首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Larvae of the blow fly, Lucilia sericata (Meigen), enter diapause in the third instar after cessation of feeding. The effects of temperature and photoperiod on the termination of diapause were examined. The diapause terminated spontaneously under the diapause-inducing condition of 20 degrees C and LD 12:12, although pupariation was not synchronous. Diapause development proceeded under a low temperature of 7.5 degrees C. Transfer to long-day conditions of LD 16:8 or to a high temperature of 25 degrees C induced prompt and synchronous pupariation. Low temperatures in winter probably play a predominant role in the termination of diapause under natural conditions.  相似文献   

2.
The Karoo Paralysis tick, Ixodes rubicundus Neumann (Acari: Ixodidae), is a semi-voltine ixodid that survives stressful environmental conditions using morphogenetic diapause (eggs and engorged nymphs) and desiccation resistance. Both photoperiod and temperature influence diapause induction in the engorged nymph. Ixodes rubicundus nymphs are typical long-day photoperiodic organisms. The critical photoperiod is approximately 13.5 h light, 10.5 h dark, and they display a thermolabile response. The period between detachment and apolysis in engorged nymphs is modified by photoperiod; however, apolysis to ecdysis is not affected by photoperiod. Thus, initiation of development, but not the actual process is controlled by photoperiod. Most engorged nymphs delayed metamorphosis when exposed to short-day regimen (LD 12 : 12 h) after feeding. Nymphs exposed to pre- and post-feeding long-day regimen (LD 14 : 10 h) developed. Times for 50% of nymphs to apolyse when exposed to photoperiods of LD 14 : 10 h, 13.5 : 10.5 h, 13 : 11 h and 12 : 12 h were 28, 36, 40 and 58 days, respectively. Times for 50% of engorged nymphs to ecdyse ranged from 38 to 40 days after apolysis. Nymphs were sensitive to photoperiodic exposures before, during and after feeding. Nymphs exposed to long day (LD 14 :10 h) before and during feeding, moulted at 20 degrees C; however, most exposed to 10 degrees C followed by 20 degrees C (post-feeding) went into diapause. Both short- (10 : 14 h) and long- (14 : 10 h) day exposed engorged nymphs survived 45 days at 0% r.h. (n = 73), but diapause-destined ticks kept at 13 degrees C lost the least mass (29.5+/-9.5%, SD), while nondiapause ticks at 23 degrees C lost the most (48.7+/-8.2%, SD). Termination of diapause and transition to development probably coincides with a definite increase of water vapour uptake by engorged nymphs. Comparatively, I. rubicundus engorged nymphs are more desiccation tolerant than a North-American counterpart, Amblyomma cajennense (Fabricius) (Acari: Ixodidae), which is also semi-arid- to xeric-adapted. Diapause conveys important survival attributes that enable engorged I. rubicundus nymphs to inhabit a semi-arid environment with great temperature extremes, and to synchronize their activity periods with seasons and host utilization patterns.  相似文献   

3.
Adult females of Pyrrhocoris apterus, programmed for diapause by short-day (SD) photoperiod and those programmed for reproduction by long-day (LD) retain photoperiodic information in continuous darkness (DD) until death. However, if the interruption of SD by DD is made in the course of diapause programming in adults, then the incidence of diapause depends on the number of SD cycles received before DD, with no evidence that the photoperiodic clock is free-running at DD to complete diapause induction. These results indicate that the photoperiodic clock is stopped after transfer to DD and the information accumulated before transfer to DD is maintained. Diapause programming in the adult stage requires 9–10 SD cycles to induce diapause in 80% of individuals. However, if the diapause programming starts after ecdysis of LD-larvae to the last instar, only 3 SD cycles before transfer to DD are required for diapause in 80% of individuals. Surprisingly, if the newly ecdysed last instar LD-larvae, sensitive to photoperiod, are transferred to DD (thus they did not experience any SD), diapause occurs in 40% of the individuals. Thus, diapause ‘information’ is present in LD-larvae and is responsible for a lower number of SD required for diapause induction in the larval than in the adult stage.  相似文献   

