首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.

Background and Aims

Several reports described the migration of human mesenchymal stromal cells (MSCs) towards tumor-released factors. Autocrine motility factor (AMF) is produced by several tumors including hepatocellular carcinoma (HCC). The aim of this study was to analyze AMF involvement on MSC migration towards human HCC.

Methods

Production of AMF by HCC tumors was evaluated by western analysis. The effects of AMF on MSCs from different sources (bone marrow, adipose tissue and perivascular cells from umbilical cord) were analyzed using in vitro migration assay; metalloproteinase 2 (MMP2) activity and expression of critical genes were studied by zymography and qRT-PCR, respectively. To assess AMF involvement on the in vivo MSC migration, noninvasive fluorescence imaging was performed. To test the effect of AMF-primed MSCs on tumor development, in vitro proliferation and spheroids growth and in vivo tumor volume were evaluated.

Results

AMF produced by HCC was found to induce migration of different MSCs in vitro and to enhance their MMP2 activity. Stimulation of MSCs with recombinant AMF (rAMF) also induced the in vitro adhesion to endothelial cells in coincidence with changes in the expression levels of MMP3, AMF receptor, caveolin-1, and -2 and GDI-2. Importantly, stimulation of MSCs with rAMF increased the in vivo migration of MSCs towards experimental HCC tumors. AMF-priming of MSCs did not induce a pro-tumorigenic effect on HCC cells neither in vivo nor in vitro.

Conclusion

AMF plays a role in MSC recruitment towards HCC. However, its ability to increase MSC migration to HCC for therapeutic purposes merits further evaluation.  相似文献   

2.
3.

Introduction

The immunological and homing properties of mesenchymal stem cells (MSCs) provide a potentially attractive treatment for arthritis. The objective of this study was to determine effects of genetic disparity on the immunosuppressive potential of MSCs in vitro and in vivo within collagen induced arthritis (CIA).

Methods

The ability of DBA/1, FVB and BALB/c MSC preparations to impact the cytokine release profile of CD3/CD28 stimulated DBA/1 T cells was assessed in vitro. The effect of systemically delivered MSCs on the progression of CIA and cytokine production was assessed in vivo.

Results

All MSC preparations suppressed the release of TNFα and augmented the secretion of IL-4 and IL-10 by stimulated DBA/1 T-cells. However, assessment of the ratio of IFNγ to IL-4 production indicated that the more genetically distant BALB/c MSCs had significantly less immunosuppressive capacity. Systemic delivery of BALB/c MSC resulted in an exacerbation of CIA disease score in vivo and a higher erosive disease burden. This was not seen after treatment with syngeneic or partially mismatched MSCs. An increase in serum levels of IL-1β was observed up to 20 days post treatment with allogeneic MSCs. An initial elevation of IL-17 in these treatment groups persisted in those treated with fully mismatched BALB/c MSCs. Over the course of the study, there was a significant suppression of serum IL-17 levels in groups treated with syngeneic MSCs.

Conclusions

These data demonstrate a significant difference in the immunosuppressive properties of syngeneic and allogeneic MSCs in vitro and in vivo, which needs to be appreciated when developing MSC based therapies for inflammatory arthritis.  相似文献   

4.

Rationale

Severe influenza remains a major public health threat and is responsible for thousands of deaths annually. Increasing antiviral resistance and limited effectiveness of current therapies highlight the need for new approaches to influenza treatment. Extensive pre-clinical data have shown that mesenchymal stromal (stem) cell (MSC) therapy can induce anti-inflammatory effects and enhance repair of the injured lung. We hypothesized that MSC therapy would improve survival, dampen lung inflammation and decrease acute lung injury (ALI) in a murine model of severe influenza.

