. These results suggest that nutrient enrichment increases the performance of some exotic plants and that it is critical to consider native and exotic plant interactions when assessing anthropogenic factor and exotic plant effects on native plant communities.  相似文献   

10.
Abstract. Plant cover was visually estimated by five observers, independent of each other, in a species‐rich grassland in the Bílé Karpaty Mts., southeastern Czech Republic, in seven plots ranging from 0.001 to 4 m2. Variation of total plant cover among the observers was high at small scales: 0.001–0.016 m2; coefficient of variation, CV = 35 to 45%, but much lower at larger scales: 0.06–4 m2; CV = 7 to 15%. Differences between visual estimates of plant cover of individual species made by different observers were affected by plot size, total cover and morphology of particular plants. CV of the cover of individual species ranged from 0 to 225% and decreased with increasing plot size. For abundant plants the CV attained ca. 50%, independent of plot size. In spite of a very high number of sterile plants with similar leaf morphology and colour, the observed variation in cover estimates in the studied grassland was comparable with results reported from other vegetation types. Differences between estimates by individual observers were often larger than usual year to year changes in undisturbed grasslands. Therefore, I suggest that to avoid difficulties in the interpretation of results based on plant cover data obtained from visual estimates, several observers should always work together, adjusting their extreme estimates.  相似文献   

11.
12.
Abstract. Question: Does the seed bank filter annual plant composition and determine cover at the species level? Location: 510 m a.s.l., central Spain. Methods: Seven transects and 136 quadrats were established in a semi‐arid gypsum system. Seed bank samples were collected in each quadrat in September. The community was sampled the following April. For each quadrat we measured slope, microslope, landform, elevation, perennial cover and crust cover. Seed bank was estimated using the direct emergence method in glasshouse. Relationship among seed bank and annual community was assessed by Mantel correlations. Above‐ground cover for the five most abundant species was modelled with GLMs. Results: Seed bank density was the best predictor for annual community cover; perennial cover and landform were also included in the model. Species composition between September seed bank and April annual community cover was also highly related according to the Mantel test. This relationship was constant, even when the effect due to other abiotic (landform, microslope) or biotic (perennial cover, crust cover) parameters were partialled out. Microslope, elevation and seed bank density were the best parameters to predict spring cover of the five most abundant species. Conclusions: Above‐ground and below‐ground community compartments are strongly related in terms of abundance and species composition. This relationship is filtered by several environmental factors (e.g. perennial cover, landform, microslope) that exert a strong control at community and individual levels. Our results support the hypothesis that annual community performance is affected by seed bank pattern.  相似文献   

13.
为研究间作系统的作物参数,于2005年在四川间作地区进行了作物高度、覆盖度和叶面积指数的时间变化研究.结果表明:作物的高度、覆盖度和叶面积指数随时间变化很大;玉米的最大高度是177 cm,最大覆盖度(86%)出现在花期,最大叶面积指数是1.96;红苕的最大和最小株高分别为22和12 cm,最大覆盖度(73%)出现在薯块膨大期,最大叶面积指数为1.79.与玉米间作时,红苕所有作物参数均受玉米影响.在玉米-红苕间作系统中,最危险的侵蚀期是玉米收获后至红苕覆盖度最大期.  相似文献   

14.
15.
1. Plant communities influence the availability of important resources for ants, such as nest sites and food, as well as environmental conditions. Thus, plants affect the abundance and distribution of ants. 2. In a field experiment, the influence of plant cover on the settlement of nest sites and per‐capita productivity of sexual individuals by the ant Temnothorax crassispinus was analysed. In July 2014, in five areas with patches of alien balsam Impatiens parviflora, and another five of native balsam I. noli‐tangere, transects composed of artificial nests were established; the nest sites were situated inside patches of balsams, and outside of them. Four hundred and forty artificial nests were used. One year later, the nests were collected. 3. Colonies of the ants three times more often inhabited nest sites outside the patches of both balsams. Besides, colonies with queens were more frequently found in nest sites located away from balsams. The per‐capita productivity of sexual individuals was higher in nests collected in patches of balsam, and the colonies from patches of alien balsam produced a more female‐biased sex ratio. 4. In terms of the impact on the ant, no clear differences were found between the alien balsam and the native one. The most important factor affecting the fitness of ants in areas dominated by balsams is the presence of herbaceous plant cover rather than whether the plant is alien or native.  相似文献   

16.
Abstract. We evaluated variability in cover estimation data obtained by (1) two sampling teams who double sampled plots and (2) one team that used two methods (line intercepts and visual estimation of cover classes) to characterize vegetation of herbaceous wetlands. Species richness and cover estimates were similar among teams and among methods, but one sampling team scored cover higher than the other. The line intercept technique yielded higher cover estimates but lower species richness estimates than the cover class method. Cluster analyses of plots revealed that 36% and 11% of plots sampled consecutively by two teams or using two methods, respectively, were similar enough in species composition and abundance to be paired together in the resulting clustering tree. Simplifying cover estimate data to presence/absence increased the similarity among both teams and methods at the plot scale. Teams were very similar in their overall characterization of sites when cover estimation data were used, as assessed by cluster analysis, but methods agreed best on their overall characterization of sites when only presence/absence data were considered. Differences in abundance estimates as well as pseudoturnover contribute to variability. For double sampled plots, pseudoturnover was 19.1%, but 57.7% of pseudo‐turnover cases involved taxa with ≤ 0.5% cover while only 3.4% involved taxa with > 8% cover. We suggest that vegetation scientists incorporate quality control, calibrate observers and publish their results.  相似文献   

