首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
2.
A considerable number of agents with chemotherapeutic potentials reported over the past years were shown to interfere with the reactions of DNA topoisomerases, the essential enzymes that regulate conformational changes in DNA topology. Gossypol, a naturally occurring bioactive phytochemical is a chemopreventive agent against various types of cancer cell growth with a reported activity on mammalian topoisomerase II. The compounds targeting topoisomerases vary in their mode of action; class I compounds act by stabilizing covalent topoisomerase-DNA complexes resulting in DNA strand breaks while class II compounds interfere with the catalytic function of topoisomerases without generating strand breaks. In this study, we report Gossypol as the interfering agent with type I topoisomerases as well. We also carried out an extensive set of assays to analyze the type of interference manifested by Gossypol on DNA topoisomerases. Our results strongly suggest that Gossypol is a potential class II inhibitor as it blocked DNA topoisomerase reactions with no consequently formed strand breaks.  相似文献   

3.
DNA damage is unavoidable, and organisms across the evolutionary spectrum possess DNA repair pathways that are critical for cell viability and genomic stability. To understand the role of base excision repair (BER) in protecting eukaryotic cells against alkylating agents, we generated Schizosaccharomyces pombe strains mutant for the mag1 3-methyladenine DNA glycosylase gene. We report that S. pombe mag1 mutants have only a slightly increased sensitivity to methylation damage, suggesting that Mag1-initiated BER plays a surprisingly minor role in alkylation resistance in this organism. We go on to show that other DNA repair pathways play a larger role than BER in alkylation resistance. Mutations in genes involved in nucleotide excision repair (rad13) and recombinational repair (rhp51) are much more alkylation sensitive than mag1 mutants. In addition, S. pombe mutant for the flap endonuclease rad2 gene, whose precise function in DNA repair is unclear, were also more alkylation sensitive than mag1 mutants. Further, mag1 and rad13 interact synergistically for alkylation resistance, and mag1 and rhp51 display a surprisingly complex genetic interaction. A model for the role of BER in the generation of alkylation-induced DNA strand breaks in S. pombe is discussed.  相似文献   

4.
Genotoxicity of diphenyl diselenide in bacteria and yeast   总被引:2,自引:0,他引:2  
Diphenyl diselenide (DPDS) is an electrophilic reagent used in the synthesis of a variety of pharmacologically active organic selenium compounds. This may increase the risk of human exposure to the chemical at the workplace. We have determined its mutagenic potential in the Salmonella/microsome assay and used the yeast Saccharomyces cerevisiae to assay for putative genotoxicity, recombinogenicity and to determine whether DNA damage produced by DPDS is repairable. Only in exponentially growing cultures was DPDS able to induce frameshift mutations in S. typhimurium and haploid yeast and to increase crossing over and gene conversion frequencies in diploid strains of S. cerevisiae. Thus, DPDS presents a behavior similar to that of an intercalating agent. Mutants defective in excision-resynthesis repair (rad3, rad1), in error-prone repair (rad6) and in recombinational repair (rad52) showed higher than WT-sensitivity to DPDS. It appears that this compound is capable of inducing single and/or double strand breaks in DNA. An epistatic interaction was shown between rad3-e5 and rad52-1 mutant alleles, indicating that excision-resynthesis and strand-break repair may possess common steps in the repair of DNA damage induced by DPDS. DPDS was able to enhance the mutagenesis induced by oxidative mutagens in bacteria. N-acetylcysteine, a glutathione biosynthesis precursor, prevented mutagenesis induced by DPDS in yeast. We have shown that DPDS is a weak mutagen which probably generates DNA strand breaks through both its intercalating action and pro-oxidant effect.  相似文献   