Methods

C57Bl/6 mice were infected with influenza A/PuertoRico/8/34 (mouse-adapted H1N1) or influenza A/Mexico/4108/2009 (swine-origin pandemic H1N1) and administered human or mouse MSCs via the tail vein, either pre- or post- infection. MSC efficacy was evaluated as both an independent and adjunctive treatment strategy in combination with the antiviral agent, oseltamivir. Weight loss and survival were monitored. Inflammatory cells, cytokine/chemokines (IFN-γ, CXCL10, CCL2 and CCL5) and markers of ALI (total protein and IgM), were measured in bronchoalveolar lavage fluid and lung parenchyma.

Results

Administration of murine MSCs or human MSCs in a prophylactic or therapeutic regimen failed to improve survival, decrease pulmonary inflammation/inflammatory cell counts or prevent ALI in influenza virus-infected mice. MSCs administered in combination with oseltamivir also failed to improve outcomes.

Conclusions

Despite similarities in the clinical presentation and pathobiology of ALI and severe influenza, our findings suggest that MSC therapy may not be effective for prevention and/or treatment of acute severe influenza.  相似文献   

5.

Background

Ischemia-reperfusion (I/R) injury associated with living donor liver transplantation impairs liver graft regeneration. Mesenchymal stem cells (MSCs) are potential cell therapeutic targets for liver disease. In this study, we demonstrate the impact of MSCs against hepatic I/R injury and hepatectomy.

Methodology/Principal Findings

We used a new rat model in which major hepatectomy with I/R injury was performed. Male Lewis rats were separated into two groups: an MSC group given MSCs after reperfusion as treatment, and a Control group given phosphate-buffered saline after reperfusion as placebo. The results of liver function tests, pathologic changes in the liver, and the remnant liver regeneration rate were assessed. The fate of transplanted MSCs in the luciferase-expressing rats was examined by in vivo luminescent imaging. The MSC group showed peak luciferase activity of transplanted MSCs in the remnant liver 24 h after reperfusion, after which luciferase activity gradually declined. The elevation of serum alanine transaminase levels was significantly reduced by MSC injection. Histopathological findings showed that vacuolar change was lower in the MSC group compared to the Control group. In addition, a significantly lower percentage of TUNEL-positive cells was observed in the MSC group compared with the controls. Remnant liver regeneration rate was accelerated in the MSC group.

Conclusions/Significance

These data suggest that MSC transplantation provides trophic support to the I/R-injured liver by inhibiting hepatocellular apoptosis and by stimulating regeneration.  相似文献   

6.

Background

Mesenchymal stem cells (MSC) are in clinical trials for widespread indications including musculoskeletal, neurological, cardiac and haematological disorders. Furthermore, MSC can ameliorate pulmonary fibrosis in animal models although mechanisms of action remain unclear. One emerging concept is that MSCs may have paracrine, rather than a functional, roles in lung injury repair and regeneration.

Methods

To investigate the paracrine role of human MSC (hMSC) on pulmonary epithelial repair, hMSC-conditioned media (CM) and a selected cohort of hMSC-secretory proteins (identified by LC-MS/MS mass spectrometry) were tested on human type II alveolar epithelial cell line A549 cells (AEC) and primary human small airway epithelial cells (SAEC) using an in vitro scratch wound repair model. A 3D direct-contact wound repair model was further developed to assess the migratory properties of hMSC.

Results

We demonstrate that MSC-CM facilitates AEC and SAEC wound repair in serum-dependent and –independent manners respectively via stimulation of cell migration. We also show that the hMSC secretome contains an array of proteins including Fibronectin, Lumican, Periostin, and IGFBP-7; each capable of influencing AEC and SAEC migration and wound repair stimulation. In addition, hMSC also show a strong migratory response to AEC injury as, supported by the observation of rapid and effective AEC wound gap closure by hMSC in the 3D model.

Conclusion

These findings support the notion for clinical application of hMSCs and/or their secretory factors as a pharmacoregenerative modality for the treatment of idiopathic pulmonary fibrosis (IPF) and other fibrotic lung disorders.  相似文献   

7.

