首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Duz B  Oztas E  Erginay T  Erdogan E  Gonul E 《Cryobiology》2007,55(3):279-284
Pericytes are essential components of the blood–brain barrier together with endothelial cells and astrocytes. Any disturbance of brain perfusion may result in blood–brain barrier dysfunction due to pericyte migration from the microvascular wall. The neuroprotective influence of hypothermia on ischemic brain injury has been clearly shown in models of both global and focal ischemia. Leakage of plasma proteins contributes to the extension of neuronal injury and hypothermia has a neuroprotective influence during the ischemic insult. This line of thinking impelled us to investigate the possible role of the pericytes in the occurrence of hypothermic protection during cerebral ischemia.In this study, we examined at the ultrastructural level the effect of moderate hypothermia on microvascular pericyte responses using a rat model of permanent middle cerebral artery occlusion. Twenty rats were divided into four groups. Middle cerebral artery occlusion was performed in all rats except the control group (first group), which was used to determine the pericyte morphology under normal conditions. In the second group, pericyte response to irreversible ischemia under normothermic conditions was examined at the end of the first hour. In the third group, pericyte response to hypoxia was examined under normothermic conditions three hours after ischemia. In the fourth group, temporalis muscle temperature was maintained at 27–29 °C for 1 h after middle cerebral artery occlusion and pericyte response was then examined at the ultrastructural level. In ischemic normothermic conditions at the end of the first hour (Group 2), a separation was observed between pericytes and the basement membrane and this was interpreted as pericyte migration from the microvascular wall. In ischemic normothermic conditions at the end of the third hour (Group 3), basement membrane disorganization and increased space between the basement membranes were seen in addition to the differentiation of second group. In ischemic hypothermic conditions at the end of the first hour (Group 4), pericyte separation or migration from basement membrane were not seen and the blood–brain barrier remained firm. These findings were interpreted by the authors as a possible relationship between pericyte behavior and neural protection during hypothermia. We suggest that hypothermia may delay the pericyte response but not necessarily attenuate it, and should be associated with hypothermic protection.  相似文献   

2.
The blood-brain barrier (BBB) is essential for the normal function of the central nervous system. The pathological conditions induced by brain diseases including cerebral ischemia result in the alteration of BBB integrity. This alteration of BBB is relieved by mild hypothermia that has been regarded as an effective therapy for brain injury. Experimental fat embolism by intra-arterial administration of fatty acid induces reversible dysfunction of BBB and is considered as a beneficial method for the research on BBB disruption. However, the implication of hypothermia on the fatty acid-induced BBB disruption is not clear yet. In this study, we aim to investigate the effect of mild hypothermia on BBB disruption by comparing the changes of brain inflammation, free radical production, and matrix metalloproteinases (MMPs) caused by cerebral fatty acid infusion between normothermic (37°C) and hypothermic (33°C) groups. Oleic acid infusion into the carotid artery induced the increase of BBB permeability, which was inhibited by mild hypothermia. Neutrophils were infiltrated and intercellular adhesion molecule-1 (ICAM-1) expression was increased in the vascular structures in the affected brain tissue of normothermic rats at 24 hrs following oleic acid administration. Inducible nitric oxide synthase (iNOS) and nitro-tyrosine immunoreactivities were also observed in the normothermic group. The expression of matrix metalloproteinase (MMP)-2, 3, and 13 were upregulated predominantly in the oleic acid-treated brain of the normothermic rats. In mild hypothermic condition, neutrophil infiltration and ICAM-1 expression were attenuated, whereas the inductions of iNOS, nitrotyrosine and MMPs except MMP3 were not affected. Therefore, we suggest that mild hypothermia contributes to the protective effect on oleic acid-induced BBB damage via reducing neutrophil infiltration and brain inflammation.  相似文献   

