首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  1. Understanding the mechanisms underlying spatial variability of exploited fish is critical for the sustainable management of fish stocks. Empirical studies suggest that size‐selective fishing can elevate fish population spatial variability (i.e., more heterogeneous distribution) through age truncation, making the population less resilient to changing environment. However, species differ in how their spatial variability responds to age truncation and the underlying mechanisms remain unclear.
  2. We hypothesize that age‐specific habitat preference, together with environmental carrying capacity and landscape structure, determines the response of population spatial variability to fishing‐induced age truncation. To test these hypotheses, we design an individual‐based model of an age‐structured fish population on a two‐dimensional landscape under size‐selective fishing. Individual fish reproduces and survives, and moves between habitats according to age‐specific habitat preference and density‐dependent habitat selection.
  3. Population spatial variability elevates with increasing age truncation, and the response is stronger for populations with stronger age‐specific habitat preference. On a gradient landscape, reducing carrying capacity elevates the relative importance of density dependence in habitat selection, which weakens the response of spatial variability to age truncation for populations with strong age‐specific habitat preference. On a fragmented landscape, both populations with strong and weak age‐specific habitat preferences are restricted at local optimal habitats, and reducing carrying capacity weakens the responses of spatial variability to age truncation for both populations.
  4. Synthesis and applications. We demonstrate that to track and predict the changes in population spatial variability under exploitation, it is essential to consider the interactive effects of age‐specific habitat preference, carrying capacity, and landscape structure. To improve spatial management in fisheries, it is crucial to enhance empirical and theoretical developments in the methodology to quantify age‐specific habitat preference of marine fish, and to understand how climatic change influences carrying capacity and landscape continuity.
  相似文献   

2.
Secondary sexual traits displayed by males and females may have evolved as a signal of individual quality. However, both individual quality and investment on producing or maintaining enhanced sexual traits change as individuals age. At the same time, the costs associated to produce sexual traits might be attenuated or increased if environmental conditions are benign or worse respectively. Accordingly, environmental conditions are expected to shape the association between the expression of sexual traits and their reproductive outcome as individuals age. Nonetheless, little is known about the environmental influence on the co‐variation between sexual traits and reproductive outcome throughout the life of individuals. We studied the age‐dependency of the number and size of back spots, a melanin‐based and sexual trait in adults of common kestrels (Falco tinnunculus). We analysed the age‐dependence of reproductive traits and the environmental influence, defined as vole abundance, using a 10‐year individual‐based dataset. We broke down age‐related changes of reproductive traits into within‐ and between‐individual variation to assess their contribution to population‐level patterns. Our results showed a within‐individual decrease in the number, but not the size, of back spots in males. The size of back spots was positively correlated with food availability in males. Reproductive performance of males increased as they aged, in agreement with the life‐history theory but depending of vole abundance. Remarkably, we found that having fewer back spots was positively associated with clutch size only for old individuals under low‐food conditions. We suggest that environmental variation may shape the association between the expression of a sexual signal and reproductive outcome. We speculate that the reliability of sexual traits is higher when environmental conditions are poor only for old individuals. Within an evolutionary context, we suggest that the expression of sexual traits might be constrained by environmental conditions at later stages of life.  相似文献   

3.
Allometric relationships between sexually selected traits and body size have been extensively studied in recent decades. While sexually selected traits generally display positive allometry, a few recent reports have suggested that allometric relationships are not always linear. In male cervids, having both long antlers and large size provides benefits in terms of increased mating success. However, such attributes are costly to grow and maintain, and these costs might constrain antler length from increasing at the same rate as body mass in larger species if the quantity of energy that males can extract from their environment is limiting. We tested for possible nonlinearity in the relationship between antler size and body mass (on a log–log scale) among 31 cervids and found clear deviation from linearity in the allometry of antler length. Antler length increased linearly until a male body mass threshold at approximately 110 kg. Beyond this threshold, antler length did not change with increasing mass. We discuss this evidence of nonlinear allometry in the light of life-history theory and stress the importance of testing for nonlinearity when studying allometric relationships.  相似文献   