Background

Chronic obstructive pulmonary disease (COPD) is characterized by excessive inflammation and disturbed bacterial clearance in the airways. Although cigarette smoke (CS) exposure poses a major risk, vitamin D deficiency could potentially contribute to COPD progression. Many in vitro studies demonstrate important anti-inflammatory and antibacterial effects of vitamin D, but a direct contribution of vitamin D deficiency to COPD onset and disease progression has not been explored.

Methods

In the current study, we used a murine experimental model to investigate the combined effect of vitamin D deficiency and CS exposure on the development of COPD-like characteristics. Therefore, vitamin D deficient or control mice were exposed to CS or ambient air for a period of 6 (subacute) or 12 weeks (chronic). Besides lung function and structure measurements, we performed an in depth analysis of the size and composition of the cellular infiltrate in the airways and lung parenchyma and tested the ex vivo phagocytic and oxidative burst capacity of alveolar macrophages.

Results

Vitamin D deficient mice exhibited an accelerated lung function decline following CS exposure compared to control mice. Furthermore, early signs of emphysema were only observed in CS-exposed vitamin D deficient mice, which was accompanied by elevated levels of MMP-12 in the lung. Vitamin D deficient mice showed exacerbated infiltration of inflammatory cells in the airways and lung parenchyma after both subacute and chronic CS exposure compared to control mice. Furthermore, elevated levels of typical proinflammatory cytokines and chemokines could be detected in the bronchoalveolar lavage fluid (KC and TNF-α) and lung tissue (IP-10, MCP-1, IL-12) of CS-exposed vitamin D deficient mice compared to control mice. Finally, although CS greatly impaired the ex vivo phagocytic and oxidative burst function of alveolar macrophages, vitamin D deficient mice did not feature an additional defect.

Conclusions

Our data demonstrate that vitamin D deficiency both accelerates and aggravates the development of characteristic disease features of COPD. As vitamin D deficiency is highly prevalent, large randomized trials exploring effects of vitamin D supplementation on lung function decline and COPD onset are needed.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-015-0271-x) contains supplementary material, which is available to authorized users.  相似文献   

8.

Introduction

Normal and malignant breast tissue contains a rare population of multi-potent cells with the capacity to self-renew, referred to as stem cells, or tumor initiating cells (TIC). These cells can be enriched by growth as “mammospheres” in three-dimensional cultures.

Objective

We tested the hypothesis that human bone-marrow derived mesenchymal stem cells (MSC), which are known to support tumor growth and metastasis, increase mammosphere formation.

Results

We found that MSC increased human mammary epithelial cell (HMEC) mammosphere formation in a dose-dependent manner. A similar increase in sphere formation was seen in human inflammatory (SUM149) and non-inflammatory breast cancer cell lines (MCF-7) but not in primary inflammatory breast cancer cells (MDA-IBC-3). We determined that increased mammosphere formation can be mediated by secreted factors as MSC conditioned media from MSC spheroids significantly increased HMEC, MCF-7 and SUM149 mammosphere formation by 6.4 to 21-fold. Mammospheres grown in MSC conditioned media had lower levels of the cell adhesion protein, E-cadherin, and increased expression of N-cadherin in SUM149 and HMEC cells, characteristic of a pro-invasive mesenchymal phenotype. Co-injection with MSC in vivo resulted in a reduced latency time to develop detectable MCF-7 and MDA-IBC-3 tumors and increased the growth of MDA-IBC-3 tumors. Furthermore, E-cadherin expression was decreased in MDA-IBC-3 xenografts with co-injection of MSC.

Conclusions

MSC increase the efficiency of primary mammosphere formation in normal and malignant breast cells and decrease E-cadherin expression, a biologic event associated with breast cancer progression and resistance to therapy.  相似文献   

9.