3.
Hypothermia decreases the arterial PO(2) at which hemoglobin is 50% saturated (P(50)), increasing hemoglobin O(2)-binding affinity. We used RSR13, a synthetic allosteric modifier of hemoglobin that increases P(50), to study the role of altered hemoglobin O(2)-binding affinity in mild hypothermic neuroprotection. RSR13 (150 mg/kg iv) restored P(50) to normothermic values. Rats underwent 70 min of middle cerebral artery occlusion (MCAO) at 30.0, 34.0, or 37.5 degrees C with hemoglobin saturation held at 98-100%. The 34.0 degrees C group received RSR13 or vehicle before ischemia. After 7 days of recovery, infarct volumes were reduced in all hypothermic groups, without evidence of a detrimental effect on infarct size or neurological score as a result of P(50) correction. To examine for a beneficial effect of P(50) correction, ischemia duration was increased to 120 min in rats maintained at 34.0 degrees C. Correction of P(50) by RSR13 did not alter cerebral infarct sizes or neurological scores. The decrease in P(50), caused by mild hypothermia, could not be associated with infarct size or neurological deficit resulting from ischemic brain hypoxia in rats.  相似文献   

4.
5.
The blood-brain barrier consists of the cerebral microvascular endothelium, pericytes, astrocytes and neurons. In this study we analyzed the differentiation stage dependent influence of primary porcine brain capillary pericytes on the barrier integrity of primary porcine brain capillary endothelial cells. At first, we were able to induce two distinct differentiation stages of the primary pericytes in vitro. TGFβ treated pericytes expressed more α-SMA and actin while desmin, vimentin and nestin expression was decreased when compared to bFGF induced cells. Further analysis of α-SMA revealed that most of the pericytes differentiated with TGFβ expressed functional α-SMA while only few cells expressed functional α-SMA in the presence of bFGF. In addition the permeability factors VEGF, MMP-2 and MMP-9 were higher secreted by the α-SMA positive phenotype indicating a proangiogenic role of this TGFβ induced pericyte differentiation stage. Higher level of VEGF, MMP-2 and MMP-9 were as well detected in the TGFβ pretreated pericyte coculture with endothelial cells when compared to the influence of the bFGF pretreated pericytes. The TEER measurement of the barrier integrity of endothelial cells revealed that bFGF induced α-SMA negative pericytes stabilize the barrier integrity while α-SMA positive pericytes differentiated by TGFβ decrease the barrier integrity. These results together reveal the potential of pericytes to regulate the endothelial barrier integrity in a differentiation stage dependant pathway.  相似文献   

6.
Brief ischemia before normothermic ischemia protects hearts against reperfusion injury (ischemic preconditioning, IPC), but it is unclear whether it protects against long-term moderate hypothermic ischemia. We explored in isolated guinea pig hearts 1) the influence of two 2-min periods of normothermic ischemia before 4 h, 17 degrees C hypothermic ischemia on cardiac cytosolic [Ca(2+)], mechanical and metabolic function, and infarct size, and 2) the potential role of K(ATP) channels in eliciting cardioprotection. We found that IPC before 4 h moderate hypothermia improved myocardial perfusion, contractility, and relaxation during normothermic reperfusion. Protection was associated with markedly reduced diastolic [Ca(2+)] loading throughout both hypothermic storage and reperfusion. Global infarct size was markedly reduced from 36 +/- 2 (SE)% to 15 +/- 1% with IPC. Bracketing ischemic pulses with 200 microM 5-hydroxydecanoic acid or 10 microM glibenclamide increased infarct size to 28 +/- 3% and 26 +/- 4%, respectively. These results suggest that brief ischemia before long-term hypothermic storage adds to the cardioprotective effects of hypothermia and that this is associated with decreased cytosolic [Ca(2+)] loading and enhanced ATP-sensitive K channel opening.  相似文献   