5.
A new Schizosaccharomyces pombe mutant (rad32) which is sensitive to gamma and UV irradiation is described. Pulsed field gel electrophoresis of DNA from irradiated cells indicates that the rad32 mutant, in comparison to wild type cells, has decreased ability to repair DNA double strand breaks. The mutant also undergoes decreased meiotic recombination and displays reduced stability of minichromosomes. The rad32 gene has been cloned by complementation of the UV sensitive phenotype. The gene, which is not essential for cell viability and is expressed at a moderate level in mitotically dividing cells, has significant homology to the meiotic recombination gene MRE11 of Saccharomyces cerevisiae. Epistasis analysis indicates that rad32 functions in a pathway which includes the rhp51 gene (the S.pombe homologue to S.cerevisiae RAD51) and that cells deleted for the rad32 gene in conjunction with either the rad3 deletion (a G2 checkpoint mutation) or the rad2 deletion (a chromosome stability and potential nucleotide excision repair mutation) are not viable.  相似文献   

6.
7.
Topoisomerase-targeting antitumor drugs   总被引:23,自引:0,他引:23  
Much has been learned about the unusual type of DNA damage produced by the topoisomerases. The mechanism by which these lesions trigger cell death, however, remains unclear, but it appears that DNA metabolic machinery transforms reversible single-strand cleavable complexes to overt strand breaks which may be an initial event in the cytotoxic pathway. For the topoisomerase I poisons, they produce breaks at replication forks that appear to be the equivalent of a break in duplex DNA. Indicating that this may be an important cytotoxic lesion is the hypersensitivity to camptothecin of the yeast mutant rad52, which is deficient in double-strand-break-repair. The topoisomerase poisons preferentially kill proliferating cells. In the case of the topoisomerase I poison camptothecin, dramatic S-phase-specific cytotoxicity can explain its preferential action on proliferating cells. For the topoisomerase II poisons, high levels of the enzyme in proliferating cells, and very low levels in quiescent cells appear to explain the resistance of quiescent cells to the drug's cytotoxic effects. Thus, the topoisomerase poisons convert essential enzymes into intracellular, proliferating-cell toxins. The identification of both topoisomerase I and II as the specific targets of cancer chemotherapeutic drugs now provides a rational basis for the development of topoisomerase I poisons for possible clinical use. Knowledge of the molecular mechanisms of cell killing may lead to the identification of new therapies for treating cancer. The topoisomerase poisons appear to be a good tool for studying cell killing mechanisms as they produce highly specific and reversible lesions.  相似文献   

8.
9.
10.
To study the role of Rad50 in the DNA damage response, we cloned and deleted the Schizosaccharomyces pombe RAD50 homologue. The deletion is sensitive to a range of DNA-damaging agents and shows dynamic epistatic interactions with other recombination-repair genes. We show that Rad50 is necessary for recombinational repair of the DNA lesion at the mating-type locus and that rad50Delta shows slow DNA replication. We also find that Rad50 is not required for slowing down S phase in response to hydroxy urea or methyl methanesulfonate (MMS) treatment. Interestingly, in rad50Delta cells, the recombination frequency between two homologous chromosomes is increased at the expense of sister chromatid recombination. We propose that Rad50, an SMC-like protein, promotes the use of the sister chromatid as the template for homologous recombinational repair. In support of this, we found that Rad50 functions in the same pathway for the repair of MMS-induced damage as Rad21, the homologue of the Saccharomyces cerevisiae Scc1 cohesin protein. We speculate that Rad50 interacts with the cohesin complex during S phase to assist repair and possibly re-initiation of replication after replication fork collapse.  相似文献   

