首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Death of murine T cells induced by extracellular ATP is mainly triggered by activation of purinergic P2X7 receptors (P2X7Rs). However, a link between P2X7Rs and pannexin1 (Panx1) channels, which are non-selective, has been recently demonstrated in other cell types. In this work, we characterized the expression and cellular distribution of pannexin family members (Panxs 1, 2 and 3) in isolated T cells. Panx1 was the main pannexin family member clearly detected in both helper (CD4+) and cytotoxic (CD8+) T cells, whereas low levels of Panx2 were found in both T-cell subsets. Using pharmacological and genetic approaches, Panx1 channels were found to mediate most ATP-induced ethidium uptake since this was drastically reduced by Panx1 channel blockers (10Panx1, Probenecid and low carbenoxolone concentration) and absent in T cells derived from Panx1?/? mice. Moreover, electrophysiological measurements in wild-type CD4+ cells treated with ATP unitary current events and pharmacological sensitivity compatible with Panx1 channels were found. In addition, ATP release from T cells treated with 4Br-A23187, a calcium ionophore, was completely blocked with inhibitors of both connexin hemichannels and Panx1 channels. Panx1 channel blockers drastically reduced the ATP-induced T-cell mortality, indicating that Panx1 channels mediate the ATP-induced T-cell death. However, mortality was not reduced in T cells of Panx1?/? mice, in which levels of P2X7Rs and ATP-induced intracellular free Ca2+ responses were enhanced suggesting that P2X7Rs take over Panx1 channels lose-function in mediating the onset of cell death induced by extracellular ATP.  相似文献   

2.
Urothelial cells respond to bladder distension with ATP release, and ATP signaling within the bladder and from the bladder to the CNS is essential for proper bladder function. In other cell types, pannexin 1 (Panx1) channels provide a pathway for mechanically-induced ATP efflux and for ATP-induced ATP release through interaction with P2X7 receptors (P2X7Rs). We report that Panx1 and P2X7R are functionally expressed in the bladder mucosa and in immortalized human urothelial cells (TRT-HU1), and participate in urothelial ATP release and signaling. ATP release from isolated rat bladders induced by distention was reduced by the Panx1 channel blocker mefloquine (MFQ) and was blunted in mice lacking Panx1 or P2X7R expression. Hypoosmotic shock induced YoPro dye uptake was inhibited by MFQ and the P2X7R blocker A438079 in TRT-HU1 cells, and was also blunted in primary urothelial cells derived from mice lacking Panx1 or P2X7R expression. Rinsing-induced mechanical stimulation of TRT-HU1 cells triggered ATP release, which was reduced by MFQ and potentiated in low divalent cation solution (LDPBS), a condition known to enhance P2X7R activation. ATP signaling evaluated as intercellular Ca2+ wave radius was significantly larger in LDPBS, reduced by MFQ and by apyrase (ATP scavenger). These findings indicate that Panx1 participates in urothelial mechanotransduction and signaling by providing a direct pathway for mechanically-induced ATP release and by functionally interacting with P2X7Rs.  相似文献   

