首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arcelins are abundant seed storage proteins thought to be implicated in the resistance of wild Phaseolus vulgaris (L.) genotypes against Zabrotes subfasciatus (Boheman), an important storage insect pest of common bean. Here, the insecticidal activity of the arcelin-5 variant that is present in the highly resistant P. vulgaris accession G02771 was investigated. No correlation could be established between the presence of arcelin 5 and the insecticidal effects observed in G02771 seeds. Insect feeding assays with artificial seeds into which purified arcelin-5 protein was incorporated and with transgenic P. acutifolius (A. Gray) seeds in which the arcelin-5 genes were expressed, showed that the presence of arcelin-5 proteins, even at elevated levels, was not sufficient to achieve adequate resistance against Z. subfasciatus. The same might apply to other arcelin variants. Nevertheless, as resistance is clearly closely linked to the presence of the arcelin-1 or arcelin-5 locus, arcelins remain useful markers in breeding programmes aimed at introgressing high levels of resistance to Z. subfasciatus in P. vulgaris cultivars.  相似文献   

2.
Abundant lectin-related proteins found in common beans (Phaseolus vulgaris L.) have been shown to confer resistance against the larvae of a number of bruchid species. Genes encoding for these proteins are members of the lectin multigene family, the most representative components being arcelins, phytohemagglutinins and -amylase inhibitors. Arcelins have been described in seven variants, some of which are resistance factors against the Mexican bean weevil (Zabrotes subfasciatus), a major bean predator. In this study the isolation and sequencing of arcelin genes from wild P. vulgaris genotypes, containing Arc3 and Arc7 variants, is reported, and similarities and evolutionary relationships among the seven known arcelins are described. The evolutionary analysis shows that arcelins 3 and 4 cluster together and are the most-ancient variants. A duplication event gave rise to two additional clusters, one comprising arcelins 1, 2 and 6 and separated from the cluster of arcelins 5 and 7. A multiple number of arcelin genes were found in arcelin 3 and 4 genotypes indicating that more than one type of arcelin gene may be present in the same locus. Some of these sequences are reminiscent of ancient duplication events in arcelin evolution demonstrating that arcelins have evolved through multiple duplications. A further aim of this paper was to better understand and describe the evolution of the entire lectin multigene family. Beside arcelins, a number of other types of sequences, such as putative lectins and sequences not easily classifiable, were found in genotypes containing Arc3 and Arc4. These results, together with the evolutionary analysis, indicate that lectin loci are quite complex and confirm their origin by multiple duplication events.Communicated by J.S. Heslop-HarrisonL. Lioi and F. Sparvoli contributed equally to the work  相似文献   

3.
Alpha-amylase inhibitor (alpha AI) protects seeds of the common bean (Phaseolus vulgaris) against predation by certain species of bruchids such as the cowpea weevil (Callosobruchus maculatus) and the azuki bean weevil (Callosobruchus chinensis), but not against predation by the bean weevil (Acanthoscelides obtectus) or the Mexican bean weevil (Zabrotes subfasciatus), insects that are common in the Americas. We characterized the interaction of alpha AI-1 present in seeds of the common bean, of a different isoform, alpha AI-2, present in seeds of wild common bean accessions, and of two homologs, alpha AI-Pa present in seeds of the tepary bean (Phaseolus acutifolius) and alpha AI-Pc in seeds of the scarlet runner bean (Phaseolus coccineus), with the midgut extracts of several bruchids. The extract of the Z. subfasciatus larvae rapidly digests and inactivates alpha AI-1 and alpha AI-Pc, but not alpha AI-2 or alpha AI-Pa. The digestion is caused by a serine protease. A single proteolytic cleavage in the beta subunit of alpha AI-1 occurs at the active site of the protein. When degradation is prevented, alpha AI-1 and alpha AI-Pc do not inhibit the alpha-amylase of Z. subfasciatus, although they are effective against the alpha-amylase of C. chinensis. Alpha AI-2 and alpha AI-Pa, on the other hand, do inhibit the alpha-amylase of Z. subfasciatus, suggesting that they are good candidates for genetic engineering to achieve resistance to Z. subfasciatus.  相似文献   