7.
The present study is to determine the effect of mild hypothermia (MHT) on the release of glutamate and glycine in rats subjected to middle cerebral artery occlusion and reperfusion. The relationship between amino acid efflux and brain infarct volume was compared in different periods during MHT. Reversible middle cerebral artery occlusion was performed in Sprague-Dawley rats using a suture model. The rats were divided into four groups including (1) MHT during ischemia (MHTi), (2) MHT during reperfusion (MHTr), (3) MHT during ischemia and reperfusion (MHTi + r), and (4) a normothermic group (NT). Extracellular concentrations of glutamate and glycine in the cortex and striatum were monitored using in vivo microdialysis and analyzed using high-performance liquid chromatography. Morphometric measurements for infarct volume were performed using 2,3,5-triphenyltetrazolium chloride staining. The increase of glutamate and glycine in the ischemic cortex of the MHTi and MHTi + r rats during ischemic and reperfusion periods was significantly less than that of the NT rats (p < 0.05). However, there was no statistical difference among these groups in the peak of glutamate and glycine release in the striatum. Infarct volume paralleled the release of glutamate and glycine. The protective effect of MHTi and MHTi + r in reducing ischemia and reperfusion brain injury may be due to the attenuation of both glutamate and glycine release during ischemia and reperfusion.  相似文献   

8.
Cannabinoids have neuroprotective potentials, and the expression of endocannabinoids as well as cannabinoid receptors is induced after cerebral ischemia. They also induce hypothermia by lowering the hypothalamic set point. We have estimated the significance of such hypothermia in ischemic neuroprotection following systemic administration of WIN 55,212-2, a synthetic cannabinoid receptor agonist. Results showed that WIN 55,212-2 significantly reduced infarct volumes of rats subjected to focal cerebral ischemia (middle cerebral artery occlusion) and significantly decreased ischemic CA1 damage in rats subjected to global cerebral ischemia (two-vessel occlusion). A significant (approximately 50%) part of this neuroprotection was provided by WIN 55,212-2 induced hypothermia (33.7+/-1.1 degrees C/34.9+/-1.6 degrees C), because prevention of hypothermia by maintaining body core temperatures between 37.0 and 38.0 degrees C dissolved the neuroprotective effect into a hypothermic component and an unidentified component. Finally, the ability of WIN 55,212-2 to reduce levels of the proinflammatory cytokine IFNgamma in the infarcted hemisphere of rats subjected to focal cerebral ischemia required hypothermia. For the cannabinoid WIN 55,212-2, we have isolated and directly demonstrated that hypothermia is only part of, although significant, cannabinoid mediated neuroprotection in both global and focal cerebral ischemia. We conclude that cannabinoids are reliable candidates for drug-induced hypothermia and neuroprotection. These neuroprotective effects of cannabinoids could provide the basis for potential therapeutic uses of cannabinoids and/or endocannabinoids in stroke.  相似文献   

9.
Abstract: Regional protein synthesis of brain was measured by quantitative autoradiography in normo- and hypothermic rats submitted to 30 min of four-vessel occlusion. The tracer, [14C]leucine, was applied by controlled intravenous infusion to achieve constant plasma specific activity, and the admixture by proteolysis of unlabeled amino acids to the brain amino acid precursor pool was corrected by measuring the ratio of the labeled-to-unlabeled leucine distribution space in plasma and brain. In normothermic rats preischemic protein synthesis rate was 16.0 ± 3.2, 9.2 ± 3.4, 15.5 ± 2.8, and 15.5 ± 3.1 nmol of leucine/g/min (mean ± SD) in the frontal cortex, striatum, hippocampal CA1 sector, and thalamus, respectively. After 30 min of ischemia at a constant brain temperature of 36°C and a recirculation time of 1 h, protein synthesis was reduced in these regions to 6, 9, 8, and 36%, respectively. With ongoing recirculation, protein synthesis gradually returned to normal within 3 days in all areas except in the stratum pyramidale of the hippocampal CA1 sector where inhibition of neuronal protein synthesis was irreversible. Lowering of brain temperature to 30°C during ischemia did not prevent the early global postischemic depression of protein synthesis, but promoted recovery to or above normal within 6 h in all areas including the stratum pyramidale of the CA1 sector. Improvement of protein synthesis in the CA1 sector was associated with improved neuronal survival, which increased from 1% in the normothermic to 69% in the hypothermic animals. These observations suggest that the protective effect of mild hypothermia on ischemic injury of the hippocampal CA1 sector is mediated by the reversal of the postischemic inhibition of protein synthesis.  相似文献   