Context

Tourette syndrome (TS) is a heterogeneous neuropsychiatric disorder. Chronic motor and phonic tics are central symptoms in TS patients. For some patients, tics are intractable to any traditional treatment and cause lifelong impairment and life-threatening symptoms. New therapies should be developed to address symptoms and overt manifestations of TS. Transplantation of neurogenic stem cells might be a viable approach in TS treatment.

Objective

We used mesenchymal stem cell (MSC) transplantation to treat TS. We discuss the mechanism of action, as well as the efficiency of this approach, in treating TS.

Settings and Design

An autoimmune TS animal model was adopted in the present study. Forty-eight Wistar rats were randomly allocated to the control group and the 2 experimental groups, namely, TS rats+vehicle and TS rats+MSC. MSCs were co-cultured with 5-bromodeoxyuridine (BrdU) for 24 h for labeling prior to grafting.

Methods

Stereotypic behaviors were recorded at 1, 7, 14, and 28 days after transplantation. Dopamine (DA) content in the striatum of rats in the 3 groups was measured using a high-performance liquid chromatography column equipped with an electrochemical detector (HPLC-ECD) on day 28 after transplantation.

Statistical analysis

Statistical analysis was performed by repeated measurements analysis of variance to evaluate stereotypic behavior counts at different time points.

Results

TS rats exhibited higher stereotypic behavioral counts compared with the control group. One week after transplantation, TS rats with MSC grafts exhibited significantly decreased stereotypic behavior. Rats with MSC grafts also showed reduced levels of DA in the striatum when compared with TS rats, which were exposed only to the vehicle.

Conclusions

Intrastriatal transplantation of MSCs can provide relief from the stereotypic behavior of TS. Our results indicate that this approach may have potential for developing therapies against TS. The mechanism(s) of the observed effect may be related to the suppression of DA system by decreasing the content of DA in TS rats.  相似文献   

10.

Rationale

Obliterative bronchiolitis (OB) is a significant cause of morbidity and mortality after lung transplant and hematopoietic cell transplant. Mesenchymal stromal cells (MSCs) have been shown to possess immunomodulatory properties in chronic inflammatory disease.

Objective

Administration of MSCs was evaluated for the ability to ameliorate OB in mice using our established allogeneic bone marrow transplant (BMT) model.

Methods

Mice were lethally conditioned and received allogeneic bone marrow without (BM) or with spleen cells (BMS), as a source of OB-causing T-cells. Cell therapy was started at 2 weeks post-transplant, or delayed to 4 weeks when mice developed airway injury, defined as increased airway resistance measured by pulmonary function test (PFT). BM-derived MSC or control cells [mouse pulmonary vein endothelial cells (PVECs) or lung fibroblasts (LFs)] were administered. Route of administration [intratracheally (IT) and IV] and frequency (every 1, 2 or 3 weeks) were compared. Mice were evaluated at 3 months post-BMT.

Measurements and Main Results

No ectopic tissue formation was identified in any mice. When compared to BMS mice receiving control cells or no cells, those receiving MSCs showed improved resistance, compliance and inspiratory capacity. Interim PFT analysis showed no difference in route of administration. Improvements in PFTs were found regardless of dose frequency; but once per week worked best even when administration began late. Mice given MSC also had decreased peribronchiolar inflammation, lower levels of hydroxyproline (collagen) and higher frequencies of macrophages staining for the alternatively activated macrophage (AAM) marker CD206.

Conclusions

These results warrant study of MSCs as a potential management option for OB in lung transplant and BMT recipients.  相似文献   

11.

Background

The purpose of this study was to determine whether autologous mesenchymal stem cells (MSCs) implantation improves endothelial dysfunction in a rabbit ischemic limb model.

Methods

We evaluated the effect of MSC implantation on limb blood flow (LBF) responses to acetylcholine (ACh), an endothelium-dependent vasodilator, and sodium nitroprusside (SNP), an endothelium-independent vasodilator, in rabbits with limb ischemia in which cultured MSCs were implanted (n = 20) or saline was injected as a control group (n = 20). LBF was measured using an electromagnetic flowmeter. A total of 106 MSCs were implanted into each ischemic limb.