4.
5.
Abstract The Indian meal moth Plodia interpunctella Hübner (Lepidoptera: Pyralidae) diapauses as a last‐instar (fifth) larva. At 30 °C, no larvae enter diapause under any photoperiodic conditions; at 25 °C, the photoperiodic response curve is a long‐day type with a critical length of approximately 13 h light; at 20 °C, diapause is induced moderately even under long days (> 13 h). Cumulative effects of short days or long days on diapause induction are determined by alternate, stepwise and gradually changing regimes of photoperiod at 25 °C. When the larvae are repeatedly exposed to LD 16 : 8 h and LD 12 : 12 h photoperiods every other day, the incidence of diapause is 37%. When the larvae are placed under an LD 16 : 8 h photoperiod for 2 days and then under an LD 12 : 12 h photoperiod for 1 day, it is 38 %. Exposure to an LD 16 : 8 h photoperiod for 1 day and then to an LD 12 : 12 h photoperiod for 2 days induces only 15% diapause. This may indicate that the photoperiodic information is not accumulated in a simple fashion despite the generally accepted hypothesis (i.e. photoperiodic counter). Larvae exposed to an LD 16 : 8 h photoperiod for 5 days after oviposition express a very high incidence of diapause even under short days between an LD 2 : 22 h and LD 12 : 12 h photoperiod. After 10 days exposure to an LD 16 : 8 h photoperiod, however, the short day does not induce diapause strongly. On the other hand, an LD 12 : 12 h photoperiod in the early larval life is highly effective in the induction of diapause. A gradual increase or decrease of photoperiod (2 min day?1) shows that the direction of photoperiodic change does not affect the diapause determination.  相似文献   

6.
Developmental profiles of dopamine (DA) and serotonin (5-hydroxytryptamine, 5-HT) in the larval CNS of Chymomyza costata were measured by HPLC using electrochemical detection. Larvae of two strains, wild-type (W) and nondiapause mutant (M), were maintained either under long-day (LD, inducing pupariation) or short-day (SD, inducing diapause in W-strain) photoperiods. The levels of DA ranged from 10 fmol/CNS (early 3rd instar larvae) to 60 fmol/CNS (150-day-old diapausing larvae); the range for 5-HT was from 10 fmol/CNS to 75 fmol/CNS in the same larvae. During the 3rd larval instar, which is the decisive stage for photoperiodic induction of diapause, no differences were found in DA developmental profiles between different strains or conditions. Some differences were found in 5-HT developmental profiles, but only after the end of sensitive stage, and were therefore regarded as insignificant for regulation of developmental mode. Similarly, no clear correlations between the developmental profiles of DA and 5-HT and the course of developmental changes during the maintenance and termination of a few-month-long larval diapause were observed. Furthermore, the DA and 5-HT levels in the CNS were pharmacologically manipulated by feeding the larvae with either precursors or enzyme inhibitors of DA and 5-HT biosynthesis. Although retardations of growth and development were observed, the treated larvae retained full capacity for the photoperiodic response, irrespective of the level of DA or 5-HT in their CNS. Larvae with their 5-HT depleted to trace levels survived and were capable of diapause induction, maintenance, and termination. Depletion of DA to trace levels resulted in 100% mortality. Collectively, the present study indicates that 5-HT in the CNS is dispensable for the photoperiodic response in C. costata. More information is needed to elucidate the potential role of DA.  相似文献   

7.
Abstract. The intensity of larval diapause in Sesamia nonagrioides Lef (Lepidoptera: Noctuidae) was investigated under laboratory conditions. Newly hatched larvae were exposed to different stationary photoperiods (from LD 7 : 17 h to LD 14 : 10 h), at a constant temperature of 25 °C. Diapause incidence was higher when larvae were exposed to daylengths shorter than the critical value (LD 12 : 12 h), whereas the within‐treatment variation in the larval period appeared to be significantly correlated with the photoperiod applied. The incidences of diapause and the duration of larval development were also measured after exposing larvae to short photoperiods (LD 8 : 16 h, LD 10 : 14 h or LD 12 : 12 h) in combination with various temperatures (20, 22.5 or 25 °C). Although an increase in the incidence of diapause appeared with the lowering of the temperature, no statistical differences were observed in the time needed for pupation within the photoperiodic treatments at the temperatures of 20 and 22.5 °C. Furthermore, when diapausing larvae were transferred to the long photoperiod of LD 16 : 8 h, they immediately proceeded to pupation, regardless of the photoperiod or the temperature to which they had been previously exposed, indicating that there were no differences in the intensity of diapause. Photoperiodic changes from LD 10 : 14 h to LD 12 : 12 h or to LD 14 : 10 h at different larval ages reduced the intensity of diapause with (a) early age of transfer and (b) increase of daylength. By contrast, when larvae were transferred from the long photoperiod of LD 14 : 10 h to shorter, such as LD 10 : 14 h or LD 12 : 12 h, a small increase in the intensity of diapause with the shortening of the daylength was apparent. These results support the hypothesis that insects may compare the duration of the photoperiod and could classify them as either longer or shorter in relation to the critical value.  相似文献   