4.
Bruchid larvae cause major losses in grain legume crops throughout the world. Some bruchid species, such as the cowpea weevil and the Mexican bean weevil, are pests that damage stored seeds. Plant lectins have been implicated as antibiosis factors against insects, particularly the cowpea weevil, Callosobruchus maculatus. Talisia esculenta lectin (TEL) was tested for anti-insect activity against C. maculatus and Zabrotes subfasciatus larvae. TEL produced ca. 90% mortality to these bruchids when incorporated in an artificial diet at a level of 2% (w/w). The LD(50) and ED(50) for TEL was ca. 1% (w/w) for both insects. TEL was not digested by midgut preparations of C. maculatus and Z. subfasciatus. The transformation of the genes coding for this lectin could be useful in the development of insect resistance in important agricultural crops.  相似文献   

5.
Bruchid beetle larvae cause major losses in grain legume crops throughout the world. Some bruchid species, such as the cowpea weevil (Callosobruchus maculatus) and the Mexican bean weevil (Zabrotes subfasciatus), are pests that damage stored seeds. The Mediterranean flour moth (Anagasta kuehniella) is of major economic importance as a flour and grain feeder; it is often a severe pest in flour mills. Plant lectins have been implicated as antibiosis factors against insects. Bauhinia monandra leaf lectin (BmoLL) was tested for anti-insect activity against C. maculatus, Z. subfasciatus and A. kuehniella larvae. BmoLL produced ca. 50% mortality to Z. subfaciatus and C. maculatus when incorporated into an artificial diet at a level of 0.5% and 0.3% (w/w), respectively. BmoLL up to 1% did not significantly decrease the survival of A. kuehniella larvae, but produced a decrease of 40% in weight. Affinity chromatography showed that BmoLL bound to midgut proteins of the insect C. maculatus. 33 kDa subunit BmoLL was not digested by midgut preparations of these bruchids. BmoLL-fed C. maculatus larvae increased the digestion of potato starch by 25% compared with the control. The transformation of the genes coding for this lectin could be useful in the development of insect resistance in important agricultural crops.  相似文献   

6.
Erythrina velutina vicilin, EvV, is a dimeric glycoprotein with Mr of 124.6 kDa. EvV was tested for anti-insect activity against bean bruchid larvae. EvV had LD(50) of 0.10% and ED(50) of 0.14% for Z. subfasciatus and LD(50) of 0.26% and ED(50) of 0.19% for C. maculatus. EvV was not digested by bean larvae enzymes until 12 h of incubation, and at 24 h EvV was more resistant to Z. subfasciatus enzymes.  相似文献   

7.
The common bean, Phaseolus vulgaris, contains a family of defense proteins that comprises phytohemagglutinin (PHA), arcelin, and -amylase inhibitor (AI). Here we report eight new derived amino acid sequences of genes in this family obtained with either the polymerase chain reaction using genomic DNA, or by screening cDNA libraries made with RNA from developing beans. These new sequences are: two AI sequences and arcelin-4 obtained from a wild accession of P. vulgaris that is resistant to the Mexican bean weevil (Zabrotes subfasciatus) and the bean weevil (Acanthoscelides obtectus); an AI sequence from the related species P. acutifolius (tepary bean); a PHA and an arcelin-like sequence from P. acutifolius; an AI-like sequence from P. maculatus; and a PHA sequence from an arcelin-5 type P. vulgaris. A dendrogram of 16 sequences shows that they fall into the three identified groups: phytohemagglutinins, arcelins and AIs. A comparison of these derived amino acid sequences indicates that one of the four amino acid residues that is conserved in all legume lectins and is required for carbohydrate binding is absent from all the arcelins; two of the four conserved residues needed for carbohydrate binding are missing from all the AIs. Proteolytic processing at an Asn-Ser site is required for the activation of AI, and this site is present in all AI-like sequences; this processing site is also found at the same position in certain arcelins, which are not proteolytically processed. The presence of this site is therefore not sufficient for processing to occur.  相似文献   