Results

Histological sections of ischemic muscle showed that capillary index (capillary/muscle fiber) was greater in the MSC implantation group than in the control group. Laser Doppler blood perfusion index was significantly increased in the MSC implantation group compared with that in the control group. LBF response to ACh was greater in the MSC group than in the control group. After administration of NG-nitro-L-arginine, a nitric oxide synthase inhibitor, LBF response to ACh was similar in the MSC implantation group and control group. Vasodilatory effects of SNP in the two groups were similar.

Conclusions

These findings suggest that MSC implantation induces angiogenesis and augments endothelium-dependent vasodilation in a rabbit ischemic model through an increase in nitric oxide production.  相似文献   

12.

Background

Mesenchymal stem cells (MSC) are currently strong candidates for cell-based therapies. They are well known for their differentiation potential and immunoregulatory properties and have been proven to be potentially effective in the treatment of a large variety of diseases, including neurodegenerative disorders. Currently there is no treatment that provides consistent long-term benefits for patients with multiple system atrophy (MSA), a fatal late onset α-synucleinopathy. Principally neuroprotective or regenerative strategies, including cell-based therapies, represent a powerful approach for treating MSA. In this study we investigated the efficacy of intravenously applied MSCs in terms of behavioural improvement, neuroprotection and modulation of neuroinflammation in the (PLP)-αsynuclein (αSYN) MSA model.

Methodology/Principal Findings

MSCs were intravenously applied in aged (PLP)-αSYN transgenic mice. Behavioural analyses, defining fine motor coordination and balance capabilities as well as stride length analysis, were performed to measure behavioural outcome. Neuroprotection was assessed by quantifying TH neurons in the substantia nigra pars compacta (SNc). MSC treatment on neuroinflammation was analysed by cytokine measurements (IL-1α, IL-2, IL-4, IL-5, IL-6, IL-10, IL-17, GM-CSF, INFγ, MCP-1, TGF-β1, TNF-α) in brain lysates together with immunohistochemistry for T-cells and microglia.Four weeks post MSC treatment we observed neuroprotection in the SNc, as well as downregulation of cytokines involved in neuroinflammation. However, there was no behavioural improvement after MSC application.

Conclusions/Significance

To our knowledge this is the first experimental approach of MSC treatment in a transgenic MSA mouse model. Our data suggest that intravenously infused MSCs have a potent effect on immunomodulation and neuroprotection. Our data warrant further studies to elucidate the efficacy of systemically administered MSCs in transgenic MSA models.  相似文献   

13.

Background

Chagas disease, resulting from infection with the parasite Trypanosoma cruzi (T. cruzi), is a major cause of cardiomyopathy in Latin America. Drug therapy for acute and chronic disease is limited. Stem cell therapy with bone marrow mesenchymal cells (MSCs) has emerged as a novel therapeutic option for cell death-related heart diseases, but efficacy of MSC has not been tested in Chagas disease.

Methods and Results

We now report the use of cell-tracking strategies with nanoparticle labeled MSC to investigate migration of transplanted MSC in a murine model of Chagas disease, and correlate MSC biodistribution with glucose metabolism and morphology of heart in chagasic mice by small animal positron emission tomography (microPET). Mice were infected intraperitoneally with trypomastigotes of the Brazil strain of T. cruzi and treated by tail vein injection with MSC one month after infection. MSCs were labeled with near infrared fluorescent nanoparticles and tracked by an in vivo imaging system (IVIS). Our IVIS results two days after transplant revealed that a small, but significant, number of cells migrated to chagasic hearts when compared with control animals, whereas the vast majority of labeled MSC migrated to liver, lungs and spleen. Additionally, the microPET technique demonstrated that therapy with MSC reduced right ventricular dilation, a phenotype of the chagasic mouse model.