8.
Wu SH  Yang D  Lai XT  Xue FS 《Journal of insect physiology》2006,52(11-12):1095-1104
The seasonal life cycle of the zygaenid moth, Pseudopidorus fasciata is complicated by two different developmental arrests: a winter diapause as a fourth larval instar and a summer diapause as a prepupa in a cocoon. Both larval diapause induction and termination are under photoperiodic control. Short days induce larval diapause with a critical daylength of 13.5h and long days terminate diapause with a critical daylength of 14h. In the present study photoperiodic control of summer diapause was investigated in Pseudopidorus fasciata. Under long photoperiods ranging from LD 14:10 to LD 18:6, only part of the population entered summer diapause, the rest continued to develop. The lowest number of prepupae entered diapause at LD 14:10, followed by LD 16:8 and LD 17:7. The highest incidence of diapause occurred with photoperiods of LD 15:9 and LD 18:6. By transferring the diapausing prepupae induced by various long photoperiods (LD 14:10, LD 15:9, LD 16:8, LD 17:7, LD 18:6) to LD 13:11, 25 degrees C, the duration of diapause induced by LD 14:10 was significantly shorter than those induced by longer photoperiods. By keeping aestivating prepupae induced by LD 15:9, 28 degrees C or by natural conditions at short photoperiods (LD 11:13 and LD 13:11) and at a long photoperiod (LD 15:9), the duration of diapause at LD 15:9 was more than twice as long as than those at LD 11:13 and LD 13:11. Moreover, adult emergence was highly dispersed with a high mortality at LD 15:9 but was synchronized with low mortality at LD 11:13 and LD 13:11. When the naturally induced aestivating prepupae were kept under natural conditions, the early aestivating prepupae formed in May exhibited a long duration of diapause (mean 126 days), whereas the later-aestivating prepupae formed in July exhibited a short duration of diapause (mean 69 days). These results indicate that aestivating prepupae require short or shortening photoperiod to terminate their diapause successfully. By transferring naturally induced aestivating prepupae to 25, 28 and 30 degrees C, the duration of diapause at the high temperature of 30 degrees C was significantly longer than those at 25 and 28 degrees C, suggesting that high temperature during summer also plays an important role in the maintenance of summer diapause in Pseudopidorus fasciata. All results reveal that summer diapause can serve as a "bet hedging" against unpredictable risks due to fluctuating environments or as a feedback mechanism to synchronize the period of autumn emergence.  相似文献   

9.
Abstract.  The effect of photoperiod on pupariation time and the ability to secrete ecdysteroids by the larval ring gland of the flesh fly, Boettcherisca peregrina , are compared among three tropical non-diapausing colonies, Bp (forest), Bp (Luwuk) and Bp (NC) and one temperate diapausing colony of Bp (Tokyo). Non-diapausing colonies do not enter diapause under any photoperiod at 20°C, whereas the Bp (Tokyo) diapausing colony enters diapause at the pupal stage under a short-day photoperiod. The times required for 50% pupariation of Bp (forest), Bp (Luwuk) and Bp (Tokyo) are 34 h, 36 h 20 min and 34 h 40 min under short days (SD), respectively. However, Bp (NC) pupariates in a much shorter time (26 h 10 min) compared with the others. The 50% pupariation times of Bp (NC), Bp (forest) and Bp (Tokyo) under long days (LD) are 27 h, 25 h 50 min and 26 h 40 min, respectively. However, it is much longer in Bp (Luwuk) at 53 h 20 min. The rates of secretion of ecdysteroids by the larval ring glands in vitro in Bp (Tokyo) and Bp (forest) are six- to ten-fold higher under SD (6.00 and 3.69 ng) than under LD (0.60 ng), whereas the ring glands of Bp (Luwuk) and Bp (NC) secrete 3.06 and 8.25 ng ecdysteroids under LD and 5.18 and 10.53 ng under SD, respectively. These results suggest there are at least three different physiological types among non-diapausing colonies of B. peregrina : Bp (forest), Bp (Luwuk) and Bp (NC).  相似文献   