3.
Fas ligation via the ligand FasL activates the caspase‐8/caspase‐3‐dependent extrinsic death pathway. In so‐called type II cells, an additional mechanism involving tBid‐mediated caspase‐9 activation is required to efficiently trigger cell death. Other pathways linking FasL–Fas interaction to activation of the intrinsic cell death pathway remain unknown. However, ATP release and subsequent activation of purinergic P2X7 receptors (P2X7Rs) favors cell death in some cells. Here, we evaluated the possibility that ATP release downstream of caspase‐8 via pannexin1 hemichannels (Panx1 HCs) and subsequent activation of P2X7Rs participate in FasL‐stimulated cell death. Indeed, upon FasL stimulation, ATP was released from Jurkat cells in a time‐ and caspase‐8‐dependent manner. Fas and Panx1 HCs colocalized and inhibition of the latter, but not connexin hemichannels, reduced FasL‐induced ATP release. Extracellular apyrase, which hydrolyzes ATP, reduced FasL‐induced death. Also, oxidized‐ATP or Brilliant Blue G, two P2X7R blockers, reduced FasL‐induced caspase‐9 activation and cell death. These results represent the first evidence indicating that the two death receptors, Fas and P2X7R connect functionally via caspase‐8 and Panx1 HC‐mediated ATP release to promote caspase‐9/caspase‐3‐dependent cell death in lymphoid cells. Thus, a hitherto unsuspected route was uncovered connecting the extrinsic to the intrinsic pathway to amplify death signals emanating from the Fas receptor in type II cells. J. Cell. Physiol. 228: 485–493, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
《FEBS letters》2014,588(8):1372-1378
Connexin hemichannels are postulated to form a cell permeabilization pore for the uptake of fluorescent dyes and release of cellular ATP. Connexin hemichannel activity is enhanced by low external [Ca2+]o, membrane depolarization, metabolic inhibition, and some disease-causing gain-of-function connexin mutations. This paper briefly reviews the electrophysiological channel conductance, permeability, and pharmacology properties of connexin hemichannels, pannexin 1 channels, and purinergic P2X7 receptor channels as studied in exogenous expression systems including Xenopus oocytes and mammalian cell lines such as HEK293 cells. Overlapping pharmacological inhibitory and channel conductance and permeability profiles makes distinguishing between these channel types sometimes difficult. Selective pharmacology for Cx43 hemichannels (Gap19 peptide), probenecid or FD&C Blue #1 (Brilliant Blue FCF, BB FCF) for Panx1, and A740003, A438079, or oxidized ATP (oATP) for P2X7 channels may be the best way to distinguish between these three cell permeabilizing channel types. Endogenous connexin, pannexin, and P2X7 expression should be considered when performing exogenous cellular expression channel studies. Cell pair electrophysiological assays permit the relative assessment of the connexin hemichannel/gap junction channel ratio not often considered when performing isolated cell hemichannel studies.  相似文献   

5.
Osteoblasts sense and respond to mechanical stimuli in a process involving influx and release of large ions and signaling molecules. Unapposed gap junction hemichannels formed of connexin43 (Cx43) have been proposed as a major route for such exchange, in particular for release of ATP and prostaglandin E2 (PGE2) in osteocytes. However, we have found that Cx43-null osteoblasts have unaltered, mechanically induced PGE2 release and ATP-induced YoPro dye uptake. In contrast, PGE2 release in response to fluid shear stress is abolished in P2X7 receptor (P2X7R)–null osteoblasts, and ATP-induced dye uptake is attenuated following treatment of wild-type cells with a P2X7R or Pannexin1 (Panx1) channel blocker. These data indicate that Panx1 channels, in concert with P2X7R, likely form a molecular complex that performs the hemichannel function in osteoblast mechanosignaling.  相似文献   

6.
7.
Purinergic P2 receptors and gap junctions are two groups of proteins involved in the transmission of ICWs (intercellular calcium waves) between astrocytes. The extent to which ICWs spread among these glial cells depends on the amount of ATP released, which can occur through membrane channels, as well as other pathways. Our previous studies have shown that the pore-forming P2X7R (P2X7 receptor) contributes to the amplification of ICW spread by providing sites of ATP release through Panx1 (Pannexin1) channels. To gain insight into the signal transduction events mediating this response we compared the properties of the P2X7R–Panx1 complex in astrocytes from a mouse strain (C57Bl/6) containing a naturally occurring point mutation (P451L) in the C-terminus of the P2X7R to that of non-mutated receptors (Balb/C mice). Electrophysiological, biochemical, pharmacological and fluorescence imaging techniques revealed that the P451L mutation located in the SH3 domain (a Src tyrosine kinase-binding site) of the C-terminus of the P2X7R attenuates Panx1 currents, ATP release and the distance of ICW spread between astrocytes. Similar results were obtained when using the Src tyrosine inhibitor (PP2) and a membrane-permeant peptide spanning the P451L mutation of the P2X7R of the C57Bl6 astrocytes. These results support the participation of a tyrosine kinase of the Src family in the initial steps mediating the opening of Panx1 channels following P2X7R stimulation and in the transmission of calcium signals among astrocytes.  相似文献   

