首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
A sediment core from the Cabo Frio coastal shelf (?23.19 S, ?41.8 W; 117 m depth), was analyzed for TOC, C/N ratio, organic petrography and planktonic foraminiferal content to evaluate variations in local productivity caused by changes in upwelling intensity and its relation to regional and global climatic variations during the last millennium. The Cabo Frio core recorded the last 1200 years of sedimentation, with rates varying from 0.11 to 0.32 mm yr?1. Foraminiferal and organic geochemical analyses indicate the occurrence of three distinct periods of productivity. From 850 AD until 1070 AD, foraminifera fluxes consisting primarily of Turborotalita quinqueloba indicate stronger South Atlantic Central Water (SACW) transport onto the shelf, which induced high biological productivity that was also recorded by high TOC and marine palynomorphs content and a low C/N atomic ratio. This period coincided with a northward displacement of the atmospheric Intertropical Convergence Zone (ITCZ) and South Atlantic High (SAH) systems driven by positive temperature anomalies in the North Atlantic Ocean during the Medieval Climate Anomaly (MCA). From 1070 until 1500 AD, low TOC flux and planktonic foraminifera fluxes and high C/N atomic ratios suggest a reduction in marine productivity, probably driven by reduced transport of SACW associated with the southward displacement of the SAH and weakening of northeasterly winds. The period between 1500 and 1830 AD, which corresponds to the Little Ice Age, is marked by increased fluxes of planktonic foraminifera, principally of Globigerina bulloides and Globigerinita glutinata. These species mark an increase in productivity linked to SACW upwelling, supported by the enhancement of northeasterly winds and southward displacement of the ITCZ and SAH.  相似文献   

2.
The study of Quaternary sediments covering the last 550 kyr from the borehole GDEC-4-2, East-Corsica basin, was performed through the study of benthic meiofaunal assemblages (ostracoda and benthic foraminifera) whose distribution responds to climate changes, and glacial–interglacial variability in particular. The interglacial ostracod group is mainly composed of the Argilloecia acuminata, Cytheropteron alatum, Henryhowella sp., Polycope sp. and Cytherella sp., which indicate an enhanced surface productivity and possibly high bottom water temperature during these warm intervals. Benthic foraminifera, such as Hoeglundina elegans, Sigmoilopsis schlumbergeri, Bigenerina nodosaria and Hyalinea balthica are predominant during interglacial periods and also show an increasing surface productivity associated to warm intervals. Increase in surface productivity would contribute to an enhanced export of organic matter to sea floor at the GDEC-4-2 site during interglacial periods. The bottom temperature drop coupled with the important sedimentary inputs (associated to a significant quantity of refractory organic matter) during glacial periods was highlighted by the predominance of ostracoda, such as Paradoxostoma sp., Cytheropteron testudo, Bathycythere vanstraateni, Macrocypris sp., Echinocythereis echinata and benthic foraminifera as Bolivina spathulata, Bulimina costata, and Bulimina marginata. The distribution of some benthic foraminifera species describing a turnover system allowed the characterization of the last three climate cycles (MIS 8–9, MIS 6–7, MIS 1–5) probably marked by changes of bottom water paleoceanographic conditions in terms of temperature, salinity, bottom current intensity and surface productivity. The cyclic variations of the allochthonous group recorded over the last 550 kyr suggest a major role played by the eustatic factor, with the latter possibly favouring down slope transport. The distribution of this group allowed thus establishing a link between shelf-basin sediment transfer and climate, with enhanced shelf-basin sediment transfer during glacial low stands.  相似文献   