4.
White‐nose syndrome (WNS) has decimated hibernating bat populations across eastern and central North America for over a decade. Disease severity is driven by the interaction between bat characteristics, the cold‐loving fungal agent, and the hibernation environment. While we further improve hibernation energetics models, we have yet to examine how spatial heterogeneity in host traits is linked to survival in this disease system. Here, we develop predictive spatial models of body mass for the little brown myotis (Myotis lucifugus) and reassess previous definitions of the duration of hibernation of this species. Using data from published literature, public databases, local experts, and our own fieldwork, we fit a series of generalized linear models with hypothesized abiotic drivers to create distribution‐wide predictions of prehibernation body fat and hibernation duration. Our results provide improved estimations of hibernation duration and identify a scaling relationship between body mass and body fat; this relationship allows for the first continuous estimates of prehibernation body mass and fat across the species'' distribution. We used these results to inform a hibernation energetic model to create spatially varying fat use estimates for M. lucifugus. These results predict WNS mortality of M. lucifugus populations in western North America may be comparable to the substantial die‐off observed in eastern and central populations.  相似文献   

5.
Mapping suitable habitat is an important process in wildlife conservation planning. Species distribution reflects habitat selection processes occurring across multiple spatio‐temporal scales. Because habitat selection may be driven by different factors at different scales, conservation planners require information at the scale of the intervention to plan effective management actions. Previous research has described habitat selection processes shaping the distribution of greater sage‐grouse (Centrocercus urophasianus; sage‐grouse) at the range‐wide scale. Finer‐scale information for applications within jurisdictional units inside the species range is lacking, yet necessary, because state wildlife agencies are the management authority for sage‐grouse in the United States. We quantified seasonal second‐order habitat selection for sage‐grouse across the state of Utah to produce spatio‐temporal predictions of their distribution at the southern periphery of the species range. We used location data obtained from sage‐grouse marked with very‐high‐frequency radio‐transmitters and lek location data collected between 1998 and 2013 to quantify species habitat selection in relation to a suite of topographic, edaphic, climatic, and anthropogenic variables using random forest algorithms. Sage‐grouse selected for greater sagebrush (Artemisia spp.) cover, higher elevations, and gentler slopes and avoided lower precipitations and higher temperatures. The strength of responses to habitat variables varied across seasons. Anthropogenic variables previously reported as affecting their range‐wide distribution (i.e., roads, powerlines, communication towers, and agricultural development) were not ranked as top predictors at our focal scale. Other than strong selection for sagebrush cover, the responses we observed differed from what has been reported at the range‐wide scale. These differences likely reflect the unique climatic, geographic, and topographic context found in the southern peripheral area of the species distribution compared to range‐wide environmental gradients. Our results highlight the importance of considering appropriateness of scale when planning conservation actions for wide‐ranging species.  相似文献   

6.
Forest ungulates impact ecosystems in a number of ways. Most studies have focused on consumptive effects that may cascade to other components of the ecosystem, and tend to be motivated by harvest management or the mitigation of undesired effects on vegetation. In this study, we demonstrate that white-tailed deer (Odocoileus virginianus), a common forest ungulate in eastern North America, may directly increase availability and heterogeneity of nitrogen due to excretion of nitrogenous wastes. We conducted fecal pellet counts in 39 winter cover habitat patches, ranging in area from 0.04 to 59.6 ha, each spring for eight consecutive years. Pellet counts were used to develop allometric models of annual deer-associated nitrogen inputs at both whole-stand and fine (<10 m2) spatial scales. Deer-associated nitrogen estimates were in the range of 1–4 kg[N] ha?1 in persistently used patches when estimated at the stand scale. Fine-scale estimates in areas of consistent aggregation were equivalent to up to 20 kg[N] ha?1. These areas, such as bedding sites and trails, experienced greater N inputs compared to the surrounding forest matrix. Annual deer use and associated nitrogen inputs were highly variable over space, and spatial patterns in use were consistent over time at both stand and fine spatial scales. Deer-associated nitrogen likely represents a cross-boundary nitrogen flux into patches of conifer cover because deer accumulate nutrients in other habitat types during the warm season, and lose body mass during winter. Nitrogen hotspots and heterogeneity derived from the nitrogenous wastes of forest ungulates may be a generally overlooked phenomenon in forest ecology, with impacts varying according to ecological context.  相似文献   