Conclusions

We conclude that the beneficial effects of MSC therapy in chagasic mice arise from an indirect action of the cells in the heart rather than a direct action due to incorporation of large numbers of transplanted MSC into working myocardium.  相似文献   

14.

Background

Stem cell transplantation is a promising method for the treatment of chronic obstructive pulmonary disease (COPD), and mesenchymal stem cells (MSCs) have clinical potential for lung repair/regeneration. However, the rates of engraftment and differentiation are generally low following MSC therapy for lung injury. In previous studies, we constructed a pulmonary surfactant-associated protein A (SPA) suicide gene system, rAAV-SPA-TK, which induced apoptosis in alveolar epithelial type II (AT II) cells and vacated the AT II cell niche. We hypothesized that this system would increase the rates of MSC engraftment and repair in COPD rats.

Methods

The MSC engraftment rate and morphometric changes in lung tissue in vivo were investigated by in situ hybridization, hematoxylin and eosin staining, Masson’s trichrome staining, immunohistochemistry, and real-time PCR. The expression of hypoxia inducible factor (HIF-1α) and stromal cell-derived factor-1 (SDF-1), and relationship between HIF-1α and SDF-1 in a hypoxic cell model were analyzed by real-time PCR, western blotting, and enzyme-linked immunosorbent assay.

Results

rAAV-SPA-TK transfection increased the recruitment of MSCs but induced pulmonary fibrosis in COPD rats. HIF-1α and SDF-1 expression were enhanced after rAAV-SPA-TK transfection. Hypoxia increased the expression of HIF-1α and SDF-1 in the hypoxic cell model, and SDF-1 expression was augmented by HIF-1α under hypoxic conditions.

Conclusions

Vacant AT II cell niches increase the homing and recruitment of MSCs to the lung in COPD rats. MSCs play an important role in lung repair and promote collagen fiber deposition after induction of secondary damage in AT II cells by rAAV-SPA-TK, which involves HIF-1α and SDF-1 signaling.  相似文献   

15.

Background

It is incompletely understood how cigarette smoke (CS) exposure affects lung mucosal immune responses during viral respiratory infections. B cell activating factor belonging to the tumor necrosis factor family (BAFF) plays an important role in the induction of secretory immunoglobulin A (S-IgA) which is the main effector of the mucosal immune system. We therefore investigated the effects of CS exposure on BAFF expression and S-IgA responses in the lung during influenza virus infection.

Methods

Mice were exposed to CS and/or infected with influenza virus. Bronchoalveolar lavage fluid and lung compartments were analyzed for BAFF expression, influenza-specific S-IgA level and histological changes. Lung B cells were isolated and the activation-induced cytidine deaminase (Aicda) expression was determined. BEAS-2B cells were treated with CS extract (CSE), influenza virus, interferon beta or N-acetylcysteine and BAFF expression was measured.

Results

CS inhibited BAFF expression in the lung, particularly after long-term exposure. BAFF and S-IgA levels were increased during influenza virus infection. Three-month CS exposure prior to influenza virus infection resulted in reduced BAFF and S-IgA levels in the lung as well as augmented pulmonary inflammation on day 7 after infection. Prior CS exposure also caused decreased Aicda expression in lung B cells during infection. Neutralization of BAFF in the lung resulted in reduced S-IgA levels during influenza virus infection. CSE inhibited virus-mediated BAFF induction in a dose-dependent manner in BEAS-2B cells, while this inhibition of BAFF by CSE was prevented by pretreatment with the antioxidant N-acetylcysteine.

Conclusions

Our findings indicate that CS may hinder early mucosal IgA responses in the lung during influenza virus infection through oxidative inhibition of BAFF, which might contribute to the increased incidence and severity of viral infections in smokers.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-015-0201-y) contains supplementary material, which is available to authorized users.  相似文献   

16.