3.
We present a geochemical record of a 113.6-cm sediment core (LPT V) from Lagoa da Pata, which is located in the forested upper Rio Negro basin. The record reveals significant changes in the environmental history of Amazonia during the late Quaternary. The results of biogeochemical analyses revealed three hydrological and climatic regimes from 50,000 to 10,000 cal yr BP. The first phase, between 50,000 and 26,300 cal yr BP, was characterized by a relatively wet climate as suggested by relatively high total organic carbon (TOC) and chlorophyll derivate concentrations, indicating high productivity linked to a high lake level. A decrease of the TOC and chlorophyll derivate accumulation rates between 43,100 cal yr BP and 26,300 cal yr BP marks a decrease in the productivity linked to a reduced lake level, indicating a decrease in moisture at the end of this phase. The second phase, between 26,300 and 15,300 cal yr BP, was characterized by a decrease in productivity, reaching a minimum at 21,950 cal yr BP, as indicated by a minima in sedimentary chlorophyll and TOC accumulation rates. Values of δ13C increased by 5‰ in relation to the preceding phase, indicating an influence of the C4 organic matter. High iron concentrations and accumulation rates, related to intense erosion of the lateritic crust in the watershed, were observed. All of the observations indicate a dry phase during this period. A third phase, from approximately 15,300 to 10,000 cal yr BP, was characterized by an increase in lacustrine productivity, as shown by an increased in TOC and chlorophyll derivate concentrations and accumulation rates. These increases likely correspond to a lake level rise due to a wetter climate.  相似文献   

4.
Population density and biomass of bacteria and meiofauna were investigated seasonally in the sediments of the north-western bank of Red Sea. Samples of sediments were collected seasonally from three different stations to determine microphytobenthic biomass (chlorophyll a), protein, lipid, carbohydrate, and total organic matter concentrations. These investigations revealed that microbial components tended to increase their dominancy, whereas sensitive meiofauna were extremely reduced during the entire study period. Thus a very low density of the total meiofauna (with an annual average of 109 ± 26 ind./10 cm2) was recorded whilst the benthic microbial population densities exhibited higher values (ranging from 0.31 ± 0.02 × 108 to 43.67 ± 18.62 × 108/g dry sediment). These changes in the relative importance analysis of benthic microbial components versus meiofaunal ones seem to be based on the impact of organic matter accumulation on the function and structure of these benthic communities. Proteins, lipids and carbohydrates showed very low concentration values, and the organic matter mostly consisted of carbohydrates, reflecting lower nutritional values for benthic fauna in general and meiofauna in particular. The distribution of microbial and meiofaunal communities seems to be dependent on the quality of the organic matter rather than on its quantity. Total organic matter concentrations varied between 5.8 and 7.6 mg/g, with organic carbon accounting for only 32% of the total organic matter. Chlorophyll a attained very low values, fluctuating between 0.11 and 0.56 μg/g, indicating the oligotrophy of the studied area. The very low concentration of chlorophyll a in the Red Sea sediment suggests that the sedimentary organic matter, heterotrophic bacteria and/or protozoa constitute an alternative resource that is consumed by meiofauna when algae are less abundant. Protozoa, therefore, represent the “missing link in bacteria–meiofauna interaction in the Red Sea marine sediment ecosystem.  相似文献   

5.
Environmental conditions and productivity changes in the southeastern Okhotsk Sea have been reconstructed for the last 20 ka using planktonic and benthic foraminiferal oxygen isotope records and calcium carbonate, organic carbon and opal content data from two sediment cores. Species variability in benthic foraminiferal and diatom assemblages provides additional palaeoceanographic evidence. AMS radiocarbon dating of the sediments and oxygen isotope stratigraphy serve as the basis for the age models of the cores for the last 20 14C kyr and for correlation between environmental variations in the Okhotsk Sea, and regional and global climate changes. Benthic foraminiferal assemblages in the two cores (depth 1590 and 1175 m) varied with time, so that we could recognise seven zones with different species composition. Changes in the benthic foraminiferal assemblages parallel major environmental and productivity variations. During the last glaciation, fluxes of organic matter to the sea floor showed strong seasonal variations, indicated by the presence of abundant A. weddellensis and infaunal Uvigerina spp. Benthic foraminiferal assemblages changed with warming at 12.5–11 and 10–8 14C kyr BP, when productivity blooms and high organic fluxes were coeval with global meltwater pulses 1A and 1B. Younger Dryas cooling caused a decline in productivity (11–10 kyr BP) affecting the benthic faunal community. Subsequent warming triggered intensive diatom production, opal accumulation and a strong oxygen deficiency, causing significant changes in benthic fauna assemblages from 5.26–4.4 kyr BP to present time.  相似文献   

