共查询到20条相似文献,搜索用时 0 毫秒
1.
We ask whether rates of evolution in traits important for reproductive isolation vary across a latitudinal gradient, by quantifying evolutionary rates of two traits important for pre-mating isolation-avian syllable diversity and song length. We analyse over 2500 songs from 116 pairs of closely related New World passerine bird taxa to show that evolutionary rates for the two main groups of passerines-oscines and suboscines-doubled with latitude in both groups for song length. For syllable diversity, oscines (who transmit song culturally) evolved more than 20 times faster at high latitudes than in low latitudes, whereas suboscines (whose songs are innate in most species and who possess very simple song with few syllable types) show no clear latitudinal gradient in rate. Evolutionary rates in oscines and suboscines were similar at tropical latitudes for syllable complexity as well as for song length. These results suggest that evolutionary rates in traits important to reproductive isolation and speciation are influenced by latitude and have been fastest, not in the tropics where species diversity is highest, but towards the poles. 相似文献
2.
V Soria-Carrasco J Castresana 《Proceedings. Biological sciences / The Royal Society》2012,279(1745):4148-4155
The latitudinal gradient of species richness has frequently been attributed to higher diversification rates of tropical groups. In order to test this hypothesis for mammals, we used a set of 232 genera taken from a mammalian supertree and, additionally, we reconstructed dated Bayesian phylogenetic trees of 100 genera. For each genus, diversification rate was estimated taking incomplete species sampling into account and latitude was assigned considering the heterogeneity in species distribution ranges. For both datasets, we found that the average diversification rate was similar among all latitudinal bands. Furthermore, when we used phylogenetically independent contrasts, we did not find any significant correlation between latitude and diversification parameters, including different estimates of speciation and extinction rates. Thus, other factors, such as the dynamics of dispersal through time, may be required to explain the latitudinal gradient of diversity in mammals. 相似文献
3.
Lauren B. Buckley T. Jonathan Davies David D. Ackerly Nathan J. B. Kraft Susan P. Harrison Brian L. Anacker Howard V. Cornell Ellen I. Damschen John-Avid Grytnes Bradford A. Hawkins Christy M. McCain Patrick R. Stephens John J. Wiens 《Proceedings. Biological sciences / The Royal Society》2010,277(1691):2131-2138
Biologists have long searched for mechanisms responsible for the increase in species richness with decreasing latitude. The strong correlation between species richness and climate is frequently interpreted as reflecting a causal link via processes linked to energy or evolutionary rates. Here, we investigate how the aggregation of clades, as dictated by phylogeny, can give rise to significant climate–richness gradients without gradients in diversification or environmental carrying capacity. The relationship between climate and species richness varies considerably between clades, regions and time periods in a global-scale phylogenetically informed analysis of all terrestrial mammal species. Many young clades show negative richness–temperature slopes (more species at cooler temperatures), with the ages of these clades coinciding with the expansion of temperate climate zones in the late Eocene. In carnivores, we find steeply positive richness–temperature slopes in clades with restricted distributions and tropical origins (e.g. cat clade), whereas widespread, temperate clades exhibit shallow, negative slopes (e.g. dog–bear clade). We show that the slope of the global climate–richness gradient in mammals is driven by aggregating Chiroptera (bats) with their Eutherian sister group. Our findings indicate that the evolutionary history should be accounted for as part of any search for causal links between environment and species richness. 相似文献
4.
To understand the global distribution patterns of litter-dwelling thrips, a total 150 leaf litter samples were collected from 6 natural reserves located in three climatic regions, temperate, subtropical and tropical. The results showed the relative abundance of Thysanoptera was over 3.0% in 4 natural reserves from subtropical and tropical zone, and reached 5.9% in one tropical reserve, only less than Acarina and Collembola. In contrast it was only 0.3% in the warm temperate natural reserves, and no thrips were collected in a mid temperate reserve. The order on the average species numbers per plot of litter thrips was tropic > subtropics > temperate (n=25, p<0.05). Mean density of litter thrips per plots in the tropics and subtropics was significantly higher than that in the temperate region (n=25, p<0.05), but the average density was not significantly different between tropical and subtropical zones (n=25, p>0.05). The diversity of litter thrips in the tropics and subtropics was much higher than that in the temperate area based on comparsions of Shannon-Wiener diversity index (H’), Pielou eveness index (J), and Simpson dominance index (D). All of these results indicated that litter-dwelling thrips lived mainly in tropical and subtropical regions; meanwhile, species number and relative abundance increased with decreasing latitude. 相似文献
5.