7.
The utility of elevational gradients as tools to test either ecological hypotheses and delineate elevation‐associated environmental factors that explain the species diversity patterns is critical for moss species conservation. We examined the elevational patterns of species richness and evaluated the effects of spatial and environmental factors on moss species predicted a priori by alternative hypotheses, including mid‐domain effect (MDE), habitat complexity, energy, and environment proposed to explain the variation of diversity. Last, we assessed the contribution of elevation toward explaining the heterogeneity among sampling sites. We observed the hump‐shaped distribution pattern of species richness along elevational gradient. The MDE and the habitat complexity hypothesis were supported with MDE being the primary driver for richness patterns, whereas little support was found for the energy and the environmental factors.  相似文献   

8.
Body size of large herbivores is a crucial life history variable influencing individual fitness‐related traits. While the importance of this parameter in determining temporal trends in population dynamics is well established, much less information is available on spatial variation in body size at a local infra‐population scale. The relatively recent increase in landscape fragmentation over the last century has lead to substantial spatial heterogeneity in habitat quality across much of the modern agricultural landscape. In this paper, we analyse variation in body mass and size of roe deer inhabiting a heterogeneous agricultural landscape characterised by a variable degree of woodland fragmentation. We predicted that body mass should vary in relation to the degree of access to cultivated meadows and crops providing high quality diet supplements. In support of our prediction, roe deer body mass increased along a gradient of habitat fragmentation, with the heaviest deer occurring in the most open sectors and the lightest in the strict forest environment. These spatial differences were particularly pronounced for juveniles, reaching >3 kg (ca 20% of total body mass) between the two extremes of this gradient, and likely have a marked impact on individual fates. We also found that levels of both nitrogen and phosphorous were higher in deer faecal samples in the more open sectors compared to the forest environment, suggesting that the spatial patterns in body mass could be linked to the availability of high quality feeding habitat provided by the cultivated agricultural plain. Finally, we found that adults in the forest sector were ca 1 kg lighter for a given body size than their counterparts in the more open sectors, suggesting that access to nutrient rich foods allowed deer to accumulate substantial fat reserves, which is unusual for roe deer, with likely knock‐on effects for demographic traits and, hence, population dynamics.  相似文献   

9.
10.
Even with increasing interest in the ecological importance of intraspecific trait variation (ITV) for better understanding ecological processes, few studies have quantified ITV in seedlings and assessed constraints imposed by trade‐offs and correlations among individual‐level leaf traits. Estimating the amount and role of ITV in seedlings is important to understand tree recruitment and long‐term forest dynamics. We measured ten different size, economics, and whole leaf traits (lamina and petiole) for more than 2,800 seedlings (height ≥ 10 cm and diameter at breast height < 1 cm) in 283 seedling plots and then quantified the amount of ITV and trait correlations across two biological (intraspecific and interspecific) and spatial (within and among plots) scales. Finally, we explored the effects of trait variance and sample size on the strength of trait correlations. We found about 40% (6%–63%) variation in leaf‐level traits was explained by ITV across all traits. Lamina and petiole traits were correlated across biological and spatial scales, whereas leaf size traits (e.g., lamina area) were weakly correlated with economics traits (e.g., specific lamina area); lamina mass ratio was strongly related to the petiole length. Trait correlations varied among species, plots, and different scales but there was no evidence that the strength of trait relationships was stronger at broader than finer biological and spatial scales. While larger trait variance increased the strength of correlations, the sample size was the most important factor that was negatively related to the strength of trait correlations. Our results showed that a large amount of trait variation was explained by ITV, which highlighted the importance of considering ITV when using trait‐based approaches in seedling ecology. In addition, sample size was an important factor that influenced the strength of trait correlations, which suggests that comparing trait correlations across studies should consider the differences in sample size.  相似文献   