6.
《Marine Micropaleontology》2009,70(3-4):314-333
Live (Rose Bengal stained) benthic foraminifera were investigated in surface sediment samples from the Okhotsk Sea to reveal the relationship between faunal characteristics and environmental parameters. Live benthic foraminifera were quantified in the size fraction > 125 µm in the upper 8 cm of replicate sediment cores, recovered with a multicorer at five stations along the Sakhalin margin, and at three stations on the southwestern Kamchatka slope. The stations are from water depths between 625 to 1752 m, located close or within the present Okhotsk Sea oxygen minimum zone, with oxygen levels between 0.3 and 1.5 ml l- 1. At the high-productivity and ice-free Kamchatka stations, live benthic foraminifera are characterized by maximal standing stocks (about 1700-3700 individuals per 50 cm2), strong dominance of calcareous species (up to 87-91% of total live faunas), and maximal habitat depths (down to 5.2-6.7 cm depth). Vertical distributions of total faunal abundances exhibit a clear subsurface maximum in sediments. At the Sakhalin stations, which are seasonally ice-covered and less productive, live benthic foraminifera show lower standing stocks (about 200-1100 individuals per 50 cm2), lower abundance of calcareous species (10-64% of total live faunas), and shallower habitat depths (down to 2.5-5.4 cm depth). Faunal vertical distributions are characterized by maximum in the uppermost surface sediments. It is suggested that 1) lower and strongly seasonal organic matter flux, caused by the seasonal sea ice cover and seasonal upwelling, 2) lower bottom water oxygenation (0.3-1.1 ml l- 1), and 3) more pronounced influence of carbonate undersaturated bottom water along the Sakhalin margin are the main factors responsible for the observed faunal differences. According to species downcore distributions and average living depths, common calcareous species were identified as preferentially shallow, intermediate and deep infaunal. Foraminiferal microhabitat occupation correlates with the organic matter flux and the depth of the oxygenated layer in sediments.  相似文献   

7.
In the western Arabian Sea (WAS), the highest seasonal sea surface temperature (SST) difference presently occurs between May and August. In order to gain an understanding on how monsoonal upwelling modulates the SST difference between these two months, we have computed SST for the months of May and August based on census counts of planktonic foraminifers by using the artificial neural network (ANN) technique. The SST difference between May and August exhibits three distinct phases: i) a moderate SST difference in the late Holocene (0–3.5 ka) is attributable to intense upwelling during August, ii) a minimum SST difference from 4 to 12 ka is due to weak upwelling during the month of August, and iii) the highest SST difference during the last glacial interval (19 to 22 ka) with high Globigerina bulloides % could have been caused by the occurrence of a prolonged upwelling season (from May through July) and maximum difference in the incoming solar radiation between May and August. Overall, variations in the SST difference between May and August show that the timing of intense upwelling in the Western Arabian Sea over the last 22 kyr has been variable over the months of June, July and August.  相似文献   

8.
Planktic and epibenthic foraminiferal δ13C records at Site PS62/015-3 (southwestern Greenland Sea) reveal a series of transient events of extreme 13C depletion down to − 6‰ during the period 90–40 ka. Scanning electron microscope studies of the ultrastructures of foraminiferal tests suggest that 13C depleted specimens are affected by some 10–20% overgrowth by authigenic calcite contributing to the light δ13C signal. Incremental-leaching experiments and census counts of pristine versus overgrowth-affected specimens show that the 13C depleted foraminiferal tests incorporate a primary δ13C signature most likely ranging from + 1‰ to − 1.7‰ and a post-depositional δ13C signature around − 17‰ to − 19.5‰. Extremely low values of productivity and organic carbon in Late Quaternary sediments along the east Greenland margin preclude organic matter as potential source of the isotopically light carbon. In contrast, thermal instability of clathrates and subsequent aerobic oxidation of (highly 12C enriched) methane in pore and ocean water provide a compelling mechanism to account for the negative δ13C excursions of both primary and post-depositional carbonates. Here, pore water methane may have led to a supersaturation of 13C depleted bicarbonate and precipitation of isotopically light authigenic calcite on and in foraminiferal tests, a feature that may serve as a tracer to former sites of clathrate destabilization.  相似文献   