10.
Abstract. The artificially selected 'non-diapause' strain of Pyrrhocoris apterus (L.) (Heteroptera) showed no diapause response to photoperiod at 26°C (Socha & Hodkova, 1994). However, the diapause response to short-day photoperiod (LD 12:12 h) became apparent at lower temperatures of 17°C (70% diapause) or 20°C (41% diapause). Diapause was induced in 60% females by short-day photoperiod combined with thermoperiod of 26/16°C, whereas only 20% diapause was induced by the same thermoperiod under continuous darkness. Thus the time-measuring system was not removed by artificial selection but the diapause response was shifted to lower temperatures. The diapause response to short days seems to be favoured rather by low temperature during scotophase than by low temperature throughout the whole light/dark cycle. If the percentage of diapause at 26°C is compared in F1 hybrids and in wild and selected parental strains the diapause appears to be dominant at LD 13:11 h but recessive at LD 11:13 h and LD 10:14 h. A hypothesis is proposed that the inheritance of the percentage of diapause in F1 hybrids is determined by interactions of genes controlling the temperature dependence of photoperiodic response.  相似文献   

11.
Hua A  Yang D  Wu S  Xue F 《Journal of insect physiology》2005,51(11):1261-1267
In the zygaenid moth, Pseudopidorus fasciata, both larval diapause induction and termination are under photoperiodic control. In this study, we investigated whether photoperiodic time measurement (with a 24-h light-dark cycle) in this moth is qualitative or quantitative. Photoperiodic response curves, at 22, 25, and 28 degrees C indicated that the incidence of diapause depended on whether the scotophases exceeded the critical night length (CNL) or not. All scotophases longer than the CNL-induced diapause; all scotophases shorter than the CNL-inhibited diapause. The CNL was 10.5h at 25 and 28 degrees C, and 10h at 22 degrees C. By transferring from various short photoperiods (LD 8:16, LD 9:15, LD 10:14, LD 11:13, LD 12:12, and LD 13:11) to a long photoperiod (LD 16:8) at different times, the number of light-dark cycles required for 50% diapause induction at 25 degrees C was 7.14 at LD 8:16, 7.2 at LD 9:15, 7.19 at LD 10:14, 7.16 at LD 11:13, and 7.13 at LD 12:12, without showing a significant difference between the treatments. Only at LD 13:11 (near the CNL), the number of light-dark cycles was significantly increased to 7.64. The intensity of diapause induced under different short photoperiods (LD 8:16, LD 9:15, LD 10:14, LD 11:13, and LD 12:12) at 25 degrees C was not significantly different with an average diapause duration of 36 days. The duration of diapause induced under LD 13:11 was significantly reduced to 32 days. All results indicate that the night-lengths are measured as either "long" or "short" compared with some critical value and suggest that photoperiodic time measurement for diapause induction in this moth is based on a qualitative principle.  相似文献   

12.
Photoperiodic induction of reproductive diapause at 18°C was investigated in fourOrius [Heteroptera: Anthocoridae] species.Orius insidiosus (Say) displayed a long-day response with a critical photoperiod between L11:D13 and L12:D12. Diapause in this species was terminated rapidly when the temperature and/or the daylength were increased.Orius majusculus (Reuter) also displayed a long-day response. The critical photoperiod fell between L14:D10 and L16:D8. Diapause in this species was not terminated within 14 days when both temperature and daylength were increased. InOrius albidipennis (Reuter) no diapause could be induced at photoperiods varying from L8:D16 to L16:D8. InOrius tristicolor (White) a high proportion of diapause was found at all photoperiods tested. The effect of temperature on photoperiodic induction of diapause was studied inO. insidiosus at L10:D14. Diapause occurred at 18°C, 21°C and 25°C, but not at 30°C. Again, diapause was terminated rapidly after transfer to 25°C/L16:D8. Exposing only the nymphal instars 1–5 to short daylength was not enough to induce diapause in the whole population ofO. majusculus. Orius predatory bugs are used as biocontrol agents against western flower thrips,Frankliniella occidentalis (Pergande) [Thysanoptera: Thripidael, in greenhouses. The consequences of photoperiodic induction of diapause for the success of early season releases ofOrius are discussed.  相似文献   