11.
Despite a long history of disturbance–recovery research, we still lack a generalizable understanding of the attributes that drive community recovery potential in seafloor ecosystems. Marine soft‐sediment ecosystems encompass a range of heterogeneity from simple low‐diversity habitats with limited biogenic structure, to species‐rich systems with complex biogenic habitat structure. These differences in biological heterogeneity are a product of natural conditions and disturbance regimes. To search for unifying attributes, we explore whether a set of simple traits can characterize community disturbance–recovery potential using seafloor patch‐disturbance experiments conducted in two different soft‐sediment landscapes. The two landscapes represent two ends of a spectrum of landscape biotic heterogeneity in order to consider multi‐scale disturbance–recovery processes. We consider traits at different levels of biological organization, from the biological traits of individual species, to the traits of species at the landscape scale associated with their occurrence across the landscape and their ability to be dominant. We show that in a biotically heterogeneous landscape (Kawau Bay, New Zealand), seafloor community recovery is stochastic, there is high species turnover, and the landscape‐scale traits are good predictors of recovery. In contrast, in a biotically homogeneous landscape (Baltic Sea), the options for recovery are constrained, the recovery pathway is thus more deterministic and the scale of recovery traits important for determining recovery switches to the individual species biological traits within the disturbed patch. Our results imply that these simple, yet sophisticated, traits can be effectively used to characterize community recovery potential and highlight the role of landscapes in providing resilience to patch‐scale disturbances.  相似文献   

12.
Survival rates are a central component of life‐history strategies of large vertebrate species. However, comparative studies seldom investigate interspecific variation in survival rates with respect to other life‐history traits, especially for males. The lack of such studies could be due to the challenges associated with obtaining reliable datasets, incorporating information on the 0–1 probability scale, or dealing with several types of measurement error in life‐history traits, which can be a computationally intensive process that is often absent in comparative studies. We present a quantitative approach using a Bayesian phylogenetically controlled regression with the flexibility to incorporate uncertainty in estimated survival rates and quantitative life‐history traits while considering genetic similarity among species and uncertainty in relatedness. As with any comparative analysis, our approach makes several assumptions regarding the generalizability and comparability of empirical data from separate studies. Our model is versatile in that it can be applied to any species group of interest and include any life‐history traits as covariates. We used an unbiased simulation framework to provide “proof of concept” for our model and applied a slightly richer model to a real data example for pinnipeds. Pinnipeds are an excellent taxonomic group for comparative analysis, but survival rate data are scarce. Our work elucidates the challenges associated with addressing important questions related to broader ecological life‐history patterns and how survival–reproduction trade‐offs might shape evolutionary histories of extant taxa. Specifically, we underscore the importance of having high‐quality estimates of age‐specific survival rates and information on other life‐history traits that reasonably characterize a species for accurately comparing across species.  相似文献   