Hong Qian 《Diversity & distributions》2008,14(3):556-560
Determining relationships between the ranges of introduced species and geographical and environmental factors is an important step in understanding the mechanisms and processes of the spread of introduced species. In this study, I examined the beta diversity and latitude relationship for all naturalized exotic species of vascular plants in North America at a continental scale. Beta diversity was calculated as the absolute value of the slope of the relationship between the natural logarithm of the Simpson index of similarity (lnS) and spatial distance between pairs of state‐level exotic floras within four latitudinal zones examined. Relative contributions of spatial distance and environmental difference to species turnover between exotic floras were examined. I found that beta diversity decreased monotonically from low to high latitudes: beta diversity for the southernmost zone was shallower than that for the northernmost zone by a factor of 2.6. Regression models of lnS in relation to spatial distance and environmental (climatic and topographical) difference for each latitudinal zone demonstrated that the explanatory power of these variables diminishes monotonically with latitude: the explained variance in lnS is 70.4%, 62.1%, 53.9%, and 33.9%, respectively, for the four latitudinal zones from south to north. For the southernmost zone, 58.3% of the variance in lnS is explained by climate variables and topography, and spatial distance explains only 2.3% of the variance. In contrast, for the northernmost zone, more than half the amount (22.5%) of the explained variance in lnS is attributable to spatial distance, and the remaining (18.9%) of the explained variance is attributable to climate variables and topography. 相似文献
6.
Abstract: We studied morphological variation of the bivalve Buchia over its geographical and temporal range. Buchia was widely distributed during the Late Jurassic and Early Cretaceous, and, while previous quantitative studies have shown that species are characterized by large amounts of variation, there have been no prior attempts to measure how morphology varies geographically. We employed traditional morphometric techniques using nine linear/angular measurements on 1855 buchiid shells from eight localities taken from widely separated, but mostly coeval, sections across its range. Principal component and canonical variate analyses indicate that geographical morphospace of buchiids varied significantly, but we did not find evidence of a latitudinal gradient in shell shape. The amount of variation between localities was similar to the amount of variation between species, indicating the importance of geographical effects on morphology. Disparity (morphological diversity within a taxon, calculated by the sum of variances) and diversity (number of species) were calculated for each location and time period (age). Disparity and diversity reached ultimate lows just before the genus’ extinction in the Hauterivian, and is suggestive that extinction was morphologically selective. We did not find significant trends for either metric, but there were discordances throughout its temporal range. Latitudinal trends of disparity and diversity within Buchia are not apparent. This research adds to the growing body of work on geographical variation and is a preliminary step to understanding the nature and variation of buchiid species and of biodiversity in general. 相似文献
7.
Abstract. The spatial heterogeneity hypothesis predicts a positive relationship between habitat complexity and species diversity: the greater the heterogeneity of a habitat, the greater the number of species in that habitat. On a regional scale, this hypothesis has been proposed to explain the increases in species diversity from the poles to the tropics: the tropics are more diverse because they contain more habitats. On the local scale, the spatial heterogeneity hypothesis suggests that the tropics are more diverse because they contain more microhabitats. The positive relationship between habitat heterogeneity and species diversity, on the local scale, is well documented. In this paper, we test whether habitat heterogeneity on the local scale can explain the latitudinal gradient of species diversity on the regional scale. We determined the latitudinal gradient of species diversity of 305 species of North American grasshoppers using published distribution maps. We compared the slope of this multihabitat (regional-scale) gradient with the slope of a within-habitat (local-scale) gradient in the prairie grasslands. Our results show no significant difference between the slopes at the two scales. We tested the generality of our results by comparing multi- and within-habitat latitudinal gradients of species diversity for ants, scorpions and mammals using data from the literature. These results are in accordance with those from grasshoppers. We can therefore reject the local-scale spatial heterogeneity hypothesis as a mechanism explaining the regional-scale latitudinal gradient of species diversity. We discuss alternative mechanisms that produce this gradient. 相似文献
8.