Aims

Activation of cardiac fibroblasts into myofibroblasts constitutes a key step in cardiac remodeling after myocardial infarction (MI), due to interstitial fibrosis. Mesenchymal stem cells (MSCs) have been shown to improve post-MI remodeling an effect that is enhanced by hypoxia preconditioning (HPC). Leptin has been shown to promote cardiac fibrosis. The expression of leptin is significantly increased in MSCs after HPC but it is unknown whether leptin contributes to MSC therapy or the fibrosis process. The objective of this study was to determine whether leptin secreted from MSCs modulates cardiac fibrosis.

Methods

Cardiac fibroblast (CF) activation was induced by hypoxia (0.5% O2). The effects of MSCs on fibroblast activation were analyzed by co-culturing MSCs with CFs, and detecting the expression of α-SMA, SM22α, and collagen IαI in CFs by western blot, immunofluorescence and Sirius red staining. In vivo MSCs antifibrotic effects on left ventricular remodeling were investigated using an acute MI model involving permanent ligation of the left anterior descending coronary artery.

Results

Co-cultured MSCs decreased fibroblast activation and HPC enhanced the effects. Leptin deficit MSCs from Ob/Ob mice did not decrease fibroblast activation. Consistent with this, H-MSCs significantly inhibited cardiac fibrosis after MI and mediated decreased expression of TGF-β/Smad2 and MRTF-A in CFs. These effects were again absent in leptin-deficient MSCs.

Conclusion

Our data demonstrate that activation of cardiac fibroblast was inhibited by MSCs in a manner that was leptin-dependent. The mechanism may involve blocking TGF-β/Smad2 and MRTF-A signal pathways.  相似文献   

17.

Background

Three-dimensional (3D) in-vitro cultures are recognized for recapitulating the physiological microenvironment and exhibiting high concordance with in-vivo conditions. Taking the advantages of 3D culture, we have developed the in-vitro tumor model for anticancer drug screening.

Methods

Cancer cells grown in 6 and 96 well AlgiMatrix™ scaffolds resulted in the formation of multicellular spheroids in the size range of 100–300 µm. Spheroids were grown in two weeks in cultures without compromising the growth characteristics. Different marketed anticancer drugs were screened by incubating them for 24 h at 7, 9 and 11 days in 3D cultures and cytotoxicity was measured by AlamarBlue® assay. Effectiveness of anticancer drug treatments were measured based on spheroid number and size distribution. Evaluation of apoptotic and anti-apoptotic markers was done by immunohistochemistry and RT-PCR. The 3D results were compared with the conventional 2D monolayer cultures. Cellular uptake studies for drug (Doxorubicin) and nanoparticle (NLC) were done using spheroids.

Results

IC50 values for anticancer drugs were significantly higher in AlgiMatrix™ systems compared to 2D culture models. The cleaved caspase-3 expression was significantly decreased (2.09 and 2.47 folds respectively for 5-Fluorouracil and Camptothecin) in H460 spheroid cultures compared to 2D culture system. The cytotoxicity, spheroid size distribution, immunohistochemistry, RT-PCR and nanoparticle penetration data suggested that in vitro tumor models show higher resistance to anticancer drugs and supporting the fact that 3D culture is a better model for the cytotoxic evaluation of anticancer drugs in vitro.

Conclusion

The results from our studies are useful to develop a high throughput in vitro tumor model to study the effect of various anticancer agents and various molecular pathways affected by the anticancer drugs and formulations.  相似文献   

18.

Objective

To evaluate the impact of mesenchymal stem cells (MSCs) against hepatic I/R injury and explore the role of N-acetyltransferase 8 (NAT8) in the process.