13.
  1. Trait‐based ecology holds the promise to explain how plant communities work, for example, how functional diversity may support community productivity. However, so far it has been difficult to combine field‐based approaches assessing traits at the level of plant individuals with limited spatial coverage and approaches using remote sensing (RS) with complete spatial coverage but assessing traits at the level of vegetation pixels rather than individuals. By delineating all individual‐tree crowns within a temperate forest site and then assigning RS‐derived trait measures to these trees, we combine the two approaches, allowing us to use general linear models to estimate the influence of taxonomic or environmental variation on between‐ and within‐species variation across contiguous space.
  2. We used airborne imaging spectroscopy and laser scanning to collect individual‐tree RS data from a mixed conifer‐angiosperm forest on a mountain slope extending over 5.5 ha and covering large environmental gradients in elevation as well as light and soil conditions. We derived three biochemical (leaf chlorophyll, carotenoids, and water content) and three architectural traits (plant area index, foliage‐height diversity, and canopy height), which had previously been used to characterize plant function, from the RS data. We then quantified the contributions of taxonomic and environmental variation and their interaction to trait variation and partitioned the remaining within‐species trait variation into smaller‐scale spatial and residual variation. We also investigated the correlation between functional trait and phylogenetic distances at the between‐species level. The forest consisted of 13 tree species of which eight occurred in sufficient abundance for quantitative analysis.
  3. On average, taxonomic variation between species accounted for more than 15% of trait variation in biochemical traits but only around 5% (still highly significant) in architectural traits. Biochemical trait distances among species also showed a stronger correlation with phylogenetic distances than did architectural trait distances. Light and soil conditions together with elevation explained slightly more variation than taxonomy across all traits, but in particular increased plant area index (light) and reduced canopy height (elevation). Except for foliage‐height diversity, all traits were affected by significant interactions between taxonomic and environmental variation, the different responses of the eight species to the within‐site environmental gradients potentially contributing to the coexistence of the eight abundant species.
  4. We conclude that with high‐resolution RS data it is possible to delineate individual‐tree crowns within a forest and thus assess functional traits derived from RS data at individual level. With this precondition fulfilled, it is then possible to apply tools commonly used in field‐based trait ecology to partition trait variation among individuals into taxonomic and potentially even genetic variation, environmental variation, and interactions between the two. The method proposed here presents a promising way of assessing individual‐based trait information with complete spatial coverage and thus allowing analysis of functional diversity at different scales. This information can help to better understand processes shaping community structure, productivity, and stability of forests.
  相似文献   

14.
Population genetic structure in the marine environment can be influenced by life‐history traits such as developmental mode (biphasic, with distinct adult and larval morphology, and direct development, in which larvae resemble adults) or habitat specificity, as well as geography and selection. Developmental mode is thought to significantly influence dispersal, with direct developers expected to have much lower dispersal potential. However, this prediction can be complicated by the presence of geophysical barriers to dispersal. In this study, we use a panel of 8,020 SNPs to investigate population structure and biogeography over multiple spatial scales for a direct‐developing species, the New Zealand endemic marine isopod Isocladus armatus. Because our sampling range is intersected by two well‐known biogeographic barriers (the East Cape and the Cook Strait), our study provides an opportunity to understand how such barriers influence dispersal in direct developers. On a small spatial scale (20 km), gene flow between locations is extremely high, suggestive of an island model of migration. However, over larger spatial scales (600 km), populations exhibit a clear pattern of isolation‐by‐distance. Our results indicate that I. armatus exhibits significant migration across the hypothesized barriers and suggest that large‐scale ocean currents associated with these locations do not present a barrier to dispersal. Interestingly, we find evidence of a north‐south population genetic break occurring between Māhia and Wellington. While no known geophysical barrier is apparent in this area, it coincides with the location of a proposed border between bioregions. Analysis of loci under selection revealed that both isolation‐by‐distance and adaption may be contributing to the degree of population structure we have observed here. We conclude that developmental life history largely predicts dispersal in the intertidal isopod I. armatus. However, localized biogeographic processes can disrupt this expectation, and this may explain the potential meta‐population detected in the Auckland region.  相似文献   