Stevens RD 《Proceedings. Biological sciences / The Royal Society》2011,278(1717):2528-2536
Determinants of contemporary patterns of diversity, particularly those spanning extensive latitudinal gradients, are some of the most intensely debated issues in ecology. Recently, focus has shifted from a contemporary environmental perspective to a historical one in an attempt to better understand the construction of latitudinal gradients. Although the vast majority of research on historical mechanisms has focused on tropical niche conservatism (TNC), other historical scenarios could produce similar latitudinal gradients. Herein, I formalize predictions to distinguish between two such historical processes--namely time for speciation (TFS) and TNC--and test relative support based on diversity gradients of New World bats. TFS and TNC are distinctly spatial and environmental mechanisms, respectively. Nonetheless, because of the way that environmental characteristics vary spatially, these two mechanisms are hard to distinguish. Evidence provided herein suggests that TNC has had a more important effect than TFS in determining diversity gradients of New World bats. Indeed, relative effects of different historical mechanisms, as well as relative effects of historical and contemporary environmental determinants, are probably context-dependent. Future research should move away from attempting to identify the mechanism with primacy and instead attempt to understand the particular contexts in which different mechanisms have greater influence on diversity gradients. 相似文献
9.
10.
Untangling latitudinal richness gradients at higher taxonomic levels: familial perspectives on the diversity of New World bat communities 总被引:2,自引:0,他引:2
Richard D. Stevens 《Journal of Biogeography》2004,31(4):665-674
Aims (i) To describe at the level of local communities latitudinal gradients in the species richness of different families of New World bats and to explore the generality of such gradients. (ii) To characterize the relative effects of changes in the richness of each family to the richness of entire communities. (iii) To determine differences in the rate and direction of latitudinal gradients in species richness within families. (iv) To evaluate how differences among families regarding latitudinal gradients in species richness influence the latitudinal gradient in species richness of entire communities. Location Continental New World ranging from the northern continental United States (Iowa, 42° N) to eastern Paraguay (Canindeyú, 24° S). Methods Data on the species composition of communities came from 32 intensively sampled sites. Analyses focused on species richness of five of nine New World bat families. Multivariate analysis of variance and discriminant function analysis determined and described differences among temperate, subtropical, and tropical climatic zones regarding the species richness of bat families. Simple linear regression described latitudinal gradients in species richness of families. Path analysis was used to describe: (i) the direct effect of latitude on species richness of communities, (ii) the indirect effects of latitude on the species richness of communities through its effect on the species richness of each family, (iii) the relative effects of latitude on the species richness of bat families, and (iv) the relative contribution of each family to variation in the species richness of communities. Results Highly significant differences among climatic zones existed primarily because of a difference between the temperate zone and the tropical and subtropical zones combined. This difference was associated with the high number of vespertilionids in the temperate zone and the high number of phyllostomids in the tropical and subtropical zones. Latitudinal gradients in species richness were contingent on phylogeny. Although only three of the five families exhibited significant gradients, all families except for the Vespertilionidae exhibited indistinguishable increases in species richness with decreases in latitude. The Emballonuridae, Phyllostomidae and Vespertilionidae exhibited significant latitudinal gradients whereby the former two families exhibited the classical increase in species richness with decreasing latitude and the latter family exhibited the opposite pattern. Variation in species richness of all families contributed significantly to variation in the species richness of entire communities. Nonetheless, the Phyllostomidae made a significantly stronger contribution to changes in species richness of communities than did all other families. Much of the latitudinal gradient in species richness of communities could be accounted for by the effects of latitude on the species richness of constituent families. Main conclusions Ecological and evolutionary differences among higher taxonomic units, particularly those differences involving life‐history traits, predispose taxa to exhibit different patterns of diversity along environmental gradients. This may be particularly true along extensive gradients such as latitude. Nonetheless, species rich taxa, by virtue of their greater absolute rates of change, can dominate and therefore define the pattern of diversity at a higher taxonomic level and eclipse differences among less represented taxa in their response to environmental gradients. This is true not only with respect to how bats drive the latitudinal gradient in species richness for all mammals, but also for how the Phyllostomidae drives the latitudinal gradient for all bats in the New World. Better understanding of the mechanistic basis of latitudinal gradients of diversity may come from comparing and contrasting patterns across lower taxonomic levels of a higher taxon and by identifying key ecological and evolutionary traits that are associated with such differences. 相似文献
11.
12.