11.
12.
13.
Smc5 and Smc6 proteins form a heterodimeric SMC (structural maintenance of chromosome) protein complex like SMC1-SMC3 cohesin and SMC2-SMC4 condensin, and they associate with non-SMC proteins Nse1 and Nse2 stably and Rad60 transiently. This multiprotein complex plays an essential role in maintaining chromosome integrity and repairing DNA double strand breaks (DSBs). This study characterizes a Schizosaccharomyces pombe mutant rad62-1, which is hypersensitive to methyl methanesulfonate (MMS) and synthetically lethal with rad2 (a feature of recombination mutants). rad62-1 is hypersensitive to UV and gamma rays, epistatic with rhp51, and defective in repair of DSBs. rad62 is essential for viability and genetically interacts with rad60, smc6, and brc1. Rad62 protein physically associates with the Smc5-6 complex. rad62-1 is synthetically lethal with mutations in the genes promoting recovery from stalled replication, such as rqh1, srs2, and mus81, and those involved in nucleotide excision repair like rad13 and rad16. These results suggest that Rad62, like Rad60, in conjunction with the Smc5-6 complex, plays an essential role in maintaining chromosome integrity and recovery from stalled replication by recombination.  相似文献   

14.
DNA topoisomerases play essential roles in many DNA metabolic processes. It has been suggested that topoisomerases play an essential role in DNA repair. Topoisomerases can introduce DNA damage upon exposure to drugs that stabilize the covalent protein-DNA intermediate of the topoisomerase reaction. Lesions in DNA are also able to trap topoisomerase-DNA intermediates, suggesting that topoisomerases have the potential to either assist in DNA repair by locating sites of damage or exacerbating DNA damage by generation of additional damage at the site of a lesion. We have shown that overexpression of yeast topoisomerase I (TOP1) conferred hypersensitivity to methyl methanesulfonate and other DNA-damaging agents, whereas expression of a catalytically inactive enzyme did not. Overexpression of topoisomerase II did not change the sensitivity of cells to these DNA-damaging agents. Yeast cells lacking TOP1 were not more resistant to DNA damage than cells expressing wild type levels of the enzyme. Yeast topoisomerase I covalent complexes can be trapped efficiently on UV-damaged DNA. We suggest that TOP1 does not participate in the repair of DNA damage in yeast cells. However, the enzyme has the potential of exacerbating DNA damage by forming covalent DNA-protein complexes at sites of DNA damage.  相似文献   

15.
We have identified two novel genes designated hhp1+ and hhp2+ in the fission yeast Schizosaccharomyces pombe. The hhp1+ and hhp2+ genes encode two closely related protein kinases that share significant sequence identities with Hrr25p from Saccharomyces cerevisiae. Characterization of strains harboring single and double mutations in the hhp+ genes reveals DNA repair defects in these cells. Schizosaccharomyces pombe strains lacking either or both Hhp activities reveal differences in their ability to withstand DNA lesions caused by either methyl methanesulfonate (MMS) or gamma-rays which correlate with their ability to repair DNA strand breaks caused by these agents. We suggest that Hhp1 and Hhp2 are involved in the regulation of distinct and overlapping DNA repair pathways in S. pombe.  相似文献   

16.
Endonuclease III (Nth) enzyme from Escherichia coli is involved in base excision repair of oxidised pyrimidine residues in DNA. The Schizosaccharomyces pombe Nth1 protein is a sequence and functional homologue of E. coli Nth, possessing both DNA glycosylase and apurinic/apyrimidinic (AP) lyase activity. Here, we report the construction and characterization of the S. pombe nth1 mutant. The nth1 mutant exhibited no enhanced sensitivity to oxidising agents, UV or gamma-irradiation, but was hypersensitive to the alkylating agent methyl methanesulphonate (MMS). Analysis of base excision from DNA exposed to [3H]methyl-N-nitrosourea showed that the purified Nth1 enzyme did not remove alkylated bases such as 3-methyladenine and 7-methylguanine whereas methyl-formamidopyrimidine was excised efficiently. The repair of AP sites in S. pombe has previously been shown to be independent of Apn1-like AP endonuclease activity, and the main reason for the MMS sensitivity of nth1 cells appears to be their lack of AP lyase activity. The nth1 mutant also exhibited elevated frequencies of spontaneous mitotic intrachromosomal recombination, which is a phenotype shared by the MMS-hypersensitive DNA repair mutants rad2, rhp55 and NER repair mutants rad16, rhp14, rad13 and swi10. Epistasis analyses of nth1 and these DNA repair mutants suggest that several DNA damage repair/tolerance pathways participate in the processing of alkylation and spontaneous DNA damage in S. pombe.  相似文献   