13.
To study the question whether photoperiodic time measurement in the spider mite Tetranychus urticae is based on a qualitative or quantitative principle, the duration of diapause development was determined in individual females at various constant photoperiods at 19 degrees C. Diapause duration at all four long-night treatments fluctuated around 64.5 days, varying from 62.2 at LD 12:12h to 66.4 at LD 10:14h. The within-treatment variation in diapause duration of the long-night groups appeared to be significantly correlated to the nightlength of the photoperiods used; the longer the nightlength, the higher the within-treatment variation. Frequency distributions of females completing diapause under the two regimes with nightlengths near the critical nightlength were skewed to the right. Mean diapause durations at these regimes, LD 13:11h and LD 14:10h, were 25.4 and 11.9 days, respectively. Mites completed diapause rapidly and synchronously under the three short-night photoperiods tested; within two weeks after transfer from cold storage at 4 degrees C to the diapause terminating regimes at 19 degrees C all females started reproduction. Mean diapause durations were 8.1, 6.4 and 6.5 days for the short-night treatments LD 15:9h, LD 17:7h and LD 19:5h, respectively. The coefficients of variation of diapause duration (variability within groups relative to the mean) of the short-night and the long-night groups varied from 18 to 42%; the coefficients of the two intermediate groups were 69and 81%. There was a clear difference in diapause duration between long-night and short-night groups, but no significant difference was present in this characteristic between different long-night groups on the one hand and only a small difference between different short-night groups on the other. These results support the hypothesis that photoperiodic time measurement in the spider mite is based on a qualitative principle; photoperiods are classified as either 'long' or 'short' in relation to a 'critical' photoperiod. However, around the critical nightlength, intermediate responses were observed which might hint at the quantitative nature of the underlying mechanism. Therefore, although most results are in agreement with the hypothesis of a qualitative mechanism, it cannot be excluded that photoperiodic time measurement in the spider mite is based on a quantitative principle.  相似文献   

14.
A study was made of photoperiodic induction of the facultative pupal diapause in the tobacco hornworm, Manduca sexta, reared on artificial diet in the laboratory. The species entered a prolonged diapause when the egg and larval feeding stages were reared in daily photoperiods of 13·5 hr or less. Diapause was induced in all insects at photoperiods ranging from 1 to 13 hr, and part of the population entered diapause at only 15 to 30 min of light per day. Photoperiods of 14 hr or more and continous darkness prevented diapause. Duration of diapause varied with the inductive photoperiod in which the hornworms were reared during the sensitive period. Insects reared in longer diapause-inducing photoperiods within a range of 12 to 13·25 hr remained in diapause longer than those reared in shorter photoperiods. There was no difference in the rate of larval development of hornworms reared in diapause-inducing vs diapause-preventing photoperiods. Temperatures of 26 to 30°C were most favourable for the photoperiodic induction of diapause; at 21°C, the critical photoperiod and incidence of diapause were decreased. Diapause induction was suppressed by low (18°C) and higher (33°C) temperatures. The number of inductive 12L:12D (light = 12 hr; dark = 12 hr) cycles required to induce diapause ranged from as few as 5 for some insects to as many as 12 for others when the post-inductive régimen was continuous light, but with insects previously held in continuous dark, as few as 2 12L:12D cycles during the last 2 days of larval feeding induced diapause in 38 per cent of the population. Only 3 to 4 cycles of 15L:9D during the final larval instar reversed inductive effects of 14 to 15 12L:12D cycles. Photoperiodic sensitivity extended from the late embryo to the end of larval feeding but showed considerable fluctuation during development with maximum sensitivity occurring just before egg hatch and during larval growth.Light breaks applied at different times during the dark period of 12L:12D cycles generated different response curves, depending on the number of cycles in which light breaks were repeated. When repeated for 6 cycles, a unimodal response curve was obtained; 10 cycles produced a bimodal curve and light breaks given for 18 cycles throughout the sensitive period averted diapause regardless of time of night applied. It is suggested that diapause is regulated by a photo- and thermolabile substance that accumulates during long nights (11 hr or more) and acts during the early pupal stage to inhibit the translocation and release of development-promoting neurosecretion from the brain.  相似文献   