Laura A. B. Wilson 《Ecology and evolution》2013,3(4):971-984
In this study, allometric trajectories for 51 rodent species, comprising equal representatives from each of the major clades (Ctenohystrica, Muroidea, Sciuridae), are compared in a multivariate morphospace (=allometric space) to quantify magnitudes of disparity in cranial growth. Variability in allometric trajectory patterns was compared to measures of adult disparity in each clade, and dietary habit among the examined species, which together encapsulated an ecomorphological breadth. Results indicate that the evolution of allometric trajectories in rodents is characterized by different features in sciurids compared with muroids and Ctenohystrica. Sciuridae was found to have a reduced magnitude of inter‐trajectory change and growth patterns with less variation in allometric coefficient values among members. In contrast, a greater magnitude of difference between trajectories and an increased variation in allometric coefficient values was evident for both Ctenohystrica and muroids. Ctenohystrica and muroids achieved considerably higher adult disparities than sciurids, suggesting that conservatism in allometric trajectory modification may constrain morphological diversity in rodents. The results provide support for a role of ecology (dietary habit) in the evolution of allometric trajectories in rodents. 相似文献
13.
The vegetation of shallow depressions on Ivorian granite inselbergs was studied along a gradient from the savanna zone in the north to the rainforest zone in the south of the country. Short-term inundation and prolonged drought are typical features of this habitat. In total, 64 taxa belonging to 25 families were recorded, with the Poaceae, Cyperaceae and Fabaceae accounting for the greatest proportion of species. Annuals represent the predominant life form and comprise nearly two thirds of all species recorded. DCA ordination of the sample plots illustrates that diversity decreases from north to south, and is accompanied by a gradual transition in the ambient vegetation from savanna to rainforest. This decrease is in marked contrast with diversity of surrounding vegetation types. In the drier northern area, it appears as if the less favourable environmental conditions prevent a state of community equilibrium being attained in the shallow depressions. This enables weak competitors to co-exist along with more vigorous species, which, in the south of the country, form species-poor stands. Furthermore, the fact that inselbergs in the rainforest zone are more isolated enhances the probability of extinction of less competitive associates. 相似文献
14.
Taxonomic, morphological, and functional diversity are often discordant and independent components of diversity. A fundamental and largely unanswered question in evolutionary biology is why some clades diversify primarily in some of these components and not others. Dramatic variation in trunk vertebral numbers (14 to >300) among squamate reptiles coincides with different body shapes, and snake-like body shapes have evolved numerous times. However, whether increased evolutionary rates or numbers of vertebrae underlie body shape and taxonomic diversification is unknown. Using a supertree of squamates including 1375 species, and corresponding vertebral and body shape data, we show that increased rates of evolution in vertebral numbers have coincided with increased rates and disparity in body shape evolution, but not changes in rates of taxonomic diversification. We also show that the evolution of many vertebrae has not spurred or inhibited body shape or taxonomic diversification, suggesting that increased vertebral number is not a key innovation. Our findings demonstrate that lineage attributes such as the relaxation of constraints on vertebral number can facilitate the evolution of novel body shapes, but that different factors are responsible for body shape and taxonomic diversification. 相似文献
15.
One hypothesis for the latitudinal gradient in species richness observed in most animal taxa is that the richness of a region is determined by its geographic area. However, the relationship between geographic area and species richness across regions is generally weak. It has been suggested that this is because species from the tropics spill out of this region of high richness, artificially inflating the richness of other regions. This generates the interesting prediction that the area and richness of extra-tropical regions should be more strongly correlated if tropical species are excluded. We test this prediction using the avifauna of the New World. We find that there is indeed a relationship between the land area and species richness of a region once tropical species are excluded. This relationship is independent of the latitude and productivity of regions. Both latitude and productivity can explain variance in richness unexplained by land area. There is no relationship between land area and species richness if tropical species are not excluded from the analysis, suggesting that tropical species do indeed mask the relationship between richness and area. We conclude that our results generally support the geographic area hypothesis, although tests of its other predictions and on other land masses are required. 相似文献
16.
Evolutionary rates do not drive latitudinal diversity gradients 总被引:2,自引:0,他引:2
G. Escarguel A. Brayard H. Bucher 《Journal of Zoological Systematics and Evolutionary Research》2008,46(1):82-86
Among the several hypotheses invoked for explaining latitudinal diversity gradients (LDGs), some models classified within the 'evolutionary hypothesis' family assume that LDGs are the direct consequence of latitudinal variations in the speciation and/or extinctions rates. Spatially structured simulations of the biogeographical dispersal of a randomly generated clade refute the central tenet of these explanatory models and indicate that global diversity patterns are combined outcomes of geographic and thermal mid-domain effects under a phylogenetically controlled niche conservatism constraint. The positive correlation observed in several higher taxa between speciation rate and diversity does not involve any causal relationship between these two parameters but is most likely the first order by-product of a positive correlation between temperature and per capita speciation rate. 相似文献
17.