8.
The deployment in common beans (Phaseolus vulgaris L.) of arcelin-based bruchid resistance could help reduce post-harvest storage losses to the Mexican bean weevil [(Zabrotes subfasciatus (Boheman)]. Arcelin is a member of the arcelin-phytohemagglutinin-α-amylase inhibitor (APA) family of seed proteins, which has been extensively studied but not widely used in bean breeding programs. The purpose of this study was to evaluate microsatellite markers for genetic analysis of arcelin-based bruchid resistance and to determine the orientation of markers and the rate of recombination around the APA locus. A total of 10 previously developed microsatellites and 22 newly developed markers based on a sequenced BAC from the APA locus were screened for polymorphism and of these 15 were mapped with an F2 population of 157 individuals resulting from a susceptible × resistant cross of SEQ1006 × RAZ106 that segregated for both the arcelin 1 allele and resistance to the bruchid, Z. subfasciatus. Microsatellites derived from APA gene sequences were linked within 0.8 cM of each other and were placed relative to the rest of the b04 linkage group. In a comparison of genetic to physical distance on the BAC sequence, recombination was found to be moderate with a ratio of 125 kb/cM, but repressed within the APA locus itself. Several markers were predicted to be very effective for genetic studies or marker-assisted selection, based on their significant associations with bruchid resistance and on low adult insect emergence and positions flanking the arcelin and phytohemagglutinin genes.  相似文献   

9.
During bean seed storage, yield can be lost due to infestations of Acanthoscelides obtectus Say, the bean weevil. The use of resistant varieties has shown promising results in fighting these insects, reducing infestation levels and eliminating chemical residues from the beans. The expression of resistance to A. obtectus in bean varieties is frequently attributed to the presence of phytohemagglutinins, protease inhibitors and alpha-amylase, and especially to variants of the protein arcelin, which reduce the larval viability of these insects. To evaluate the effect of bean seed storage time on the resistance expression of bean varieties to A. obtectus , tests with seeds of three ages (freshly-harvested, 4-month-old, and 8-month-old) were conducted in the laboratory, using four commercial varieties: Carioca Pitoco, Ipa 6, Porrillo 70, ônix; four improved varieties containing arcelin protein: Arc.1, Arc.2, Arc. 3, Arc.4; and three wild varieties also containing arcelin protein: Arc.1S, Arc.3S, and Arc. 5S. The Arc.5S, Arc.1S, and Arc.2 varieties expressed high antibiosis levels against the weevil; Arc.1 and Arcs expressed the same mechanism, but at lower levels. The occurrence of oviposition non-preference was also observed in Arc.5S and Arc.1S. The Arc.3 and Arc. 4 varieties expressed low feeding non-preference levels against A. obtectus. The expression of resistance in arcelin-bearing, wild or improved varieties was affected during the storage of seeds, and was high under some parameters but low in others. The results showed that addition of chemical resistance factors such as protein arcelin via genetic breeding may be beneficial in improving the performance of bean crops.  相似文献   