8.
Activation of cation channels causes erythrocyte phosphatidylserine (PS) exposure and cell shrinkage. Human erythrocytes express the P2X7 receptor, an ATP-gated cation channel. The two most potent P2X7 agonists, BzATP and ATP, stimulated PS exposure in human erythrocytes. Other nucleotides also induced erythrocyte PS exposure with an order of agonist potency of BzATP > ATP > 2MeSATP > ATPγS; however neither ADP nor UTP had an effect. ATP induced PS exposure in erythrocytes in a dose-dependent fashion with an EC50 of ∼75 μM. BzATP- and ATP-induced erythrocyte PS exposure was impaired by oxidised ATP, as well as in erythrocytes from subjects who had inherited loss-of-function polymorphisms in the P2X7 receptor. ATP-induced PS exposure in erythrocytes was not significantly altered in the presence of EGTA excluding a role for extracellular Ca2+. These results show that P2X7 activation by extracellular ATP can induce PS exposure in erythrocytes.  相似文献   

9.
Ethyl pyruvate (EP), a simple aliphatic ester of pyruvic acid, has been shown to have antiinflammatory effects and to confer protective effects in various pathological conditions. Recently, a number of studies have reported EP inhibits high mobility group box 1 (HMGB1) secretion and suggest this might contribute to its antiinflammatory effect. Since EP is used in a calcium-containing balanced salt solution (Ringer solution), we wondered if EP directly chelates Ca2+ and if it is related to the EP-mediated suppression of HMGB1 release. Calcium imaging assays revealed that EP significantly and dose-dependently suppressed high K+-induced transient [Ca2+]i surges in primary cortical neurons and, similarly, fluorometric assays showed that EP directly scavenges Ca2+ as the peak of fluorescence emission intensities of Mag-Fura-2 (a low-affinity Ca2+ indicator) was shifted in the presence of EP at concentrations of ≥7 mmol/L. Furthermore, EP markedly suppressed the A23187-induced intracellular Ca2+ surge in BV2 cells and, under this condition, A23187-induced activations of Ca2+-mediated kinases (protein kinase Cα and calcium/calmodulin-dependent protein kinase IV), HMGB1 phosphorylation and subsequent secretion of HMGB1 also were suppressed. (A23187 is a calcium ionophore and BV2 cells are a microglia cell line.) Moreover, the above-mentioned EP-mediated effects were obtained independent of cell death or survival, which suggests that they are direct effects of EP. Together, these results indicate that EP directly chelates Ca2+, and that it is, at least in part, responsible for the suppression of HMGB1 release by EP.  相似文献   

10.
11.
A panel of 18 protein tyrosine kinase antagonists were tested for their inhibitory effect on human P2X7 receptor-mediated 86Rb+ (K+) efflux. The most potent compound (compound P), a phthalazinamine derivative and an inhibitor of vascular endothelial growth factor receptor kinase, blocked ATP-induced 86Rb+-efflux in human B-lymphocytes and erythrocytes by 76% and 66%, respectively. This inhibition was dose-dependent in both cell types with an IC50 of ∼5 μM. Kinetic analysis showed compound P was a non-competitive inhibitor of P2X7. This compound also inhibited ATP-induced ethidium+ influx into B-lymphocytes and P2X7-transfected-HEK-293 cells, as well as ATP-induced 86Rb+-efflux from canine erythrocytes. Externally, but not internally, applied compound P impaired ATP-induced inward currents in P2X7-transfected-HEK-293 cells. This study demonstrates that a novel protein tyrosine kinase antagonist directly impairs native and recombinant human P2X7 receptors. The data suggests that antagonists which target ATP-binding sites of kinases may potentially block the P2X7 receptor.  相似文献   