Jun ichi Kojima 《Insectes Sociaux》1993,40(4):403-421
Summary Observations on pre-emergence, single-foundress colonies of Japanese paper wasps (Polistes) revealed that there was a latitudinal gradient in intensity of application of an ant-repellent substance (secreted by the metasomal sternum VI glands) to the nest petiole. Thus the lower the latitude, the more frequently a foundress rubbed ant repellent onto the nest petiole. Estimation of potential ant predation on wasp brood using bait traps showed that there was a positive correlation between the frequency of rubbing and potential predation pressure from ants which are guided predominantly by substrate cues for foraging. There was also a latitudinal gradient in the degree of temporal association of rubbing behavior with foraging: the lower the latitude, the more closely foundress departure from the nest was associated with rubbing. Enlargement of the nest petiole by applying oral secretion potentially obliterated previous coats of ant repellent; however, this behavior was not always followed by rubbing behavior. The ant-repellent chemical barrier around the nest petiole may have evolved in tropical regions of the world as a defense against ant predation on wasp brood. I argue that as ant predation pressure diminishes towards the cooler regions, so does selection maintaining the behavioral sequence where foundress departure from the nest is preceded by rubbing behavior. 相似文献
18.
Pommier T Canbäck B Riemann L Boström KH Simu K Lundberg P Tunlid A Hagström A 《Molecular ecology》2007,16(4):867-880
Because of their small size, great abundance and easy dispersal, it is often assumed that marine planktonic microorganisms have a ubiquitous distribution that prevents any structured assembly into local communities. To challenge this view, marine bacterioplankton communities from coastal waters at nine locations distributed world-wide were examined through the use of comprehensive clone libraries of 16S ribosomal RNA genes, used as operational taxonomic units (OTU). Our survey and analyses show that there were marked differences in the composition and richness of OTUs between locations. Remarkably, the global marine bacterioplankton community showed a high degree of endemism, and conversely included few cosmopolitan OTUs. Our data were consistent with a latitudinal gradient of OTU richness. We observed a positive relationship between the relative OTU abundances and their range of occupation, i.e. cosmopolitans had the largest population sizes. Although OTU richness differed among locations, the distributions of the major taxonomic groups represented in the communities were analogous, and all local communities were similarly structured and dominated by a few OTUs showing variable taxonomic affiliations. The observed patterns of OTU richness indicate that similar evolutionary and ecological processes structured the communities. We conclude that marine bacterioplankton share many of the biogeographical and macroecological features of macroscopic organisms. The general processes behind those patterns are likely to be comparable across taxa and major global biomes. 相似文献
19.
20.
Isabel S. Fenton Paul N. Pearson Tom Dunkley Jones Alexander Farnsworth Daniel J. Lunt Paul Markwick Andy Purvis 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2016,371(1691)
The Cenozoic planktonic foraminifera (PF) (calcareous zooplankton) have arguably the most detailed fossil record of any group. The quality of this record allows models of environmental controls on macroecology, developed for Recent assemblages, to be tested on intervals with profoundly different climatic conditions. These analyses shed light on the role of long-term global cooling in establishing the modern latitudinal diversity gradient (LDG)—one of the most powerful generalizations in biogeography and macroecology. Here, we test the transferability of environment-diversity models developed for modern PF assemblages to the Eocene epoch (approx. 56–34 Ma), a time of pronounced global warmth. Environmental variables from global climate models are combined with Recent environment–diversity models to predict Eocene richness gradients, which are then compared with observed patterns. The results indicate the modern LDG—lower richness towards the poles—developed through the Eocene. Three possible causes are suggested for the mismatch between statistical model predictions and data in the Early Eocene: the environmental estimates are inaccurate, the statistical model misses a relevant variable, or the intercorrelations among facets of diversity—e.g. richness, evenness, functional diversity—have changed over geological time. By the Late Eocene, environment–diversity relationships were much more similar to those found today. 相似文献