10.
Accumulation of products of lipid peroxidation (malondialdehyde, conjugated dienes, lipid peroxides, and Schiff bases) was evaluated in rabbit kidney cortex slices made ischemic for 60 min followed by 18 h storage at 5°C in UW Na gluconate solution and 210 min normothermic reoxygenated incubation. In addition, the effect of adding Trolox (1 mM), deferoxamine (1 mM), and ascorbate (1 mM) as supplemental antioxidants to the UW gluconate solution was evaluated. Lipid peroxidation was slightly increased after hypothermic storage compared to slices subjected to ischemia alone but was not significantly different than ischemic slices during subsequent incubation at normothermia. The addition of either deferoxamine or Trolox to the storage solution substantially reduced lipid peroxidation both during hypothermic storage and subsequent to normothermic incubation. Ascorbate had a mild prooxidant effect as a sole additive to the UW gluconate solution but was clearly prooxidant when combined with either deferoxamine or Trolox. These results suggest that supplemental antioxidants added to the UW gluconate solution under conditions analogous to machine perfusion preservation have a potential role in reducing oxidative stress in kidney tissues harvested after warm ischemia and that hypothermia may be a valuable adjunct to resuscitative therapeutic regimens developed for salvage of ischemic kidneys for transplantation.  相似文献   

11.
The present study examined the role of hepatocyte NF-kappaB activation during ischemia-reperfusion injury. Second, we evaluated the effects of ischemic hypothermia on NF-kappaB activation and liver injury. C57BL/6 mice underwent 90 min of partial hepatic ischemia and up to 8 h of reperfusion. Body temperature was regulated during the ischemic period between 35 and 37 degrees C, 33 and 35 degrees C, 29 and 33 degrees C or unregulated, where temperature fell to <29 degrees C. Liver injury, as measured by serum alanine aminotransferase as well as liver histopathology, was inversely proportional to regulated body temperature, with the unregulated group (<29 degrees C) being highly protected and the normothermic group (35-37 degrees C) displaying the greatest injury. Inflammation, as measured by production of TNF-alpha and liver recruitment of neutrophils, was greatest in the normothermic groups and lowest in the ischemic hypothermia groups. Interestingly, hepatocyte NF-kappaB activation was highest in the hypothermic group and least in the normothermic group. Paradoxically, degradation of IkappaB proteins, IkappaB-alpha and IkappaB-beta, was greatest in the normothermic group, suggesting an alternate NF-kappaB regulatory mechanism during ischemia-reperfusion injury. Subsequently, we found that NF-kappaB p65 protein was increasingly degraded in normothermic versus hypothermic groups, and this degradation was specific for hepatocytes and was associated with decreased expression of the peptidyl-prolyl isomerase Pin1. The data suggest that NF-kappaB activation in hepatocytes is a protective response during ischemia-reperfusion and can be augmented by ischemic hypothermia. Furthermore, it appears that Pin1 promotes NF-kappaB p65 protein stability such that decreased expression of Pin1 during ischemia-reperfusion results in p65 degradation, reduced nuclear translocation of NF-kappaB, and enhanced hepatocellular injury.  相似文献   