17.
Effects of Modifying Topoisomerase II Levels on Cellular Recovery from Radiation Damage. Experiments were performed with the budding yeast, Saccharomyces cerevisiae, to test whether DNA topoisomerase II is involved in repair of DNA damage induced by ionizing radiation. Topoisomerase II was inactivated by use of a temperature-sensitive mutation. Enzyme inactivation increased cellular radiosensitivity, blocked the restitution of broken chromosomes, assayed by pulsed-field gel electrophoresis, and prolonged the induction of a DNA damage-inducible gene (RNR3). Overexpression of the topoisomerase II gene did not alter cellular radiosensitivity. The data support a role for topoisomerase II in the repair of DNA strand breaks.  相似文献   

18.
19.
The Saccharomyces cerevisiae TOP3 gene encodes the type IA topoisomerase (Top3p) that is highly conserved in evolution. Deletion of TOP3 leads to a reduction in cell viability, hyper-recombination between repetitive DNA sequences, and abnormalities in both cell cycle progression and responses to DNA damaging agents. Deletion of SGS1, encoding the sole RecQ family helicase in S. cerevisiae, strongly suppresses the phenotypic effects of loss of TOP3 function. Here, we show that many of the adverse phenotypic effects of TOP3 deletion can also be partially alleviated by disruption of homologous recombination (HR) functions. This genetic interaction is seen both in strains deleted for TOP3 and in wild-type strains over-expressing a dominant-negative Top3p mutant form that confers a top3-like phenotype. Moreover, we show that this genetic interaction is conserved in the distantly-related fission yeast, Schizosaccharomyces pombe. Our results implicate topoisomerase III enzymes in recombination repair events required for cellular protection against DNA damaging agents and DNA replication inhibitors.  相似文献   

20.
McClendon AK  Osheroff N 《Biochemistry》2006,45(9):3040-3050
Collisions with DNA tracking systems are critical for the conversion of transient topoisomerase-DNA cleavage complexes to permanent strand breaks. Since DNA is overwound ahead of tracking systems, cleavage complexes most likely to produce permanent strand breaks should be formed between topoisomerases and positively supercoiled molecules. Therefore, the ability of human topoisomerase IIalpha and IIbeta and topoisomerase I to cleave positively supercoiled DNA was assessed in the absence or presence of anticancer drugs. Topoisomerase IIalpha and IIbeta maintained approximately 4-fold lower levels of cleavage complexes with positively rather than negatively supercoiled DNA. Topoisomerase IIalpha also displayed lower levels of cleavage with overwound substrates in the presence of nonintercalative drugs. Decreased drug efficacy was due primarily to a drop in baseline (i.e., nondrug) cleavage, rather than an altered interaction with the enzyme-DNA complex. Similar results were seen for topoisomerase IIbeta, but the effects of DNA geometry on drug-induced scission were somewhat less pronounced. With both topoisomerase IIalpha and IIbeta, intercalative drugs displayed greater relative cleavage enhancement with positively supercoiled DNA. This appeared to result from negative effects of high concentrations of intercalative agents on underwound DNA. In contrast to the type II enzymes, topoisomerase I maintained approximately 3-fold higher levels of cleavage complexes with positively supercoiled substrates and displayed an even more dramatic increase in the presence of camptothecin. These findings suggest that the geometry of DNA supercoils has a profound influence on topoisomerase-mediated DNA scission and that topoisomerase I may be an intrinsically more lethal target for anticancer drugs than either topoisomerase IIalpha or IIbeta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号