9.
Paleoceanographic variability at southern high latitude Ocean Drilling Program (ODP) Site 747 was investigated in this study through the interval which spans the Middle Miocene Climate Transition (MMCT). Between 15.0 and 12.2 million years ago (Ma), foraminiferal δ18O records derived from both benthic (Cibicidoides spp.) and planktonic taxa (Globorotalia praescitula and Globigerina bulloides) reveal a history of changes in water column thermal and salinity structure and a strong imprint of seasonality. Prior to the MMCT, in the interval between 14.35 and 13.9 Ma, G. bulloides displays relatively high δ18O values similar to those of G. praescitula, interpreted to indicate weakening of the thermocline and/or increased seasonality with cooler early-spring and/or late-fall temperatures. Following this interval, G. bulloides δ18O values diverge significantly from benthic and G. praescitula values, with G. bulloides values remaining relatively low for at least 600 kyr following the benthic foraminiferal δ18O shift during the MMCT at ~ 13.9 Ma. This divergence in δ18O records occurs in direct association with the Mi3 cooling and glaciation event and may suggest: (1) a strengthening of the vertical temperature gradient, with greater cooling of deep waters than surface waters, (2) changes in the depth habitat of G. bulloides, (3) changes in the dominant season of G. bulloides calcification, (4) modification of surface-water δ18O values in association with enhanced sea-ice formation, (5) increased surface-water carbonate ion concentration, and/or (6) a significant decrease in surface-water salinity across the MMCT. The first of these possible scenarios is not likely, particularly in light of recent Mg/Ca evidence for significant surface-water cooling in the Southern Ocean associated with the MMCT. Of the remaining possibilities, we favor a change in surface salinity to explain the observed trends in δ18O values and hypothesize that surface salinity may have decreased by up to 2 salinity units at ~ 13.9 Ma. In this scenario, the development of a lower-salinity Antarctic surface layer coincided with regional cooling of both surface and deep waters of the Southern Ocean during the Mi3 glaciation of East Antarctica, and contributed into the dominance of Neogloboquadrina spp. between 13.8 and 13.2 Ma. Additionally, the distinct patterns observed in planktonic foraminiferal δ18O records spanning the MMCT correspond with changes in the vertical δ13C gradient between planktonic and benthic foraminiferal records and major changes in planktonic foraminiferal assemblages at Site 747, providing further evidence of the environmental significance of this climatic transition.  相似文献   

10.
The abundance of the major coralline algal groups has been investigated and quantified in the coralline-rich facies of the Miocene shallow-water carbonates of the Eratosthenes Seamount (eastern Mediterranean, off-shore Cyprus). The analysis is based on the quantification of the most easily-recognizable groups of coralline algae in order to provide a user-friendly approach for palaeobathymetric reconstructions. Coralline algal distribution through the core suggests water depth estimates generally similar to those based on the composition of the skeletal assemblage and the benthic foraminiferal association in particular. The only noticeable difference occurs in the rhodolith and coral facies, where algal distribution suggests deeper waters than those indicated by benthic foraminifera. The distribution pattern of the major groups suggests that the ratio between Hapalidiales and Corallinales is the most reliable indicator of water-depth. The comparison with other models available in literature highlights a general zonation useful for the study of tropical, middle to late Miocene oligotrophic carbonates. Very shallow settings (0–20 m) are overwhelmingly dominated by Corallinales; in slightly deeper settings (20–40 m) Hapalidiales are more abundant, especially if the sea-floor is shaded (for example by a macrophyte canopy). Between 40 and 60 m, Hapalidiales dominate but Corallinales are still common, while below 60 m Corallinales are very rare. In non-oligotrophic environments this zonation is not reliable and, due to the reduced water clarity related to the high primary productivity, Hapalidiales clearly dominate even in very shallow settings.  相似文献   