12.
目的:rt-PA溶栓为缺血性卒中最有效的治疗方法,脑血流再通后挽救濒临死亡的神经细胞同时,也可能发生更为严重而持久的脑缺血再灌注损伤。本研究探讨联合应用局部亚低温(32-35℃)及硫酸镁对局灶性脑缺血再灌注大鼠的保护作用及其可能机制。方法:通过线栓法建立大鼠大脑中动脉阻塞(MCAO)及再通模型,将50只雄性Wistar大鼠随机分为假手术组、常温组、亚低温组、硫酸镁组、亚低温+硫酸镁组,每组10例,采用Longa神经功能评分、TTC染色、干湿重法、TUNEL技术,检测和比较各组脑缺血再灌注后大鼠的神经功能、脑梗死体积、脑组织含水量及凋亡细胞数。结果:与常温组相比,亚低温组与亚低温+硫酸镁组的梗死体积、神经功能评分、脑组织含水量、凋亡细胞数均明显降低,差异有显著意义(P0.05);而与亚低温组相比,亚低温+硫酸镁组局灶脑缺血大鼠的脑梗死体积、神经功能评分、脑组织含水量、凋亡细胞数均显著减少,差异有显著意义(P0.05)。结论:与单独应用亚低温相比,局部亚低温与硫酸镁联合应用,对局灶性脑缺血再灌注大鼠可发挥更有效的脑保护作用。其机制可能与抑制脑缺血再灌注后凋亡及减轻脑水肿有关。二者联用可能为缺血性卒中患者提供一种减轻溶栓后再灌注损伤的有效脑保护方法。  相似文献   

13.
Abstract: It is well established that ischemia-induced release of glutamate and the subsequent activation of postsynaptic glutamate receptors are important processes involved in the development of ischemic neuronal damage. Moderate intraischemic hypothermia attenuates glutamate release and confers protection from ischemic damage, whereas mild intraischemic hyperthermia increases glutamate release and augments ischemic pathology. As protein kinase C (PKC) is implicated in neurotransmitter release and glutamate receptor-mediated events, we evaluated the relationship between intraischemic brain temperature and PKC activity in brain regions known to be vulnerable or nonvulnerable to transient global ischemia. Twenty minutes of bilateral carotid artery occlusion plus hypotension were induced in rats in which intraischemic brain temperature was maintained at 30°C, 37°C, or 39°C. Prior to and following ischemia, brain temperature was 37°C in all groups. Cytosolic, membrane-bound, and total PKC activities were determined in hippocampal, striatal, cortical, and thalamic homogenates at the end of ischemia and at 0.25–24 h of recirculation. PKC activity of control rats varied by region and were affected by altered brain temperature. For both membrane-bound and cytosolic PKC, there was a significant temperature effect, and for membrane-bound PKC there was also a significant effect of region. Rats with normothermic ischemia (37°C) showed extensive depressions of all PKC fractions. Hippocampus and striatum were noteworthy for depressions in PKC activity extending from the earliest (15 min) to the latest (24 h) recirculation times studied, whereas cortex showed PKC depressions chiefly during the first hour of recirculation, and the thalamic pattern was inconsistent. In contrast, in rats with hypothermic ischemia (30°C), significant overall effects were noted only for total PKC in thalamus, which showed depressed levels at both 1 and 24 h of recirculation. Rats with hyperthermic (39°C) ischemia also showed significant overall effects for the time course of membrane-bound, cytosolic, and total PKC activities in the hippocampus, striatum, and cortex. However, no significant reductions in PKC indices were observed in the thalamus. For membrane-bound PKC, significant temperature effects were noted for hippocampus, striatum, and cortex, but not for thalamus. For cytosolic, as well as total PKC, activity, significant temperature effects were noted for all four brain regions. Our results indicate that ischemia, followed by reperfusion, induces a significant reduction in PKC activity and that this process is highly influenced by the brain temperature during ischemia. Furthermore, our data also establish that differences exist in the response of PKC to ischemia/recirculation in vulnerable versus non-vulnerable brain regions. These results suggest that PKC alterations may be an important factor involved in the modulatory effects of temperature on the outcome following transient global ischemia.  相似文献   