10.
In common bean (Phaseolus vulgaris L.), the most abundant seed proteins are the storage protein phaseolin and the family of closely related APA proteins (arcelin, phytohemagglutinin and α-amylase inhibitor). High variation in APA protein composition has been described and the presence of arcelin (Arc) has been associated with bean resistance against two bruchid beetles, the bean weevil (Acanthoscelides obtectus Say) and the Mexican bean weevil (Zabrotes subfasciatus Bohemian). So far, seven Arc variants have been identified, all in wild accessions, however, only those containing Arc-4 were reported to be resistant to both species. Although many efforts have been made, a successful breeding of this genetic trait into cultivated genotypes has not yet been achieved. Here, we describe a newly collected wild accession (named QUES) and demonstrate its resistance to both A. obtectus and Z. subfasciatus. Immunological and proteomic analyses of QUES seed protein composition indicated the presence of new Arc and arcelin-like (ARL) polypeptides of about 30 and 27 kDa, respectively. Sequencing of cDNAs coding for QUES APA proteins confirmed that this accession contains new APA variants, here referred to as Arc-8 and ARL-8. Moreover, bioinformatic analysis showed the two proteins are closely related to APA components present in the G12949 wild bean accession, which contains the Arc-4 variant. The presence of these new APA components, combined with the observations that they are poorly digested and remain very abundant in A. obtectus feces, so-called frass, suggest that the QUES APA locus is involved in the bruchid resistance. Moreover, molecular analysis indicated a lower complexity of the locus compared to that of G12949, suggesting that QUES should be considered a valuable source of resistance for further breeding purposes.  相似文献   

11.
Four variants of arcelin, an insecticidal seed storage protein of bean, Phaseolus vulgaris L., were investigated. Each variant (arcelin-1, -2, -3, and -4) was purified, and solubilities and Mrs were determined. For arcelins-1, -2, and -4, the isoelectric points, hemagglutinating activities, immunological cross-reactivities, and N-terminal amino acid sequences were determined. On the basis of native and denatured Mrs, the variants were classified as being composed of dimer protein (arcelin-2), tetramer protein (arcelins-3 and -4), or both dimer and tetramer proteins (arcelin-1). Although the dimer proteins (arcelins-1d and -2) could be distinguished by Mrs and isoelectric points, they were identical for their first 37 N-terminal amino acids and had similar immunological cross-reactions, and bean lines containing these variants had a DNA restriction fragment in common. The tetramer proteins arcelin-1t and arcelin-4 also could be distinguished from each other based on Mrs and isoelectric points; however, they had similar immunological cross-reactions and they were 77 to 93% identical for N-terminal amino acid composition. The similarities among arcelin variants, phytohemagglutinin, and a bean α-amylase inhibitor suggest that they are all encoded by related members of a lectin gene family.  相似文献   

12.
Arcelins are insecticidal proteins found in some wild accessions of the common bean, Phaseolus vulgaris. They are grouped in six allelic variants and arcelin-5 is the variant with the highest inhibitory effect on the development of Zabrotes subfasciatus larvae. Characterization of the protein and its genes resulted in the identification of three polypeptides and the isolation of two genes that encode the Arc5a and Arc5b polypeptides. Here we describe a new gene, Arc5-III. The protein it encodes has 81% amino acid identity with the derived amino acid sequences of Arc5-I and Arc5-II. The Arc5-III gene is highly expressed in developing seeds and at a much lower level in roots. Data obtained by a combination of two-dimensional gel electrophoresis, protein sequencing and MALDI-TOF mass spectrometry analysis support the conclusion that Arc5-III encodes a polypeptide present in Arc5c band. Using ion-exchange chromatography, three fractions containing arcelin-5 polypeptides were eluted by increasing the salt concentration. The three fractions contain various amounts of the three arc-5 polypeptides and inhibit the growth of Zabrotes subfasciatus larvae differentially, suggesting differences in insecticidal activity among the arcelin-5 isoforms.  相似文献   

13.