11.
The dissolved oxygen (DO) content of the ocean provides potential evidence and clues for the waxing and waning of marine productivity, ocean circulation, global climate change, and the evolution of ecological communities. On the basis of the analysis of the Benthic Foraminiferal Oxygen Index (BFOI), the percentage of epifaunal benthic foraminifers, and the redox-sensitive trace elements (Mo/Al) in Core MD12-3432, we reconstruct the evolution of deep water DO content in the northern South China Sea (SCS) during the past 400 ka and discuss the mechanisms of variable DO content. The results show that the changes of BFOI, Mo/Al, and the percentage of epifaunal benthic foraminifer present a similar pattern, which may reflect the variations of the DO content in seawater since 400 ka. Both variations in BFOI and Mo/Al indicate that the DO content was high during most time of marine isotope stage (MIS) 11 to mid-MIS 6, then decreased in late-MIS 6, and remained stable in MIS 5. It increased in MIS 4 and decreased until MIS 2, and then rose again. The non-synchronous variations between bottom water DO and benthic foraminiferal δ18O indicate that the DO content is not controlled by glacial-interglacial cyclic environmental variations. Comparing the biomarker productivity index with the DO content of water, we find that the DO content is affected mainly by productivity. Bulimina, Uvigerina and Chilostomella oolina are high productivity species. The accumulation rates of Bulimina and Uvigerina are higher during 61–15 kyr interval, but the accumulation rate of C. oolina is higher during 168–130 kyr. The results infer that different intensity of primary productivity and DO during these two periods. The DO and phytoplankton total (PT) show the opposite relation, which also indicates that the DO is affected by primary productivity, and the combined action of productivity and DO decides the growth of Bulimina, Uvigerina, and C. oolina. Besides the influences of productivity, the change of DO in the ocean is also affected by oceanic circulation.  相似文献   

12.
Accomplishing reliable paleo-reconstructions of productivity and upwelling conditions in eastern boundary current systems requires the use of cores collected in a basin-wide spatial pattern. Based on diatom assemblage analysis and the concentration and the bulk biogenic components of three gravity cores recovered from the Benguela Upwelling System (BUS) between 19° and 25°S, I describe rapid paleoceanographic changes that occurred during the last 70 ka B.P. in the southeastern Atlantic. The pattern of biogenic production and accumulation differs to varying degrees among the three core sites along the SW African coast. The highest sedimentation and accumulation rates at 25°S off Lüderitz conform with the present-day, well-known pattern of highest productivity and most intense coastal upwelling. Highest diatom values at 25°S during MIS3 points to more intense upwelling due to the combination of strong seaward-extending upwelling filaments, shoaling of the upwelled water, and the influence of silicate-rich waters of Antarctic origin. Productivity decreased along the central BUS throughout MIS2, when the siliceous–calcareous productivity regime shifted toward a system dominated by calcareous producers. Although intensity and strength of winds created adequate conditions for upwelling during MIS2, diatom production decreased. The complete replacement of the upwelling-associated diatom flora by a non-upwelling-related diatom community during MIS1 reflects weakened upwelling, weakened seaward extension of the upwelling filaments, and dominance of warmer surface waters. Combining changes in the composition of the diatom assemblage and variations of the bulk biogenic components allows for reliable reconstruction of paleoproductivity and upwelling changes for the SE Atlantic during the last 70 ka B.P.  相似文献   

13.
Ecological studies of benthic foraminifera are carried out to explain patterns of distribution and the dynamics of communities. They are also used to provide data to establish proxy relationships with selected factors. According to niche theory, the patterns of distribution of benthic foraminifera are controlled by those environmental factors that have reached their critical thresholds. For each species, in variable environments, different factors may be limiting distributions both temporally and spatially. For a species or an assemblage to be useful as a proxy its abundance must show a strong correlation with the chosen factor. Since numerous factors influence each species, it is only in those environments where the majority of factors show little variation but one particular factor shows significant variation that the proxy relationship for that factor can be determined. On theoretical grounds, the reliability of using foraminiferal abundance as a proxy of a selected environmental factor should be restricted to the range close to the upper and lower thresholds. For oxygen, foraminifera are potential proxies for the lower limits but once oxygen levels rise to values of perhaps >1 or 2 ml l−1, there is no longer a relationship between oxygen levels and abundance. By contrast, the flux of organic matter over a large range shows a sufficiently close relationship with foraminiferal assemblages so that transfer functions can be derived for the deep sea. However, the relationship at species level is far less clear cut. Much more accurate estimates of primary productivity and modern organic flux rates are required to improve the determination of past flux rates.  相似文献   

