首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Interleukin-1β (IL-1β) activates the production of reactive oxygen species (ROS) and secretion of MMPs as well as chondrocyte apoptosis. Those events lead to matrix breakdown and are key features of osteoarthritis (OA). We confirmed that in human C-20/A4 chondrocytes the NADPH oxidase Nox4 is the main source of ROS upon IL-1β stimulation. Since heme molecules are essential for the NADPH oxidase maturation and activity, we therefore investigated the consequences of the modulation of Heme oxygenase-1 (HO-1), the limiting enzyme in heme catabolism, on the IL-1β signaling pathway and more specifically on Nox4 activity. Induction of HO-1 expression decreased dramatically Nox4 activity in C-20/A4 and HEK293 T-REx™ Nox4 cell lines. Unexpectedly, this decrease was not accompanied by any change in the expression, the subcellular localization or the maturation of Nox4. In fact, the inhibition of the heme synthesis by succinylacetone rather than heme catabolism by HO-1, led to a confinement of the Nox4/p22phox heterodimer in the endoplasmic reticulum with an absence of redox differential spectrum highlighting an incomplete maturation. Therefore, the downregulation of Nox4 activity by HO-1 induction appeared to be mediated by carbon monoxide (CO) generated from the heme degradation process. Interestingly, either HO-1 or CO caused a significant decrease in the expression of MMP-1 and DNA fragmentation of chondrocytes stimulated by IL-1β. These results all together suggest that a modulation of Nox4 activity via heme oxygenase-1 may represent a promising therapeutic tool in osteoarthritis.  相似文献   

3.
Hwang YP  Jeong HG 《FEBS letters》2008,582(17):2655-2662
In this study, we investigated the mechanisms of kahweol protection of neuronal cells from cell death induced by the Parkinson's disease-related neurotoxin 6-hydroxydopamine (6-OHDA). Pretreatment of SH-SY5Y cells with kahweol significantly reduced 6-OHDA-induced generation of ROS, caspase-3 activation, and subsequent cell death. Kahweol also up-regulated heme oxygenase-1 (HO-1) expression, which conferred neuroprotection against 6-OHDA-induced oxidative injury. Moreover, kahweol induced PI3K and p38 activation, which are involved in the induction of Nrf2, HO-1 expression, and neuroprotection. These results suggest that regulation of the anti-oxidant enzyme HO-1 via the PI3K and p38/Nrf2 signaling pathways controls the intracellular levels of ROS.  相似文献   

4.
5.
6.
7.
From the site of transmission at mucosal surfaces, HIV is thought to be transported by DCs to lymphoid tissues. To initiate migration, HIV needs to activate DCs. This activation, reflected by intra- and extracellular changes in cell phenotype, is investigated in the present study. In two-thirds of the donors, R5- and X4-tropic HIV-1 strains induced partial up-regulation of DC activation markers such as CD83 and CD86. In addition, CCR7 expression was increased. HIV-1 initiated a transient phosphorylation of p44/p42 ERK1/2 in iDCs, whereas p38 MAPK was activated in both iDCs and mDCs. Up-regulation of CD83 and CD86 on DCs was blocked when cells were incubated with specific p38 MAPK inhibitors before HIV-1-addition. CCR7 expression induced by HIV-1 was sufficient to initiate migration of DCs in the presence of secondary lymphoid tissue chemokine (CCL21) and MIP-3beta (CCL19). Preincubation of DCs with a p38 MAPK inhibitor blocked CCR7-dependent DC migration. Migrating DCs were able to induce infection of autologous unstimulated PBLs in the Transwell system. These data indicate that HIV-1 triggers a cell-specific signaling machinery, thereby manipulating DCs to migrate along a chemokine gradient, which results in productive infection of nonstimulated CD4(+) cells.  相似文献   

8.
Heme oxygenase-1 can play a protective role against cellular stress. In colon cancer cells, these effects would be relevant to oncogenesis and resistance to chemotherapy. The aim of the study was to examine the effects of heme oxygenase-1 induction on cell survival in a human colon cancer cell line, Caco-2. Serum deprivation induced apoptosis, reduced Akt and p38 phosphorylation, and increased p21(Cip/WAF1) levels. Heme oxygenase-1 induction by treatment with cobalt protoporphyrin IX resulted in resistance to apoptosis, activation of Akt, reduction in p21(Cip/WAF1) levels and modification of bcl2/bax ratio towards survival. Indomethacin reduced apoptosis but in contrast to heme oxygenase-1, arrested cells in G0/G1. Apoptosis was also inhibited by the heme oxygenase metabolites bilirubin and biliverdin but the CO donor tricarbonyldichlororuthenium(II) dimer did not exert significant effects. Protection against apoptosis in cells treated with cobalt protoporphyrin IX was reverted by incubation with heme oxygenase-1 small interfering RNA. This study shows an antiapoptotic effect of heme oxygenase-1 in colon cancer cells which could be mediated by the formation of bilirubin and biliverdin. Our results support an antiapoptotic role for HO-1 in these cells and provide a mechanism by which overexpression of HO-1 may promote tumor resistance to stress in conditions of limited nutrient supply. We have extended these observations by demonstrating that these effects are independent of p38 but are mediated via Akt pathway.  相似文献   