Background  

An interesting seed protein family with a role in preventing insect herbivory is the multi-gene, APA family encoding the α-amylase inhibitor, phytohemagglutinin and arcelin proteins of common bean (Phaseolus vulgaris). Variability for this gene family exists and has been exploited to breed for insect resistance. For example, the arcelin locus has been successfully transferred from wild to cultivated common bean genotypes to provide resistance against the bruchid species Zabrotes subfasciatus although the process has been hampered by a lack of genetic tools for and understanding about the locus. In this study, we analyzed linkage disequilibrium (LD) between microsatellite markers at the APA locus and bruchid resistance in a germplasm survey of 105 resistant and susceptible genotypes and compared this with LD in other parts of the genome.  相似文献   

14.
This research intended to evaluate the development of Zabrotes subfasciatus (Boh.), a stored-grain pest, on bean genotypes (Phaseolus vulgaris L.) commonly cultivated in the State of Parana and containing arcelin, and the possible resistance of these genotypes to the bruchine. Tests were performed under laboratory conditions (27 masculineC, fotophase 12h, 50 +/- 10 % RH) with the genotypes TPS-Bionobre, IAC-Una, IPR-Uirapuru, IAPAR 44, IPR Juriti, IAPAR 81, Pérola, Carioca, Bolinha, and two others containing arcelin, Arc 1 and Arc 2. The genotypes with Arc 1 and 2 alleles caused higher mortality of immature stages; in Arc 1 developmental period was prolonged and the male and female dry weights were the lowest, suggesting an antibiosis mechanism of resistance. Non-preference for oviposition was not observed for these two genotypes. Among varieties without arcelin, IAPAR 44 was the most resistant to the bruchid, being the least preferred for oviposition, and promoting low percentage of viable eggs, long developmental period and reduced male and female adult dry weight. Perola, IPR Juriti and Bolinha with high number of eggs and viable eggs, low mortality of immature stages, were the most susceptible.  相似文献   

15.
Arcelin, an anti-metabolic protein was purified from the seeds of wild bean, Lablab purpureus. The feeding assay containing arcelin at 5, 10 and 15 microg concentrations revealed no antifeedant effect against fifth instar larvae of S. litura. However, the enhanced activity of alpha- and beta-naphthyl esterases in the mid-gut samples of S. litura treated with arcelin suggests countermeasure against the toxic effect of arcelin.  相似文献   

16.
Mass spectrometric methods were used to investigate the proteolytic processing and glycopeptide structures of three seed defensive proteins from Phaseolus vulgaris. The proteins were the alpha-amylase inhibitors alphaAI-1 and alphaAI-2 and arcelin-5, all of which are related to the seed lectins, PHA-E and PHA-L. The mass data showed that the proteolytic cleavage required for activation of the amylase inhibitors is followed by loss of the terminal Asn residue in alphaAI-1, and in all three proteins, seven or more residues were clipped from the C-termini, in the manner of the seed lectins. In most instances, individual glycoforms could be assigned at each Asn site, due to the unique masses of the plant glycopeptides. It was found that alphaAI-1 and alphaAI-2 differed significantly in their glycosylation patterns, despite their high sequence homology. These data complement the previous X-ray studies of the alpha1-amylase inhibitor and arcelin, where many of the C-terminal residues and glycopeptide residues could not be observed.  相似文献   

17.
Bruchid beetle larvae cause major losses in grain legume crops throughout the world. Some bruchid species, such as the cowpea weevil (Callosobruchus maculatus) and the Mexican bean weevil (Zabrotes subfasciatus), are pests that damage stored seeds. The Mediterranean flour moth (Anagasta kuehniella) is of major economic importance as a flour and grain feeder; it is often a severe pest in flour mills. Plant lectins have been implicated as antibiosis factors against insects. Bauhinia monandra leaf lectin (BmoLL) was tested for anti-insect activity against C. maculatus, Z. subfasciatus and A. kuehniella larvae. BmoLL produced ca. 50% mortality to Z. subfaciatus and C. maculatus when incorporated into an artificial diet at a level of 0.5% and 0.3% (w/w), respectively. BmooLL up to 1% did not significantly decrease the survival of A. kuehniella larvae, but produced a decrease of 40% in weight. Affinity chromatography showed that BmoLL bound to midgut proteins of the insect C. maculatus. 33 kDa subunit BmoLL was not digested by midgut preparations of these bruchids. BmoLL-fed C. maculatus larvae increased the digestion of potato starch by 25% compared with the control. The transformation of the genes coding for this lectin could be useful in the development of insect resistance in important agricultural crops.  相似文献   