12.
P2X7 receptors (P2X7R) are ATP-gated calcium-permeable cationic channels structurally unique among the P2X family by their much longer intracellular C-terminal tail. P2X7Rs show several unusual biophysical properties, in particular marked facilitation of currents and leftward shift in agonist affinity in response to repeated or prolonged agonist applications. We previously found the facilitation at rat P2X7R resulted from a Ca2+-calmodulin-dependent process and a distinct calcium-independent process. However, P2X7Rs show striking species differences; thus, this study compared the properties of ATP-evoked facilitation of currents in HEK293 cells transiently expressing the human or rat P2X7R as well as rat/human, human/rat chimeric, and mutated P2X7Rs. Facilitation at the human P2X7R was 5-fold slower than at the rat P2X7R. Facilitation did not resulting from an increase of receptor addressing the plasma membrane. We found the human P2X7R shows only calcium-independent facilitation with no evidence for calmodulin-dependent processes, nor does it contain the novel 1-5-16 calmodulin binding domain present in the C terminus of rat P2X7R. Replacement of three critical residues of this binding domain from the rat into the human P2X7R (T541I, C552S, and G559V) reconstituted the Ca2+-calmodulin-dependent facilitation, leaving the calcium-independent facilitation unaltered. The leftward shift in the ATP concentration-response curve with repeated agonist applications appears to be a property of the calcium-independent facilitation process because it was not altered in any of the chimeric or mutated P2X7Rs. The absence of Ca2+-dependent facilitation at the human P2X7R may represent a protective adaptation of the innate immune response in which P2X7R plays significant roles.  相似文献   

13.
Purinergic receptors have been shown to be involved in neuronal development, but the functions of specific subtypes of P2 receptors during neuronal development remain elusive. In this study we investigate the distribution of P2X7 receptors (P2X7Rs) in the embryonic rat brain using in situ hybridization. At E15.5, P2X7R mRNA was observed in the ventricular zone and subventricular zone, and colocalized with nestin, indicating that P2X7R might be expressed in neural progenitor cells (NPCs). P2X7R mRNA was also detected in the subgranular zone and dentate gyrus of the E18.5 and P4 brain. To investigate the roles of P2X7R and elucidate its mechanism, we established NPC cultures from the E15.5 rat brain. Stimulation of P2X7Rs induced Ca2+ influx, inhibited proliferation, altered cell cycle progression and enhanced the expression of neuronal markers, such as TUJ1 and MAP2. Similarly, knockdown of P2X7R by shRNA nearly abolished the agonist-stimulated increases in intracellular Ca2+ concentration and the expression of TUJ1 and NeuN. Furthermore, stimulation of P2X7R induced activation of ERK1/2, which was inhibited by the removal of extracellular Ca2+ and treatment with blockers for P2X7R and PKC activity. Stimulation of P2X7R also induced translocation of PKCα and PKCγ, but not of PKCβ, whereas knockdown of either PKCα or PKCγ inhibited ERK1/2 activation. Inhibition of PKC or p-ERK1/2 also caused a decrease in the number of TUJ1-positive cells and a concomitant increase in the number of GFAP-positive cells. Taken together, the activation of P2X7R in NPCs induced neuronal differentiation through a PKC-ERK1/2 signaling pathway.  相似文献   

14.

Background

The extracellular ATP-gated cation channel, P2X7 receptor, has an emerging role in neoplasia, however progress in the field is limited by a lack of malignant cell lines expressing this receptor.

Methods

Immunofluorescence labelling and a fixed-time ATP-induced ethidium+ uptake assay were used to screen a panel of human malignant cell lines for the presence of functional P2X7. The presence of P2X7 was confirmed by RT-PCR, immunoblotting and pharmacological approaches. ATP-induced cell death was measured by colourimetric tetrazolium-based and cytofluorometric assays. ATP-induced CD23 shedding was measured by immunofluorescence labelling and ELISA.