14.
《Marine Micropaleontology》2006,58(3):159-183
We determined the stable oxygen and carbon isotopic composition of live (Rose Bengal stained) benthic foraminifera (> 150 μm size fraction) of seven taxa sampled along a downslope transect between 140 to 2000 m water depth in the Bay of Biscay. At the five stations, Hoeglundina elegans, Cibicidoides pachydermus, Uvigerina peregrina, Uvigerina mediterranea preferentially occupy shallow infaunal niches, whereas Melonis barleeanus and Uvigerina elongatastriata occupy an intermediate infaunal microhabitat, and Globobulimina spp. live in a deep infaunal niche close to the zero oxygen boundary.When compared with δ18O values of calcite formed in equilibrium with bottom waters, U. peregrina forms its test in close equilibrium with bottom water δ18O. All other foraminiferal taxa calcify with a constant offset to calculated equilibrium calcite. There is no systematic relationship between the foraminiferal microhabitat depth and the Δδ18O between foraminiferal and equilibrium calcite. We calculated correcting factors for the various taxa, which are needed for constructing multispecies-based oxygen isotope records in paleoceanographic studies of the study area.The δ13C values of foraminiferal taxa investigated in this study do neither record bottom water δ13CDIC in a 1 : 1 relationship nor with a constant offset, but appear to be mainly controlled by microhabitat effects. The increase of δ13C values of shallow infaunal taxa with increasing water depth reflects the decrease of the exported flux of organic carbon along the bathymetric transect and early diagenetic processes in the surface sediment. This is particularly the case for the shallow infaunal U. peregrina. The δ13C values of deep infaunal Globobulimina spp. are much less dependent on the exported organic matter flux. We suggest that the Δδ13C between U. peregrina and Globobulimina spp. can shed light on the various pathways of past degradation of organic detritus in the benthic environments.At a station in 550 m water depth, where periodic eutrophication of sediment surface niches was demonstrated previously, we performed a two-year seasonal survey of the isotopic composition of foraminiferal faunas. No marked seasonal changes of the stable carbon isotopic composition of shallow, intermediate and deep infaunal foraminiferal taxa were observed. Thus, the δ13C values of foraminiferal individuals belonging to the > 150 μm fraction may result from rather long-term calcification processes lasting for several weeks or months, which limit the impact of ephemeral 12C enrichment of shallow infaunal niches on the isotope chemistry of adult individuals during eutrophic periods. Only highly opportunistic taxa reproducing or calcifying during phytoplankton bloom periods and the subsequent deposits of phytoplankton remains in the benthic environment may exhibit a particularly low δ13C, indicative of such short productive periods.  相似文献   

15.
《Marine Micropaleontology》2010,74(3-4):135-147
The 77 m sediment core from Firth of Tay provides complete record of glacial retreat and Holocene climate change on the Weddell Sea side of the Antarctic Peninsula that began ~ 9400 yr BP. Benthic foraminiferal data indicate significant environmental changes as recorded at ~ 600 m water depth at the drill site. Three foraminiferal assemblages (FAs): Globocassidulina spp.–Fursenkoina fusiformis FA, Miliammina arenacea FA, and Paratrochammina bartramiPortatrochammina antarctica FA reflect increasingly glacier-distal conditions. They started with most glacier-proximal conditions that lasted until ~ 8800 yr BP, which is indicated by Cribroelphidium cf. webbi, and continued with elevated input of coarse glacial sediment until ~ 7750 yr BP. The Mid-Holocene Climatic Optimum between 7750 and 6000 yr BP appears to be the time of highest primary production, which led to higher corrosiveness of bottom waters, and biased species composition of the M. arenacea FA. It was terminated by minor cooling. The Neoglacial, that took place after ~ 3500 yr BP, is marked by an increase in P. bartrami and P. antarctica, the major constituents of the P. bartramiP. antarctica FA. This FA became periodically dominant after ~ 900 yr BP indicating increasingly glacier-distal conditions due to cooling coinciding with increasing aridity, rising altitude of the glacial equilibrium line, and less glacial influence on marine biota. Episodic high-abundances of a fourth foraminiferal assemblage (Globocassidulina biora FA) that occurs practically throughout the core is difficult to interpret explicitly. Although there are some concerns if G. biora FA represents in situ fauna, it appears to be an opportunistic fauna that dominated during periods of more glacial sediment input and sediment remobilization leading to better carbonate preservation.  相似文献   