18.
The regulatory sequences of many genes encoding seed storage proteins have been used to drive seed-specific expression of a variety of proteins in transgenic plants. Because the levels at which these transgene-derived proteins accumulate are generally quite low, we investigated the utility of the arcelin-5 regulatory sequences in obtaining high seed-specific expression in transgenic plants. Arcelin-5 is an abundant seed protein found in some wild common bean (Phaseolus vulgaris L.) genotypes. Seeds of Arabidopsis and Tepary bean (Phaseolus acutifolius A. Gray) plants transformed with arcelin-5 gene constructs synthesized arcelin-5 to levels of 15% and 25% of the total protein content, respectively. To our knowledge, such high expression levels directed by a transgene have not been reported before. The transgenic plants also showed low plant-to-plant variation in arcelin expression. Complex transgene integration patterns, which often result in gene silencing effects, were not associated with reduced arcelin-5 expression. High transgene expression was the result of high mRNA steady-state levels and was restricted to seeds. This indicates that all requirements for high seed-specific expression are cis elements present in the cloned genomic arcelin-5 sequence and trans-acting factors that are available in Arabidopsis and Phaseolus spp., and thus probably in most dicotyledonous plants.  相似文献   

19.
Bean arcelin     
Summary Crude proteins from seeds of wild bean accessions of Mexican origin were analyzed by one-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS/PAGE). Several accessions had electrophoretic patterns showing unique protein bands. When analyzed by two-dimensional isoelectric focusing (IEF)-SDS/PAGE, four protein variants which had electrophoretic mobilities similar to each other but different from the other major seed proteins, phaseolin and lectin, were observed. All four variants, which have not been described in cultivated beans, were tentatively named arcelin proteins and designated as arcelin 1, 2, 3 and 4. Arcelins 3 and 4 had polypeptides that comigrated on two-dimensional gels and these variants occurred in accessions that were collected in the same location. Analysis of single F2 seeds from crosses among arcelin-containing lines and from crosses between cultivated beans lines without arcelin and arcelin-containing lines revealed that differences in arcelin polypeptide expression were inherited monogenically. The alleles for different arcelin variants were codominant to each other and dominant to the absence of arcelin. The gene(s) controlling arcelin proteins were unlinked to those controlling phaseolin expression and tightly linked to genes controlling the presence of lectin proteins (< 0.30% recombination). The possible origins of arcelin genes and their potential role in bruchid resistance are discussed.  相似文献   

20.
Both α-amylase inhibitor-2 (αAI-2) and arcelin have been implicated in resistance of wild common bean (Phaseolus vulgaris L.) to the Mexican bean weevil (Zabrotes subfasciatus Boheman). Near isogenic lines (NILs) for arcelin 1–5 were generated by backcrossing wild common bean accessions with a cultivated variety. Whereas seeds of a wild accession (G12953) containing both αAI-2 and arcelin 4 were completely resistant to Z. subfasciatus, those of the corresponding NIL were susceptible to infestation, suggesting that the principal determinant of resistance was lost during backcrossing. Three independent lines of transgenic azuki bean [Vigna angularis (Willd.) Ohwi and Ohashi] expressing αAI-2 accumulated high levels of this protein in seeds. The expression of αAI-2 in these lines conferred protection against the azuki bean weevil (Callosobruchus chinensis L.), likely through inhibition of larval digestive α-amylase. However, although the seed content of αAI-2 in these transgenic lines was similar to that in a wild accession of common bean (G12953), it did not confer a level of resistance to Z. subfasciatus similar to that of the wild accession. These results suggest that αAI-2 alone does not provide a high level of resistance to Z. subfasciatus. However, αAI-2 is an effective insecticidal protein with a spectrum of activity distinct from that of αAI-1, and it may prove beneficial in genetic engineering of insect resistance in legumes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号