15.
Helicoverpa armigera (Hübner) exhibits a facultative pupal diapause, which depends on temperature and photoperiod. Pupal diapause is induced at 20 degrees C by short photoperiods and inhibited by long photoperiods during the larval stage. However, in some pupae (35% of males and 57% of females) of a non-selected field population from Okayama Prefecture (34.6 degrees N), diapause is not induced by short photoperiods. In the present experiment, the importance of temperature for diapause induction was studied in the non-diapausing strain, which was selected from such individuals reared at 20 degrees C under a short photoperiod of 10L:14D. Furthermore, the sensitive stage for thermal determination of pupal diapause was determined by transferring larvae of various instars and pupae between 20 degrees C and 15 degrees C. Diapause was induced by 15 degrees C without respect to photoperiod. When larvae or pupae reared from eggs at 20 degrees C under a short or a long photoperiod were transferred to 15 degrees C in the periods of the middle fifth instar to the first three days after pupation, the diapause induction rate was significantly reduced in both males and females, especially in females. In contrast, when larvae or pupae reared at 15 degrees C were transferred to 20 degrees C in the same periods, diapause was induced in males, but not in females. However, the diapause induction rate of pupae transferred to 20 degrees C on the fourth day after pupation was significantly increased in females. The results show that temperature is the major diapause cue in the photoperiod-insensitive strain and the periods of middle fifth larval instar to early pupal stage are the thermal sensitive stages for pupal diapause induction with some different responses to temperatures between males and females in H. armigera.  相似文献   

16.
Diapause in the swallowtail, Papilio machaon occurs at the pupal stage in response to short days during larval development. The precocious pupae obtained by allatectomy also entered diapause in response to short days. The photoperiodic induction of diapause in precocious pupae was very similar to that in normal pupae in spite of the abbreviation of the last-larval instar. The critical photoperiod for diapause in the precocious pupae was 14.5 h, being about the same as that in normal pupae. Occurrence of diapause in the swallowtail is closely associated with the pupal stage and the induction process may be triggered by the cessation of juvenile hormone secretion.  相似文献   

17.
A photoperiodically-controlled diapause of the long-day, short-day type was identified in a brown-winged, yellow-eyed strain of Ephestia cautella (Walker). The proportion of larvae diapausing in very long photoperiods was less than in short photoperiods. The mean critical photoperiod, here defined as that photoperiod giving half the maximum percentage of insects that diapause in response to photoperiod at a given temperature, was between 12 and 13 hr for the long-day reaction at both 20 and 25°C. The principal sensitive phase occurred near the time of the last larval moult. The mean duration of diapause was 2–3 months at 20°C and slightly longer at 25°C. The optimum temperature for diapause development was near 15°C, all larvae pupating within 24 days after a 45-day exposure at this temperature. Diapause could be terminated whenever larvae diapausing at 20°C were exposed to as few as five long (15 hr) photoperiods at 25°C. Long photoperiods at 20°C, or short photoperiods (9 hr) at 25°C were less effective in terminating diapause.  相似文献   

18.
Watanabe M 《Cryobiology》2000,40(4):294-301
Effects of photoperiod and temperature on the development and cold hardiness were investigated in larvae of Hypera punctata. At a relatively low temperature (15 degrees C), the larvae fed less and developed more slowly under a 12L:12D (SD) photoperiod than under a 16L:8D photoperiod (LD). SD larvae had lower gut weight against the whole body weight and lower supercooling point (SCP) than the LD counterparts for the same instar and same body weight. This was because the larval SCP is markedly affected by the quantity of the gut content. Laboratory experiments indicated that the low temperature mortality of this larvae occurred mainly due to freezing irrespective of the photoperiod and temperature, suggesting that the lower lethal temperature (LLT) depends on the supercooling ability of larvae. The SD larvae tended to have a lower SCP and hence a lower LLT than the LD counterparts at 15 or 10 degrees C, unlike at 20 degrees C. Thus, the slower larval development under SD conditions at relatively low temperatures may prevent larvae from reaching the later instar, which have a higher SCP and thus less cold tolerance, during the coldest season. The suppressed feeding activity under SD conditions would lower the SCP, thereby reducing the possibility of lethal tissue freezing. Such a photoperiodic and thermal regulation of the larval development and the supercooling ability appear to represent adaptive mechanisms for winter survival in this beetle.  相似文献   