17.
Synopsis At an offshore reef near Santa Barbara, southern California, young-of-year (young) of five surfperch species (Embiotocidae: Embiotoca jacksoni, E. lateralis, Hypsurus caryi, Rhacochilus toxotes, Damalichthys vacca) once thrived in a dense kelp understory of Pterygophora californica and Laminaria farlowii, but disappeared after a severe storm in February, 1980 deforested their habitat. Measurements of fish density and kelp cover made before deforestation indicated that the young surfperch appeared in the spring and disappeared in the fall as cover increased and declined. Adult surfperch and large kelp bass (Paralabrax clathratus), which can eat young but not adult surfperch, remained all year. We tested to see if kelp cover was an essential refuge for the young by pruning back (thinning) kelp blades from one of two transects. The thinning caused a significant redistribution of young which clearly avoided open spaces, but not of adults which are less vulnerable to predation. Measurements of fish density made after the storm-induced deforestation showed that adult surfperch and kelp bass still remained abundant even after the young surfperch were gone. Only after an abrupt reforestation in 1983, more than a year after the present study was terminated, were young once again seen on the reef. Although young surfperch may seek tiny prey living on kelp blades, most lines of evidence indicated that the distribution of the young is more a response to risk of predation. Hence the extent of kelp understory was probably the main determinant of the survival of young surfperch on the reef.  相似文献   

18.
1. We conducted field experiments to examine factors influencing macroinvertebrate colonization of seasonally flooded marshes. Few macroinvertebrate species were found aestivating in soils within non-flooded wetlands indicating that most taxa colonize these marshes from other flooded habitats.
2. We manipulated amounts of salt grass ( Distichlis spicata ) to examine how emergent plant cover affects aerial colonization by macroinvertebrates. Areas mowed 3 weeks before flooding had low plant cover, areas mowed 5 and 9 weeks before flooding had medium and high plant cover, respectively, and non-mowed control areas had the most plant cover. Macroinvertebrate numbers and biomass were generally higher in mowed treatment areas than in control areas, but overall diversity was generally higher in high plant cover and control areas than in low plant cover areas.
3. Mosquitoes (Culicidae), brine flies (Ephydridae) and hover flies (Syrphidae) were positively correlated with amount of plant cover, and waterboatmen (Corixidae), midges (Chironomidae) and water scavenger beetles (Hydrophilidae) were negatively correlated with plant cover. Species assemblages changed seasonally among treatment areas because these taxa colonize wetlands at different times in the year.
4. These results demonstrate that invertebrate communities may be different within plant stands with heterogeneous amounts of emergent cover, and management practices that alter the structure of wetland vegetation can influence macroinvertebrate communities colonizing seasonal marshes.  相似文献   

19.
Abstract. Four herbaceous plant species of a sand dune area and several herb species of an open early‐successional patch were investigated for the occurrence of a simple relationship between aboveground biomass and plant cover. Without exception linear regressions of aboveground biomass on plant cover were found with slope factors depending on the growth form of the species. These results suggest that (early) growth of herbaceous plants in low and (temporarily) open vegetation is not affected by possible constraints caused by a decreasing ratio of plant cover to aboveground biomass. The obtained linear relationships could be used for rapid non‐destructive determination of aboveground biomass by image‐analysis of cover data.  相似文献   

20.
Question: Reliable estimates of understorey (non-tree) plant cover following fire are essential to assess early forest community recovery. Photographic digital image analysis (DIA) is frequently used in seral, single-strata vegetation, given its greater objectivity and repeatability compared to observer visual estimation; however, its efficacy in multi-strata forest vegetation may be compromised, where various visual obstructions (coarse downed wood [CDW], conifer regeneration, and shadows) may conceal plant cover in the digital imagery. We asked whether vegetation complexity influences plant cover estimated by DIA relative to two visual methods: plot-level (20 m2) estimation (PLE) and quadrat-level (1 m2) estimation (QLE)? Location: Greater Yellowstone Ecosystem, USA. Methods: We estimated understorey plant cover in subalpine forest vegetation on permanent plots (n = 141) at two study areas ~30 years after the 1988 Yellowstone fires to: (a) assess differences in visual obstructions between study areas in our digital imagery; (b) compare digital to visual estimates of plant cover; and (c) determine relationships between estimated plant cover and visual obstructions measured in situ. Results: Percent conifer regeneration pixels differed significantly (odds ratio = 8.34) between study areas which represented the greatest difference in visual obstructions. At the study area with lower conifer pixels, DIA estimated 9% (95% confidence interval [CI] = 3%–14%) and 16% (95% CI = 10%–21%) more understorey plant cover than PLE or QLE, respectively, but had comparable variability. At the study area with higher conifer pixels, DIA estimated 28% (95% CI = 24%–32%) and 22% (95% CI = 18%–26%) less understorey plant cover than PLE or QLE, respectively, and had more variability. Furthermore, plot-level subcanopy regeneration (height>137 cm) density was negatively associated with digitally derived plant cover but showed no relationship with visually derived plant cover. Conclusions: Post-fire conifer regeneration hindered the efficacy of DIA in estimating understorey plant cover. Digital estimation is advantageous in single-strata vegetation but should not be used in complex, multi-strata vegetation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号