Results

RPMI 8226 multiple myeloma cells expressed P2X7 mRNA and protein, as well as P2X1, P2X4 and P2X5 mRNA. ATP induced ethidium+ uptake into these cells with an EC50 of ~ 116 μM, and this uptake was reduced in the presence of extracellular Ca2+ and Mg2+. The P2X7 agonist 2'- and 3'-0(4-benzoylbenzoyl) ATP, but not UTP, induced ethidium+ uptake. ATP-induced ethidium+ uptake was impaired by the P2X7 antagonists, KN-62 and A-438079. ATP induced death and CD23 shedding in RPMI 8226 cells, and both processes were impaired by P2X7 antagonists. The metalloprotease antagonists, BB-94 and GM6001, impaired ATP-induced CD23 shedding but not ethidium+ uptake.

Conclusions

P2X7 receptor activation induces cell death and CD23 shedding in RPMI 8226 cells.

General significance

RPMI 8226 cells may be useful to study the role of P2X7 in multiple myeloma and B-lymphocytes.  相似文献   

15.
16.
We examined the effect of the cellular sphingolipid level on the release of arachidonic acid (AA) and activity of cytosolic phospholipase A2α (cPLA2α) using two Chinese hamster ovary (CHO)-K1-derived mutants deficient in sphingolipid synthesis: LY-B cells defective in the LCB1 subunit of serine palmitoyltransferase for de novo synthesis of sphingolipid species, and LY-A cells defective in the ceramide transfer protein CERT for SM synthesis. When LY-B and LY-A cells were cultured in Nutridoma medium and the sphingolipid level was reduced, the release of AA stimulated by the Ca2+ ionophore A23187 increased 2-fold and 1.7-fold, respectively, compared with that from control cells. The enhancement in LY-B cells was decreased by adding sphingosine and treatment with the cPLA2α inhibitor. When CHO cells were treated with an acid sphingomyelinase inhibitor to increase the cellular SM level, the release of AA induced by A23187 or PAF was decreased. In vitro studies were then conducted to test whether SM interacts directly with cPLA2α. Phosphatidylcholine vesicles containing SM reduced cPLA2α activity. Furthermore, SM disturbed the binding of cPLA2α to glycerophospholipids. These results suggest that SM at the biomembrane plays important roles in regulating the cPLA2α-dependent release of AA by inhibiting the binding of cPLA2α to glycerophospholipids.  相似文献   

17.
The pannexin family of mammalian proteins, composed of Panx1, Panx2, and Panx3, has been postulated to be a new class of single-membrane channels with functional similarities to connexin gap junction proteins. In this study, immunolabeling and coimmunoprecipitation assays revealed that Panx1 can interact with Panx2 and to a lesser extent, with Panx3 in a glycosylation-dependent manner. Panx2 strongly interacts with the core and high-mannose species of Panx1 but not with Panx3. Biotinylation and dye uptake assays indicated that all three pannexins, as well as the N-glycosylation-defective mutants of Panx1 and Panx3, can traffic to the cell surface and form functional single-membrane channels. Interestingly, Panx2, which is also a glycoprotein and seems to only be glycosylated to a high-mannose form, is more abundant in intracellular compartments, except when coexpressed with Panx1, when its cell surface distribution increases by twofold. Functional assays indicated that the combination of Panx1 and Panx2 results in compromised channel function, whereas coexpressing Panx1 and Panx3 does not affect the incidence of dye uptake in 293T cells. Collectively, these results reveal that the functional state and cellular distribution of mouse pannexins are regulated by their glycosylation status and interactions among pannexin family members.  相似文献   