19.
Induction of larval diapause is a photoperiodically controlled event in the life history of the moth Pseudopidorus fasciata. In the present study, the photoperiodic counter of diapause induction has been systematically investigated. The required day number (RDN) for a 50% response was determined by transferring from a short night (LD 16:8) to a long night (LD 12:12) or vice versa at different times after hatching, The RND differed significantly between short- and long-night cycles at different temperatures. The RDN for long-night cycles at 20, 22, 25 and 28 degrees C was 11.5, 9.5, 7.5 and 8.5 days, respectively. The RDN for short-night cycles was 3 days at 22 degrees C and 5 days at 20 degrees C indicating that the effect of one short night was equivalent to the effect of 2-3 long nights effect. Night-interruption experiments of 24h photoperiods by a 1 h light pulse showed that the most crucial event for the photoperiodic time measurement in this moth was whether the length of pre-interruption (D(1)) or the post-interruption (D(2)) scotophases exceeded the critical night length (10.5 h). If D(1) or D(2) exceeded 10.5 h diapause was induced. The diapause-averting effect of a single short-night cycle (LD 16:8) against a background of long nights (LD 12:12) showed that the photoperiodic sensitivity was greatest during the first 7 days of the larval period and the highest sensitivity was on the fourth day. Both non-24 and 24 h light-dark cycle experiments revealed that the photoperiodic counter in P. fasciata is able to accumulate both long and short nights during the photosensitive period, but in different ways. The information from short-night cycles seems to be accumulated one by one in contrast to long-night cycles where six successive cycles were necessary for about 50% diapause induction and eight cycles for about 90% diapause. These results suggest the accumulation of long-night and short-night cycles may be based on different mechanisms.  相似文献   

20.
Abstract. Insects and mites may measure photoperiods eitfier by classifying them as long or short relative to a critical value (qualitative time measurement) or by using the absolute value (quantitative time measurement). The spider mite Tetranychus urticae is thought to use a qualitative mechanism of time measurement. In this paper we present the results of experiments with an inbred line of the spider mite (to keep genetic variation in photoperiodic responses small), to test whether quantitative aspects also play a role. Differences in diapause incidence in different long-night photoperiods at different temperatures may be an indication of quantitative responses to photoperiod. The effect of temperature on the photoperiodic response curve was studied at 16oC, 19oC and 22oC. The response curves appeared to be similar at 16oC and 19oC, with a critical nightlength between 10 and 11 h. At 22oC, diapause induction was less than 100% in all long-night regimens and die critical nightlength had shifted to 12 h. Maximum diapause induction (93%) occurred in a light-dark cycle with a 16 h dark phase (LD 8:16 h). Diapause induction was lowest in long-night photoperiods with dark phases of 20 h and longer. The number of light-dark cycles needed for 50% diapause induction at 19oC varied. between 12.1 and 14.7 for LD 6:18 h, between 10.9 and 12.5 for LD 8:16 h, between 10.6 and 11.6 for LD 10:14 h, and between 10.1 and 10.7 for LD 12:12 h. Independent of die light-dark regimen, diapause induction took place in some individuals after receiving 8 cycles and virtually all individuals entered diapause after 16 cycles. No effect was found of the photoperiodic treatment during prediapause development (LD 6:18 h, LD 8:16 h, LD 10:14 h, LD 12:12 h) on diapause duration. The average diapause duration at LD 10:14 h and 19oC was 61 days over all four treatments. We explained the results by hypothesising that nightlengths are assessed qualitatively and mat the photoperiodic clock operates more accurately near the critical nightlength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号