Methods

We investigated the potential of injected MSCs systemically via the tail vein in healing injuried liver of the SD rat model of 70% hepatic I/R injury by measuring the biochemical and pathologic alterations. Subsequently, we evaluated the expression levels of NAT8 by western blotting in vivo. Concurrently, hydrogen peroxide (H2O2)-induced apoptosis in the human normal liver cell line L02 was performed in vitro to evaluate the protective effects of MSC conditioned medium (MSC-CM) on L02 cells. In addition, we downregulated and upregulated NAT8 expression in L02 cells and induced apoptosis by using H2O2 to study the protective role of NAT8.

Results

MSCs implantation led to a significant reduced liver enzyme levels, an advanced protection in the histopathological findings of the acutely injured liver and a significantly lower percentage of TUNEL-positive cells, which were increased after I/R injury. In vitro assays, MSC-CM inhibited hepatocyte apoptosis induced by H2O2. Moreover, overexpression or downregulation of NAT8 prevented or aggravated hepatocyte apoptosis induced by H2O2, respectively.

Conclusions

MSC transplantation provides support to the I/R-injured liver by inhibiting hepatocellular apoptosis and stimulating NAT8 regeneration.  相似文献   

19.

Aim

The aim of this work was the development of successful cell therapy techniques for cartilage engineering. This will depend on the ability to monitor non-invasively transplanted cells, especially mesenchymal stem cells (MSCs) that are promising candidates to regenerate damaged tissues.

Methods

MSCs were labeled with superparamagnetic iron oxide particles (SPIO). We examined the effects of long-term labeling, possible toxicological consequences and the possible influence of progressive concentrations of SPIO on chondrogenic differentiation capacity.

Results

No influence of various SPIO concentrations was noted on human bone marow MSC viability or proliferation. We demonstrated long-term (4 weeks) in vitro retention of SPIO by human bone marrow MSCs seeded in collagenic sponges under TGF-β1 chondrogenic conditions, detectable by Magnetic Resonance Imaging (MRI) and histology. Chondrogenic differentiation was demonstrated by molecular and histological analysis of labeled and unlabeled cells. Chondrogenic gene expression (COL2A2, ACAN, SOX9, COL10, COMP) was significantly altered in a dose-dependent manner in labeled cells, as were GAG and type II collagen staining. As expected, SPIO induced a dramatic decrease of MRI T2 values of sponges at 7T and 3T, even at low concentrations.

Conclusions

This study clearly demonstrates (1) long-term in vitro MSC traceability using SPIO and MRI and (2) a deleterious dose-dependence of SPIO on TGF-β1 driven chondrogenesis in collagen sponges. Low concentrations (12.5–25 µg Fe/mL) seem the best compromise to optimize both chondrogenesis and MRI labeling.  相似文献   

20.

Background

Low survival rate of transplanted cells compromises the efficacy of cell therapy. Hexokinase II (HKII) is known to have anti-apoptotic activity through its interaction with mitochondria. The objective was to identify miRNAs targeting HKII and investigate whether miRNA-mediated modulation of HKII could improve the survival of mesenchymal stem cells (MSCs) exposed to H2O2. The expression of HKII in MSCs exposed to H2O2 was evaluated, and HKII-targeting miRNA was screened based on miRNA-target prediction databases. The effect of H2O2 on the expression of the selected HKII-targeting miRNA was examined and the effect of modulation of the selected HKII-targeting miRNA using anti-miRNA on H2O2-induced apoptosis of MSC was evaluated.

Results

H2O2 (600 μM) induced cell death of MSCs and decreased mitochondrial HKII expression. We have identified miR-181a as a HKII-targeting miRNA and H2O2 increased the expression of miR-181a in MSCs. Delivery of anti-miR-181a, which neutralizes endogenous miR-181a, significantly attenuated H2O2-induced decrease of HKII expression and disruption of mitochondrial membrane potential, improving the survival of MSCs exposed to H2O2.

Conclusions

These findings suggest that H2O2-induced up-regulation of miR-181a contributes to the cell death of MSCs by down-regulating HKII. Neutralizing miR-181a can be an effective way to prime MSCs for transplantation into ischemic tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号