15.
In polygynous ungulates, males may achieve fertilization through the use of alternative reproductive tactics (ARTs), discrete phenotypic variations evolved to maximize fitness. ARTs are often associated with different male spatial strategies during the rut, from territoriality to female‐following. Although variation in space use patterns of rutting male ungulates is known to be largely affected by the spatial distribution of females, information on the year‐round habitat selection of alternative reproductive types is scant. Here, we investigate the seasonal variation in habitat choice of a large mammal with ARTs (territoriality and nonterritoriality), the Northern chamois Rupicapra rupicapra. Global Positioning System (GPS) data on 28 adult males were collected between February 2010 and December 2013 in the Gran Paradiso National Park (Italy) and used to fit resource selection functions to explore the ART‐specific use of key topographic features, such as elevation, aspect, and slope, and vegetation phenology expressed as NDVI values. Territorial and nonterritorial chamois profoundly differed in their habitat selection not only during the rutting season. Compared to nonterritorial males, territorial males used lower elevations in summer and autumn, preferred southern slopes in spring and summer, and used steeper areas in summer but not in winter. We found no difference in seasonal selection of NDVI values between males adopting ARTs. Our results suggest that territorial males tend to occupy warmer, lower‐food‐quality habitats in late spring and summer, whereas nonterritorial males are free to follow and exploit vegetation phenology and more favorable temperatures. Different patterns of habitat selection may reflect different trade‐offs between the optimization of energy balances throughout the year and the increase of mating opportunities during the rut in males adopting alternative reproductive tactics.  相似文献   

16.
We hypothesized congruence in the spatial structure of abundance data sampled across multiple scales for an ecological guild of consumers that exploit similar nutritional and habitat resources. We tested this hypothesis on the spatial organization of abundance of an herbivorous guild of sea urchins. We also examined whether the amount of local along‐shore rocky habitat can explain the observed spatial patterns of abundance. Standardized estimates of abundance of four intertidal sea urchins—Diadema cf. savignyi, Echinometra mathaei, Parechinus angulosus, and Stomopneustes variolaris—were determined by six observers at 105 sites across 2,850 km of coast of South Africa. For each species and observer, wavelet analysis was used on abundance estimates, after controlling for potential biases, to examine their spatial structure. The relationship between local sea urchin abundance and the amount of upstream and downstream rocky habitat, as defined by the prevailing ocean current, was also investigated. All species exhibited robust structure at scales of 75–220 km, despite variability among observers. Less robust structure in the abundances of three species was detected at larger scales of 430–898 km. Abundance estimates of sympatric populations of two species (D. cf. savignyi and E. mathaei) were positively correlated with the amount of rocky habitat upstream of the site, suggesting that upstream populations act as larval sources across a wide range of scales. No relationship between abundance and habitat size was found for P. angulosus or S. variolaris. Within the range of scales examined, we found robust congruence in spatial structure in abundance at the lower, but not the larger, range of scales for all four species. The relationship between abundance and upstream habitat availability in two species suggests that larval supply from upstream populations was probably the mechanism linking habitat size and abundance.  相似文献   

17.
Predators are a particularly critical component of habitat quality, as they affect survival, morphology, behavior, population size, and community structure through both consumptive and non‐consumptive effects. Non‐consumptive effects can often exceed consumptive effects, but their relative importance is undetermined in many systems. Our objective was to determine the consumptive and non‐consumptive effects of a predaceous aquatic insect, Notonecta irrorata, on colonizing aquatic beetles. We tested how N. irrorata affected survival and habitat selection of colonizing aquatic beetles, how beetle traits contributed to their vulnerability to predation by N. irrorata, and how combined consumptive and non‐consumptive effects affected populations and community structure. Predation vulnerabilities ranged from 0% to 95% mortality, with size, swimming, and exoskeleton traits generating species‐specific vulnerabilities. Habitat selection ranged from predator avoidance to preferentially colonizing predator patches. Attraction of Dytiscidae to N. irrorata may be a natural ecological trap given similar cues produced by these taxa. Hence, species‐specific habitat selection by prey can be either predator‐avoidance responses that reduce consumptive effects, or responses that magnify predator effects. Notonecta irrorata had both strong consumptive and non‐consumptive effects on populations and communities, while combined effects predicted even more distinct communities and populations across patches with or without predators. Our results illustrate that an aquatic invertebrate predator can have functionally unique consumptive effects on prey, attracting and repelling prey, while prey have functionally unique responses to predators. Determining species‐specific consumptive and non‐consumptive effects is important to understand patterns of species diversity across landscapes.  相似文献   