14.
The purpose of the present study was to investigate whether cilostazol, a phosphodiesterase-III inhibitor and antiplatelet drug, would prevent tPA-associated hemorrhagic transformation. Mice subjected to 6-h middle cerebral artery occlusion were treated with delayed tPA alone at 6 h, with combined tPA plus cilostazol at 6 h, or with vehicle at 6 h. We used multiple imaging (electron microscopy, spectroscopy), histological and neurobehavioral measures to assess the effects of the treatment at 18 h and 7 days after the reperfusion. To further investigate the mechanism of cilostazol to beneficial effect, we also performed an in vitro study with tPA and a phosphodiesterase-III inhibitor in human brain microvascular endothelial cells, pericytes, and astrocytes. Combination therapy with tPA plus cilostazol prevented development of hemorrhagic transformation, reduced brain edema, prevented endothelial injury via reduction MMP-9 activity, and prevented the blood-brain barrier opening by inhibiting decreased claudin-5 expression. These changes significantly reduced the morbidity and mortality at 18 h and 7 days after the reperfusion. Also, the administration of both drugs prevented injury to brain human endothelial cells and human brain pericytes. The present study indicates that a phosphodiesterase-III inhibitor prevents the hemorrhagic transformation induced by focal cerebral ischemia in mice treated with tPA.  相似文献   

15.
The objectives of this study were to establish pure blood–nerve barrier (BNB) and blood–brain barrier (BBB)‐derived pericyte cell lines of human origin and to investigate their unique properties as barrier‐forming cells. Brain and peripheral nerve pericyte cell lines were established via transfection with retrovirus vectors incorporating human temperature‐sensitive SV40 T antigen (tsA58) and telomerase. These cell lines expressed several pericyte markers such as α‐smooth muscle actin, NG2, platelet‐derived growth factor receptor β, whereas they did not express endothelial cell markers such as vWF and PECAM. In addition, the inulin clearance was significantly lowered in peripheral nerve microvascular endothelial cells (PnMECs) through the up‐regulation of claudin‐5 by soluble factors released from brain or peripheral nerve pericytes. In particular, bFGF secreted from peripheral nerve pericytes strengthened the barrier function of the BNB by increasing the expression of claudin‐5. Peripheral nerve pericytes may regulate the barrier function of the BNB, because the BNB does not contain cells equivalent to astrocytes which regulate the BBB function. Furthermore, these cell lines expressed several neurotrophic factors such as NGF, BDNF, and GDNF. The secretion of these growth factors from peripheral nerve pericytes might facilitate axonal regeneration in peripheral neuropathy. Investigation of the characteristics of peripheral nerve pericytes may provide novel strategies for modifying BNB functions and promoting peripheral nerve regeneration. J. Cell. Physiol. 226: 255–266, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
The aim of this study was to evaluate the additive protective efficiency of ischemic preconditioning when used in combination with conventional clinically relevant cardioprotective methods of hypothermia or hypothermic cardioplegia during sustained global ischemia.Isolated rat hearts were aorta-perfused with Krebs-Henseleit buffer and were divided into six groups (n = 10 each). Group I: Ischemia at 34°C for 60 min; Group PC+I: preconditioned (PC) ischemia at 34°C, 2 episodes of 5 min ischemia and 10 min reperfusion at 34°C followed by I; Group HI: hypothermic ischemia at 10°C for 60 min; Group PC+HI: preconditioned (PC) hypothermic ischemia, 2 episodes of 5 min ischemia and 10 min reperfusion at 34°C followed by HI; Group CPL+HI: single dose of 'Plegisol' cardioplegia followed by HI; Group PC+CPL+HI: preconditioned hypothermic cardioplegia, followed by CPL+HI. At the end of 60 min ischemia, all the hearts were reperfused at 34°C for 30 min when post-ischemic recovery in left ventricular contractile function and coronary vascular dynamics was computed and compared.There was a significant depression in the post-ischemic recovery of developed pressure (Pmax), positive derivative of pressure (+dp/dt), negative derivative of pressure (-dp/dt) and heterometric autoregulation (HA) of contractile force in all the groups, with no major differences between the groups. Left ventricular end-diastolic pressure (LVEDP) was significantly elevated after I at 34°C. Preconditioning (PC+I) prevented the rise in the LVEDP and this was accompanied by a significant reduction in the release of purine metabolises in the coronary effluents, particularly adenosine, during the immediate reperfusion period. Hypothermia (HI) provided essentially the same level of metabolic and mechanical preservation as offered by PC+I. Combination of hypothermia with preconditioning (PC+HI) or cardioplegia (PC+CPL+HI), did not further enhance the preservation. Post-ischemic recovery in the regional contractile function (segment shortening, %SS) followed nearly identical pattern to global (Pmax) recovery. Post-ischemic recovery in coronary flow (CF) was significantly reduced and coronary vascular resistance (CVR) was significantly increased in all the groups. Myogenic autoregulation (transient and sustained) was generally enhanced indicating increased vascular reactivity. Preconditioning did not alter the time-course of these changes.Preconditioned ischemia (34°C) preserved left ventricular diastolic functions and prevented the contracture development after sustained ischemia reperfusion at 34°C. This protective effect of preconditioning was possibly mediated by the reduction in the breakdown of purine metabolises. Hypothermia alone or in combination with crystalloid cardioplegia prevented the irreversibility of the ischemic injury but produced contractile and vascular stunning which was not improved by ischemic preconditioning. The results of this study indicate that preconditioning when combined with hypothermia or hypothermic cardioplegia offered no significant additional protection.  相似文献   

