首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
2.
Ascidians, or sea squirts, are lower chordates, and share basic gene repertoires and many characteristics, both developmental and physiological, with vertebrates. Therefore, decoding cis-regulatory systems in ascidians will contribute toward elucidating the genetic regulatory systems underlying the developmental and physiological processes of vertebrates. cis-Regulatory DNAs can also be used for tissue-specific genetic manipulation, a powerful tool for studying ascidian development and physiology. Because the ascidian genome is compact compared with vertebrate genomes, both intergenic regions and introns are relatively small in ascidians. Short upstream intergenic regions contain a complete set of cis-regulatory elements for spatially regulated expression of a majority of ascidian genes. These features of the ascidian genome are a great advantage in identifying cis-regulatory sequences and in analyzing their functions. Function of cis-regulatory DNAs has been analyzed for a number of tissue-specific and developmentally regulated genes of ascidians by introducing promoter-reporter fusion constructs into ascidian embryos. The availability of the whole genome sequences of the two Ciona species, Ciona intestinalis and Ciona savignyi, facilitates comparative genomics approaches to identify cis-regulatory DNAs. Recent studies demonstrate that computational methods can help identify cis-regulatory elements in the ascidian genome. This review presents a comprehensive list of ascidian genes whose cis-regulatory regions have been subjected to functional analysis, and highlights the recent advances in bioinformatics and comparative genomics approaches to cis-regulatory systems in ascidians.  相似文献   

3.
4.
5.
6.
为鉴定鱼类肌肉组织特异性顺式调控元件,通过分析斑马鱼多个组织的转录组数据,筛选出肌肉高表达基因及低表达基因.通过MEME对肌肉高表达基因和低表达基因非编码区序列特征进行分析,在5个肌肉高表达基因的转录起始位点上游发现了序列保守的DNA区域,包含6个排列顺序一致的DNA基序.将其中一段目标片段插入具有Tol2转座子元件的...  相似文献   

7.
8.
9.
10.
The enhancer trap technique, established in Drosophila melanogaster, is a very sophisticated tool. Despite its usefulness, however, there have been very few reports on enhancer traps in other animals. The ascidian Ciona intestinalis, a splendid experimental system for developmental biology, provides good material for developmental genetics. Recently, germline transgenesis of C. intestinalis has been achieved using the Tc1/mariner superfamily transposon Minos. During the course of that study, one Minos insertion line that showed a different GFP expression pattern from other lines was isolated. One fascinating possibility is that an enhancer trap event occurred in this line. Here we show that a Minos insertion in the Ci-Musashi gene was responsible for the altered GFP expression. Ci-Musashi showed a similar expression pattern to GFP. In addition, introns of Ci-Musashi have enhancer activity that can alter the expression pattern of nearby genes to resemble that of GFP in this line. These results clearly demonstrate that an enhancer trap event that entrapped enhancers of Ci-Musashi occurred in C. intestinalis.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号