16.
A high-resolution study of the Tethyan Contessa Highway reference section (Gubbio, Italy) has produced a detailed, well-constrained and more complete pattern of the gradual evolutionary origin of the foraminiferal genus Hantkenina from Clavigerinella than hitherto shown. A nine-stage pattern is presented for this evolutionary lineage. The related time frame and duration are assessed using the astronomical calibration of the Contessa Highway record. The evolution of Clavigerinella caucasica to Hantkenina gohrbandti, the real ancestor of Hantkenina, leads in 333 kyr. The H. gohrbandti first appearance is dated at 45.564 Ma. Our findings show that during the middle Eocene, from 46 to 45.5 Ma and with a major pulse centered at 45.521 Ma deep-mesopelagic planktonic foraminifera may have developed different morphological modifications to tolerate temporary exceptionally stressful environmental conditions. These conditions are principally related to poorly oxygenated and usually food-poor waters. This suggests that sustained and expanded oxygen minimum zone conditions and associated enhanced eutrophication might have occurred during that time.  相似文献   

17.
《Marine Micropaleontology》2010,77(3-4):53-66
The coccolithophore species Emiliania huxleyi is characterized by a wide range of sizes, which can be easily distinguished in the light microscope. In this study we have quantified the abundance of large (coccoliths > 4 µm in maximum length) E. huxleyi specimens during the last 25 kyr in sedimentary records from eleven cores and drill sites in the NE Atlantic and W Mediterranean Sea, to prove its usefulness in the reconstruction of water mass dynamics and biostratigraphic potential.During the Last Glacial Maximum this large form, a cold-water indicator, was common in the NE Atlantic and Mediterranean, and its regional variation in abundance indicates a displacement of the climatic zones southwards in agreement with the development of ice sheets and sea ice in the Northern Hemisphere during this period. On the other hand, the gradient between northern and southern surface water masses in the Subtropical Gyre appears to have been more pronounced than at present, while the Portugal and Canary Currents were more intense. In the western Mediterranean basin temperatures were cooler than in the adjacent Atlantic, provoking a quasi-endemism of these specimens until the end of Heinrich Event 1. This may have been due to a restriction in the communication between the Atlantic and Mediterranean through the Strait of Gibraltar, the arrival of cold surface water and the amplification of cooling after the development of ice sheets in the Northern Hemisphere.During the deglaciation, large E. huxleyi specimens decreased in abundance at medium and low latitudes, but were still numerous close to the Subarctic region during the Holocene. In transitional waters this decrease to present day abundances occurred after Termination Ib.The abrupt change in abundance of this large E. huxleyi form is proposed as a new biostratigraphic event to characterize the Holocene in mid- to low-latitude water masses in the North Atlantic, although this horizon seems to be diachronous by 5 kyr from tropical to subarctic regions, in agreement with the gradual onset of warm conditions.  相似文献   