18.
Extracellular nucleotides and their metabolites activate ionotropic P2X and metabotropic P2Y receptors on the surface of various types of cells. Here, we investigated the involvement of P2X and P2Y receptor-mediated signaling in TCR-dependent T cell activation. Murine T cells were activated by stimulation of TCR, and both CD25 expression and interleukin (IL)-2 production were observed in activated T cells. Ecto-nucleotidase apyrase and P2Y6 antagonist MRS2578 significantly blocked the increases of both CD25 expression and IL-2 production, and P2X7 antagonists A438079 and oxidized ATP inhibited IL-2 production rather than CD25 expression, suggesting the involvement of P2Y6 and P2X7 receptors in different processes of T cell activation. MRS2578 also blocked TCR-dependent elevation of cytosolic Ca2+ in T cells. The P2X7 and P2Y6 receptors were expressed in murine CD4 T cells. In conclusion, our results indicate that activation of P2Y6 and P2X7 receptors contributes to T cell activation via TCR.  相似文献   

19.
Perturbation of calcium signaling that occurs during cell injury and disease, promotes cell death. In mouse lung fibroblasts A23187 triggered mitochondrial permeability transition pore (MPTP) formation, lactate dehydrogenase (LDH) release, and necrotic cell death that were blocked by cyclosporin A (CsA) and EGTA. LDH release temporally correlated with arachidonic acid release but did not involve cytosolic phospholipase A2α (cPLA2α) or calcium-independent PLA2. Surprisingly, release of arachidonic acid and LDH from cPLA2α-deficient fibroblasts was inhibited by the cPLA2α inhibitor pyrrophenone, and another serine hydrolase inhibitor KT195, by preventing mitochondrial calcium uptake. Inhibitors of calcium/calmodulin-dependent protein kinase II, a mitochondrial Ca2+ uniporter (MCU) regulator, also prevented MPTP formation and arachidonic acid release induced by A23187 and H2O2. Pyrrophenone blocked MCU-mediated mitochondrial calcium uptake in permeabilized fibroblasts but not in isolated mitochondria. Unlike pyrrophenone, the diacylglycerol analog 1-oleoyl-2-acetyl-sn-glycerol and CsA blocked cell death and arachidonic acid release not by preventing mitochondrial calcium uptake but by inhibiting MPTP formation. In fibroblasts stimulated with thapsigargin, which induces MPTP formation by a direct effect on mitochondria, LDH and arachidonic acid release were blocked by CsA and 1-oleoyl-2-acetyl-sn-glycerol but not by pyrrophenone or EGTA. Therefore serine hydrolase inhibitors prevent necrotic cell death by blocking mitochondrial calcium uptake but not the enzyme releasing fatty acids that occurs by a novel pathway during MPTP formation. This work reveals the potential for development of small molecule cell-permeable serine hydrolase inhibitors that block MCU-mediated mitochondrial calcium overload, MPTP formation, and necrotic cell death.  相似文献   

20.
P2 receptors are membrane-bound receptors for extracellular nucleotides such as ATP and UTP. P2 receptors have been classified as ligand-gated ion channels or P2X receptors and G protein-coupled P2Y receptors. Recently, purinergic signaling has begun to attract attention as a potential therapeutic target for a variety of diseases especially associated with gastroenterology. This study determined the ATP and UTP-induced receptor signaling mechanism in feline esophageal contraction. Contraction of dispersed feline esophageal smooth muscle cells was measured by scanning micrometry. Phosphorylation of MLC20 was determined by western blot analysis. ATP and UTP elicited maximum esophageal contraction at 30 s and 10 μM concentration. Contraction of dispersed cells treated with 10 μM ATP was inhibited by nifedipine. However, contraction induced by 0.1 μM ATP, 0.1 μM UTP and 10 μM UTP was decreased by U73122, chelerythrine, ML-9, PTX and GDPβS. Contraction induced by 0.1 μM ATP and UTP was inhibited by Gαi3 or Gαq antibodies and by PLCβ1 or PLCβ3 antibodies. Phosphorylated MLC20 was increased by ATP and UTP treatment. In conclusion, esophageal contraction induced by ATP and UTP was preferentially mediated by P2Y receptors coupled to Gαi3 and G q proteins, which activate PLCβ1 and PLCβ3. Subsequently, increased intracellular Ca2+ and activated PKC triggered stimulation of MLC kinase and inhibition of MLC phosphatase. Finally, increased pMLC20 generated esophageal contraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号