17.
Previous studies have provided evidence that, in the early hours of ischemic stroke, a luminal membrane blood-brain barrier (BBB) Na-K-Cl cotransporter (NKCC) participates in ischemia-induced cerebral edema formation. Inhibition of BBB NKCC activity by intravenous bumetanide significantly reduces edema and infarct in the rat permanent middle cerebral artery occlusion model of ischemic stroke. We demonstrated previously that the BBB cotransporter is stimulated by hypoxia, aglycemia, and AVP, factors present during cerebral ischemia. However, the underlying mechanisms have not been known. Ischemic conditions have been shown to activate p38 and JNK MAP kinases (MAPKs) in brain, and the p38 and JNK inhibitors SB-239063 and SP-600125, respectively, have been found to reduce brain damage following middle cerebral artery occlusion and subarachnoid hemorrhage, respectively. The present study was conducted to determine whether one or both of these MAPKs participates in ischemic factor stimulation of BBB NKCC activity. Cultured cerebral microvascular endothelial cell NKCC activity was evaluated as bumetanide-sensitive (86)Rb influx. Activities of p38 and JNK were assessed by Western blot and immunofluorescence methods using antibodies that detect total vs. phosphorylated (activated) p38 or JNK. We report that p38 and JNK are present in cultured cerebral microvascular endothelial cells and in BBB endothelial cells in situ and that hypoxia (7% O(2) and 2% O(2)), aglycemia, AVP, and O(2)-glucose deprivation (5- to 120-min exposures) all rapidly activate p38 and JNK in the cells. We also provide evidence that SB-239063 and SP-600125 reduce or abolish ischemic factor stimulation of BBB NKCC activity. These findings support the hypothesis that ischemic factor stimulation of the BBB NKCC involves activation of p38 and JNK MAPKs.  相似文献   