18.
Understanding factors affecting antler size, and the extent to which harvesting is selective for these traits, is important in order to address management strategies aimed to minimize the risk of negative evolutionary consequences. In an Alpine study area, we compared the phenotypic quality and the antler size of 2,725 male roe deer hunted in two regions differing for winter harshness and habitat quality, and evaluated whether the selective behaviour of recreational hunters was influenced by phenotypic quality and antler size. Antler length and antler circumference relative to both body mass and jaw length were larger in the region with more favourable climate and habitat conditions, indicating that here roe deer were able to allocate more resources to antler growth. The analysis of the temporal trends of harvest bags suggested that hunters did not select roe deer for their body mass or size, but instead for antler size. This resulted also in a preference for sub-adult and adult age classes, while yearlings were culled reluctantly, especially in the region where antlers were smaller. Our results indicate that environmental heterogeneity may influence the relative investment in antler growth. In this way, it may interact with the hunters’ preferences increasing the risk that recreational hunting of roe deer, which is a widespread practice in many European countries, might result in alteration of male age structure and possibly in directional artificial selection.  相似文献   

19.
The composition of vegetation on a slope frequently changes substantially owing to the different micro‐environments of various slope aspects. To understand how the slope aspect affects the vegetation changes, we examined the variations in leaf mass per area (LMA) and leaf size (LS) within and among populations for 66 species from 14 plots with a variety of slope aspects in a subalpine meadow. LMA is a leaf economic trait that is tightly correlated with plant physiological traits, while the LS shows a tight correlation with leaf temperature, indicating the strategy of plants to self‐adjust in different thermal and hydraulic conditions. In this study, we compared the two leaf traits between slope aspects and between functional types and explored their correlation with soil variables and heat load. Our results showed that high‐LMA, small‐leaved species were favored in south‐facing slopes, while the reverse was true in north‐facing areas. In detail, small dense‐leaved graminoids dominated the south slopes, while large thin‐leaved forbs dominated the north slopes. Soil moisture and the availability of soil P were the two most important soil factors that related to both LMA and LS, and heat load also contributed substantially. Moreover, we disentangled the relative importance of intraspecific trait variation and species turnover in the trait variation among plots and found that the intraspecific variation contributed 98% and 56% to LMA and LS variation among communities, respectively, implying a large contribution of intraspecific trait plasticity. These results indicate that LMA and LS are two essential leaf traits that affect the adaptation or acclimation of plants underlying the vegetation composition changes in different slope aspects in the subalpine meadow.  相似文献   

20.
The evolution of the investment in exaggerated secondary sexual traits is a topic of great interest for scientists. Despite antlers in the family Cervidae being one of the most interesting allometric structures, the nature of the relationships between antler and body size, and the influence of physiological factors driving the evolution of these characters, still remain unclear. In this paper, I examine these relationships in depth using the largest sample size ever studied (43 species). Under the hypothesis that antler growth may be limited by skeleton size as this process requires the allocation of huge amounts of mineral resources to the antlers, skeleton-related variables may more accurately explain these allometric relationships. The existence of physiological constraints should therefore be more clearly highlighted when studying the relationships between body size variables and the relative investment in the antler (measured as length or mass of antler per kg of skeleton). Results show that antler length is best described as being linearly related to head-body length rather than other measurements of size, and antler weight has a quadratic relationship with body mass. However, the relative investment in antler length (related to skeleton mass) is independent of body size variables, while the relative investment in antler mass has a quadratic relationship with shoulder height. The results obtained for antler mass reflect the existence of physiological constraints in the evolution of antlers, which are greater for larger sized species. On the other hand, the evolution of antler length may be linked to other factors, most probably sociobiological and biomechanical ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号