18.
Recent advances in peatland restoration techniques have succeeded in establishing Sphagnum moss on the remnant cutover peat surface following peat extraction; however, evaluating restoration success remains a key issue. We argue that a Sphagnum-dominated peatland can only be considered functionally ‘restored’ once organic matter accumulation has achieved a thickness where the mean water table position in a drought year does not extend into the underlying formerly cutover peat surface. Here we monitor the spatio-temporal development of organic matter accumulation in a new peat layer for the first 8 years following the restoration of a Québec peatland and couple a simple acrotelm carbon accumulation model and ecohydrological model to assess peatland restoration success.We determined that organic matter accumulation increased from 2.3 ± 1.7 cm 4 years post-restoration to 13.6 ± 6.5 cm 8 years post-restoration. For comparison, at an adjacent non-restored section of the peatland organic matter accumulation was significantly lower (p < 0.001 for all years), with mean thicknesses of 0.2 ± 0.6 and 0.8 ± 1.2 cm for 24 and 28 years post-extraction, respectively. Given the mean summer water deficit at the site (?64 mm), our ecohydrological modeling results suggest that a 19-cm-thick moss layer would be required to offset the water table decrease induced by the summer water deficit. Given the current rate of organic matter accumulation, net primary productivity and the new peat layer decomposition rates determined using litter bags, we estimate it will take 17 years post-restoration to accumulate a 19-cm moss layer. Consequently, we argue that successful peatland restoration may be achieved in the medium-term and that our simple modeling approach can be useful in assessing the long-term impact of restoration on atmospheric carbon dioxide sequestration.  相似文献   

19.
Fifty-eight species of elongate, cylindrical benthic foraminifera (here referred to as the Extinction Group) belonging to genera that became extinct during the mid-Pleistocene Climate Transition (MPT), were documented (~ 50 kyr resolution) through the early middle Miocene (15–13 Ma) in two sites on opposite sides of the subtropical Pacific Ocean (ODP Sites 1146, South China Sea; ODP Site 1237, southeast Pacific). The study was undertaken to investigate the response of the Extinction Group (Ext. Gp) to the major cooling during the middle Miocene Climate Transition (MCT) to look for clues that might explain the causes of the extinction during the glacials of the mid-Pleistocene Climate Transition. Ext. Gp faunal differences between the two sites (attributed to regional and bathymetric differences in food supply to the seafloor) are greater than those that occurred through the 2 myr time span at either site. The middle Miocene Climate Transition was not an interval of enhanced species turnover or a decline in Ext. Gp abundance, in contrast to the major extinctions that occurred during the mid-Pleistocene Climate Transition. Distinct changes in the composition of the Ext. Gp faunas did occur through this time (more pronounced in Site 1237). At both sites the pre-middle Miocene Climate Transition faunas were transformed into their post-middle Miocene Climate Transition composition during the period of major cooling (14.0–13.7 Ma). During this transition interval the faunal composition swung back and forth between the two end member faunas. These faunal changes are attributed to changes in productivity (decrease in South China Sea, increase in southeast Pacific), brought about by major changes in global climate and continental aridity.  相似文献   

20.
New micropaleontological data coming from three cores collected on the meso-Adriatic continental shelf (Vasto area) are studied. Comparisons to foraminiferal assemblages and radiocarbon dates previously collected from cores in the San Benedetto del Tronto and Tremiti areas allow the correlation of patterns observed in shallow water areas with those in deeper parts of the basin. We focused on the response of benthic foraminifera during the Holocene high-stand, corresponding to the installation of the recent sedimentary and trophic system. An influence of anthropogenic impacts cannot be ruled out; its effects consist of a depletion of oxygen level with a consequent modification of the structure of benthic foraminiferal assemblages. During the glacial/post glacial cycle, three phases, characterized by a total of six foraminiferal biofacies including different species assemblages were recognized. The first phase, from 14 kyr BP to 11 kyr BP, corresponds to the Bölling/Alleröd and Younger Dryas cold event, before the Holocene sea-level rise. During this phase, the continental shelf was characterized by an infralittoral environment with productive waters owing to the proximity of the Po river delta at the edge of the Mid-Adriatic Deep. The second phase, from 11 kyr BP to 4 kyr BP, represents the Holocene sea-level rise and is characterized by a condensed sedimentation spread over the entire basin. The third phase corresponds to the Holocene high-stand, during which time the modern current system became established. During this phase, the eastern portion of the shelf underwent to the central part of the mud-belt, corresponding to the sub-recent conditions. Recent eutrophication resulting from human activities over the last few centuries is evidenced by frequency fluctuations of typically opportunistic taxa such as Nonionella turgida and Epistominella vitrea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号