9.
In this study we show that activation of STAT pathways is developmentally regulated and plays a role in dendritic cell (DC) differentiation and maturation. The STAT6 signaling pathway is constitutively activated in immature DC (iDC) and declines as iDCs differentiate into mature DCs (mDCs). However, down-regulation of this pathway during DC differentiation is accompanied by dramatic induction of suppressors of cytokine signaling 1 (SOCS1), SOCS2, SOCS3, and cytokine-induced Src homology 2-containing protein expression, suggesting that inhibition of STAT6 signaling may be required for DC maturation. In contrast, STAT1 signaling is most robust in mDCs and is not inhibited by the up-regulated SOCS proteins, indicating that STAT1 and STAT6 pathways are distinctly regulated in maturing DC. Furthermore, optimal activation of STAT1 during DC maturation requires both IL-4 and GM-CSF, suggesting that synergistic effects of both cytokines may in part provide the requisite STAT1 signaling intensity for DC maturation. Analyses of STAT1(-/-) DCs reveal a role for STAT1 in repressing CD86 expression in precursor DCs and up-regulating CD40, CD11c, and SOCS1 expression in mDCs. We further show that SOCS proteins are differentially induced by IL-4 and GM-CSF in DCs. SOCS1 is primarily induced by IL-4 through a STAT1-dependent mechanism, whereas SOCS3 is induced mainly by GM-CSF. Taken together, these results suggest that cytokine-induced maturation of DCs is under feedback regulation by SOCS proteins and that the switch from constitutive activation of the STAT6 pathway in iDCs to predominant use of STAT1 signals in mDC is mediated in part by STAT1-induced SOCS expression.  相似文献   

10.
Hong HY  Jeon WK  Kim BC 《FEBS letters》2008,582(6):861-868
We investigated the signaling pathway that leads to the expression of heme oxygenase-1 (HO-1) in murine macrophages in response to 15-deoxy-delta 12,14-prostaglandin J2 (15dPGJ2). 15dPGJ2 caused dose- and time-dependent activation of Rac1, followed by a transient increase in reactive oxygen species (ROS) via NADPH oxidase, which leads to downstream activation of p38 kinase. Inhibition of 15dPGJ2-dependent HO-1 expression significantly attenuated suppression by 15dPGJ2 of LPS-induced iNOS expression and subsequent production of nitric oxide (NO). Our findings strongly suggest that 15dPGJ2 exerts its anti-inflammatory activity through the Rac1-NADPH oxidase-ROS-p38 signaling to the up-regulation of HO-1 in an in vitro inflammation model.  相似文献   

11.
Chen TH  Hsu YT  Chen CH  Kao SH  Lee HM 《Mitochondrion》2007,7(1-2):101-105
Tanshinone IIA exerts anti-inflammatory effects and influences electron transfer reaction in mitochondria. In the present study, we demonstrated that tanshinone IIA increased intracellular production of reactive oxygen species (ROS), which in turn induces heme oxygenase-1 (HO-1) expression in RAW 264.7 macrophages. Tanshinone IIA inhibited COX-2 and iNOS expression in lipopolysaccharide-activated RAW 264.7 macrophages. Inhibition of HO-1 or scavenging of CO significantly reversed the inhibition of LPS-stimulated nitrite accumulation by tanshinone IIA, suggesting a novel role of HO-1 in the anti-inflammatory effect of tanshinone IIA.  相似文献   

12.
Iron overload (IO) caused by frequent blood transfusion in hematological diseases has become a major concern. In this study, up-regulation of heme oxygenase-1 (HO-1), a protector against oxidative stress, was observed in bone marrow mesenchymal stem cells (BMMSCs) at the early stage of IO and had favorable prognosis in an IO mouse model. Given that the protective role of HO-1 in IO damage of BMMSCs was still unknown, the mechanism was explored in vitro and in vivo. BMMSCs were transfected with HO-1/siHO-1 in vitro, and the mouse model was established to further evaluate the effect of HO-1 on IO in vivo. As a result, HO-1 decreased the apoptotic rate of BMMSCs with IO through reducing intracellular reactive oxygen species (ROS) but increasing IL-10 secretion. In addition, IL-10 was mediated by HO-1 via the ERK pathway. Intracellular iron was down-regulated by hepcidin depending on IL-10. In conclusion, HO-1 protects BMMSCs from ROS by secreting IL-10 upon iron overload.  相似文献   