18.
To investigate the effect of selective hypothermia of the brain (brain cooling) on regional cerebral blood flow and tissue metabolism, we have developed a brain thermo-regulator. Brain temperature was modulated by a water-cooled metallic plate placed on the surface of the rats' scalp to get the appropriate brain temperature precisely with ease. Regional cerebral blood flow and brain temperature were measured simultaneously using a Teflon-coated platinum electrode and thermocouple probe inserted stereotaxically into the parietal cortex and thalamus in spontaneously hypertensive rats. Experimental forebrain ischemia was induced by the occlusion of bilateral common carotid artery under normo- and hypothermic brain condition, and the supratentorial brain tissue metabolites were measured enzymatically after 60 min of forebrain ischemia. When cortical temperature was set to hypothermia, cortical blood flow was significantly lowered by 40% at 30°C and 20% at 33°C as compared with that at 36°C (p < 0.0001 and p < 0.05, respectively). Thalamic blood flow was also significantly reduced by 20% when cortical temperature was set to 30°C as compared with 36°C (p < 0.05). There were no significant differences in arterial blood pressure and gas parameters throughout these experiments. In the rats with selective brain hypothermia (30°C) immediately after the induction of cerebral ischemia, the level of brain ATP concentration after 60 min of ischemia was significantly higher than that in normothermia rats (36°C) (p < 0.05). Our findings indicate that: 1) the metallic plate brain thermo-regulator is useful in small animal experiments; 2) regional brain temperature regulates regional cerebral blood flow; and 3) selective brain hypothermia, even started after the forebrain ischemia, ameliorates the derangement of brain metabolism, suggesting its effectiveness as a cytoprotective strategy.  相似文献   

19.
Cold is supposed to be associated with alterations in blood coagulation and a pronounced risk for thrombosis. We studied the effect of clinically encountered systemic hypothermia on microvascular thrombosis in vivo and in vitro. Ferric chloride-induced microvascular thrombus formation was analyzed in cremaster muscle preparations from hypothermic mice. Additionally, flow cytometry and Western blot analysis was used to evaluate the effect of hypothermia on platelet activation. To test whether preceding hypothermia predisposes for enhanced thrombosis, experiments were repeated after hypothermia and rewarming to 37 degrees C. Control animals revealed complete occlusion of arterioles and venules after 742 +/- 150 and 824 +/- 172 s, respectively. Systemic hypothermia of 34 degrees C accelerated thrombus formation in arterioles and venules (279 +/- 120 and 376 +/- 121 s; P < 0.05 vs. 37 degrees C). This was further pronounced after cooling to 31 degrees C (163 +/- 57 and 281 +/- 71 s; P < 0.05 vs. 37 degrees C). Magnitude of thrombin receptor activating peptide (TRAP)-induced platelet activation increased with decreasing temperatures, as shown by 1.8- and 3.0-fold increases in mean fluorescence after PAC-1 binding to glycoprotein (GP)IIb-IIIa and 1.6- and 2.9-fold increases of fibrinogen binding on incubation at 34 degrees C and 31 degrees C. Additionally, tyrosine-specific protein phosphorylation in platelets was increased at hypothermic temperatures. In rewarmed animals, kinetics of thrombus formation were comparable to those in normothermic controls. Concomitantly, spontaneous and TRAP-enhanced GPIIb-IIIa activation did not differ between rewarmed platelets and those maintained continuously at 37 degrees C. Moderate systemic hypothermia accelerates microvascular thrombosis, which might be mediated by increased GPIIb-IIIa activation on platelets but does not cause predisposition with increased risk for microvascular thrombus formation after rewarming.  相似文献   

20.
Pericytes play a key role in the development of cerebral microcirculation. The exact role of pericytes in the neurovascular unit in the adult brain and during brain aging remains, however, elusive. Using adult viable pericyte-deficient mice, we show that pericyte loss leads to brain vascular damage by two parallel pathways: (1) reduction in brain microcirculation causing diminished brain capillary perfusion, cerebral blood flow, and cerebral blood flow responses to brain activation that ultimately mediates chronic perfusion stress and hypoxia, and (2) blood-brain barrier breakdown associated with brain accumulation of serum proteins and several vasculotoxic and/or neurotoxic macromolecules ultimately leading to secondary neuronal degenerative changes. We show that age-dependent vascular damage in pericyte-deficient mice precedes neuronal degenerative changes, learning and memory impairment, and the neuroinflammatory response. Thus, pericytes control key neurovascular functions that are necessary for proper neuronal structure and function, and pericyte loss results in a progressive age-dependent vascular-mediated neurodegeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号