13.
The survival signal elicited by the phosphatidylinositol 3-kinase (PI3K)/Akt1 pathway has been correlated with inactivation of pro-apoptotic proteins and attenuation of the general stress-induced increase in reactive oxygen species (ROS). However, the mechanisms by which this pathway regulates intracellular ROS levels remain largely unexplored. In this study, we demonstrate that nerve growth factor (NGF) prevents the accumulation of ROS in dopaminergic PC12 cells challenged with the Parkinson's disease-related neurotoxin 6-hydroxydopamine (6-OHDA) by a mechanism that involves PI3K/Akt-dependent induction of the stress response protein heme oxygenase-1 (HO-1). The effect of NGF was mimicked by induction of HO-1 expression with CoCl(2); by treatment with bilirubin, an end product of heme catabolism; and by infection with a retroviral expression vector for human HO-1. The relevance of HO-1 in NGF-induced ROS reduction was further demonstrated by the evidence that cells treated with the HO-1 inhibitor tin-protoporphyrin or infected with a retroviral expression vector for antisense HO-1 exhibited enhanced ROS release in response to 6-OHDA, despite the presence of the neurotrophin. Inhibition of PI3K prevented NGF induction of HO-1 mRNA and protein and partially reversed its protective effect against 6-OHDA-induced ROS release. By contrast, cells transfected with a membrane-targeted active version of Akt1 exhibited increased HO-1 expression, even in the absence of NGF, and displayed a greatly attenuated production of ROS and apoptosis in response to 6-OHDA. These observations indicate that the PI3K/Akt pathway controls the intracellular levels of ROS by regulating the expression of the antioxidant enzyme HO-1.  相似文献   

14.
15.
16.
Adaptive cellular immunity is required to clear HSV-1 infection in the periphery. Myeloid dendritic cells (DCs) are the first professional Ag-presenting cell to encounter the virus after primary and secondary infection and thus the consequences of their infection are important in understanding the pathogenesis of the disease and the response to the virus. Following HSV-1 infection, both uninfected and infected human DCs acquire a more mature phenotype. In this study, we demonstrate that type I IFN secreted from myeloid DC mediates bystander activation of the uninfected DCs. Furthermore, we confirm that this IFN primes DCs for elevated IL-12 p40 and p70 secretion. However, secretion of IFN is not responsible for the acquisition of a mature phenotype by HSV-1-infected DC. Rather, virus binding to a receptor on the cell surface induces DC maturation directly, through activation of the NF-kappaB and p38 MAPK pathways. The binding of HSV glycoprotein D is critical to the acquisition of a mature phenotype and type I IFN secretion. The data therefore demonstrate that DCs can respond to HSV exposure directly through recognition of viral envelope structures. In the context of natural HSV infection, the coupling of viral entry to the activation of DC signaling pathways is likely to be counterbalanced by viral disruption of DC maturation. However, the parallel release of type I IFN may result in paracrine activation so that the DCs are nonetheless able to mount an adaptive immune response.  相似文献   

17.
Arsenic trioxide (ATO) has been successfully used to treat leukemia and some solid malignant tumors. Our previous study regarding the effects of ATO on mesenchymal-derived human osteosarcoma MG63 cells showed that heme oxygenase-1 (HO-1) was strongly induced upon treatment with ATO. The present study sought to investigate the effect of silencing HO-1 on the sensitivity of osteosarcoma cells to ATO to determine the potential for therapeutic applications. Small hairpin RNA (shRNA)-mediated interference was used to silence HO-1 in MG63 cells. Viability, apoptosis, and intracellular reactive oxygen species (ROS) of the cells were assessed to evaluate the sensitivity of the cells to ATO as well as the potential mechanisms responsible. shRNA-mediated interference prevented the induction of HO-1, increased cell death, and increased intracellular ROS levels in MG63 cells upon treatment with ATO. Silencing HO-1 increased the susceptibility of MG63 cells to the chemotherapeutic drug ATO by enhancing intracellular accumulation of ROS. Our results suggest that the inhibition of HO-1 could improve the outcome of osteosarcoma treated with ATO.  相似文献   

18.
Induction of phase II antioxidant enzymes by activation of Nrf2/ARE (antioxidant response element) signaling has been considered as a promising strategy to combat with oxidative stress-related diseases. In the present study, we tested for potential effects of sesamin, a major lignan contained in sesame seeds, its stereoisomer episesamin, and their metabolites on Nrf2/ARE activation in rat pheochromocytoma PC12 cells. Luciferase reporter assays showed that primary metabolites of sesamin and episesamin, SC-1 and EC-1 were the most potent ARE activators among all tested compounds. SC-1 {(1R,2S,5R,6S)-6-(3,4-dihydroxyphenyl)-2-(3,4-methylenedioxyphenyl)-3,7-dioxabicyclo-[3,3,0]octane} enhanced nuclear translocation of Nrf2 and up-regulated expression of phase II antioxidant enzymes including heme oxygenase-1 (HO-1). Treatment with SC-1 resulted in increased phosphorylation of p38 MAP kinase and transient increase in intracellular ROS levels. N-acetylcysteine (NAC) treatment abolished p38 phosphorylation as well as HO-1 induction caused by SC-1, indicating that ROS are upstream signals of p38 in Nrf2/ARE activation by SC-1. Furthermore, preconditioning with SC-1 attenuated H(2)O(2)-induced cell death in a dose-dependent manner. Finally, treatment with a HO-1 inhibitor, Zn-protoporphyrin (ZnPP), and overexpression of a dominant-negative mutant of Nrf2 diminished SC-1-mediated neuroprotection. Our results demonstrate that SC-1 is capable of protecting against oxidative stress-induced neuronal cell death in part through induction of HO-1 via Nrf2/ARE activation, suggesting its potential to reduce oxidative stress and ameliorate oxidative stress-related neurodegenerative diseases.  相似文献   

19.
Upon encounter with bacterial products, immature dendritic cells (iDCs) release proinflammatory cytokines and develop into highly stimulatory mature DCs. In the present study, we show that human monocyte-derived DCs functionally express the CD47 Ag, a thrombospondin receptor. Intact or F(ab')2 of CD47 mAb suppress bacteria-induced production of IL-12, TNF-alpha, GM-CSF, and IL-6 by iDCs. 4N1K, a peptide derived from the CD47-binding site of thrombospondin, also inhibits cytokine release. The inhibition of IL-12 and TNF-alpha is IL-10-independent inasmuch as IL-10 production is down-modulated by CD47 mAb and blocking IL-10 mAb fails to restore cytokine levels. CD47 ligation counteracts the phenotypic and functional maturation of iDCs in that it prevents the up-regulation of costimulatory molecules, the loss of endocytic activity, and the acquisition of an increased capacity to stimulate T cell proliferation and IFN-gamma production. Interestingly, regardless of CD47 mAb treatment during DC maturation, mature DC restimulated by soluble CD40 ligand and IFN-gamma, to mimic DC/T interaction, produce less IL-12 and more IL-18 than iDCs. Finally, CD47 ligation on iDCs does not impair their capacity to phagocytose apoptotic cells. We conclude that following exposure to microorganisms, CD47 ligation may limit the intensity and duration of the inflammatory response by preventing inflammatory cytokine production by iDCs and favoring their maintenance in an immature state.  相似文献   

20.
Maturation of dendritic cells (DCs) is critical for their ability to stimulate resting naive T cells in primary immune responses. Previous studies demonstrated that collagen, such as type I collagen, could facilitate DC maturation; however, the basis of collagen-mediated DC maturation remains unclear. Discoidin domain receptor 1 (DDR1) is a nonintegrin collagen receptor constitutively expressed in a variety of epithelial cells, including tumor cells, and is inducible in leukocytes. In this study, we evaluated the role of DDR1 in DC maturation using human monocyte-derived DCs. Two DDR1 isoforms, DDR1a and DDR1b, were expressed in both immature and mature DCs. Activation of DDR1 on immature DCs resulted in their partial maturation; however, DDR1 activation markedly amplified TNF-alpha- and LPS-induced phenotypic and functional maturation of DCs through activation of p38 mitogen-activated protein kinase (MAPK), suggesting the involvement of DDR1b in this process. Activation of DDR1b on differentiated DDR1b-overexpressing THP-1 cells or DDR1 on mature DCs induced the formation of TNFR associated factor 6 (TRAF6)/TGF-beta-activated kinase 1 binding protein 1beta/p38alpha MAPK complex and p38alpha autophosphorylation. Transfection of differentiated DDR1b-overexpressing THP-1 cells with dominant negative TRAF6 completely abrogated DDR1b-mediated p38 MAPK phosphorylation, indicating a critical role of TRAF6 in DDR1b-mediated p38 MAPK activation. Taken together, our data suggest that DDR1b-collagen interaction augments the maturation of DCs in a tissue microenvironment through a unique TRAF6/TGF-beta-activated kinase 1 binding protein 1beta/p38alpha MAPK signaling cascade and contributes to the development of adaptive immune responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号