首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 399 毫秒
1.
Summary This study aimed to test the hypothesis that if animals were fed the same amount over the same time period, selection of the fastest growers would result in a change in the partitioning of metabolisable energy toward more protein and less fat deposition. Two mouse lines (S1 and S2) were selected for high 5 to 9 week weight gain corrected to mean 5 week weight. Appetite variation between mice was eliminated by feeding a fixed amount to each mouse daily. After 6 generations of selection, the lines were compared with an unselected control (C) on restricted and ad libitum levels of feeding for growth rate, appetite, food conversion efficiency and chemical body composition.Realised heritabilities of 5 to 9 week gain were 0.36+ 0.05 and 0.19±0.04 for S1 and S2 respectively. Nine week weights were increased by an average of 13% on both feeding levels. Most of this increase, particularly in S2, occurred before 5 weeks and was therefore outside the period of measurement used in selection. On ad libitum feeding, selection increased food intake per unit time by 6% but there was no increase per unit body weight. Food conversion efficiency (gain/food) increased by 12%. Compared with controls at 9 weeks, 3% more of the body weights of selected mice was fat and 1% less was protein. These differences were reduced but were still in the same direction when comparisons were made at the same body weight. Thus the expected change in energy partitioning toward greater protein and less fat deposition in the S lines did not occur.It was concluded that the increased growth and energy retention in the S lines was brought about by a reduction in maintenance requirement. To achieve the desired change in energy partitioning using a similar selection scheme, higher levels of dietary protein should be fed, and some measure of protein deposition rather than growth rate used as the selection criterion.  相似文献   

2.
Objective: Mice divergently selected for high or low food intake (FI) at constant body mass differ in their resting metabolic rates (RMRs). Low‐intake individuals (ML) have significantly lower RMR (by 30%) compared with those from the high‐intake line (MH). We hypothesized that MLs might, therefore, be more likely to increase their body and fat mass when exposed to a high‐fat diet (HFD). Research Methods and Procedures: We exposed both lines to a diet with 44.9% calories from fat for 3 weeks while measuring FI, fecal production, and body mass and then returned the mice to standard chow. Results: When exposed to the HFD, both lines significantly decreased their FI (MH, 40% to 45%; ML, 31% to 35%). This decrease occurred simultaneously with a significant increase in apparent energy absorption efficiency (AEAE). When returned to chow, FI and AEAE returned to the levels observed prior to HFD exposure. Because of the adjustments in FI, the absorbed energy was maintained in the MLs and, thus, body mass remained constant. The MH individuals overcompensated for the elevated energy content and AEAE on the HFD and, therefore, absorbed lower energy than when feeding on chow. These mice also did not significantly change their body mass when on the HFD and must have made adjustments in their energy expenditures. Both lines and both sexes increased in fat content on the HFD, but these effects were not different between lines or sexes. Discussion: We found no support for the hypothesis that mice with low RMRs were more susceptible to weight gain when fed the HFD.  相似文献   

3.
Objective: We examined the effectiveness of sibutramine to modulate food intake and body composition in rats with two levels of adiposity imposed by the duration of their maintenance on a moderate-fat diet. Research Methods and Procedures: Male Sprague–Dawley rats were fed a 32% fat diet from weaning until 2 or 4 months of age, at which point, body fat was either 15% or 25%, respectively, as measured by DXA. Sibutramine (0.6 or 2 mg/kg, orally) was then given daily for 2 weeks. Results: Food intake and body weight decreased acutely in a dose-related manner in both groups with sibutramine treatment. In all rats, food intake suppression was attenuated after multiple days of sibutramine. Both 15%- and 25%-fat rats had a persistent decrease in weight gain over the 2-week period in response to sibutramine. The older, 25%-fat rats were more sensitive to sibutramine than the younger, 15%-fat rats with regard to the magnitude of overall food intake inhibition, decrease in body weight gain, and caloric efficiency. Despite these differences, sibutramine produced the same relative reductions in fat mass and had no effect on lean mass in the two groups. Discussion: Thus, sibutramine produced equivalent efficacy on carcass fat loss in both groups, despite less inhibition of feeding and body weight gain in leaner rats. Whether these changes are a result of the leaner rats being younger and on a steeper growth curve compared with older, fatter rats or whether this is a direct function of their level of adiposity remains to be determined.  相似文献   

4.
Mice that exercise after meals gain less body weight and visceral fat compared to those that exercised before meals under a one meal/exercise time per day schedule. Humans generally eat two or three meals per day, and rarely have only one meal. To extend our previous observations, we examined here whether a “two meals, two exercise sessions per day” schedule was optimal in terms of maintaining a healthy body weight. In this experiment, “morning” refers to the beginning of the active phase (the “morning” for nocturnal animals). We found that 2-h feeding before 2-h exercise in the morning and evening (F-Ex/F-Ex) resulted in greater attenuation of high fat diet (HFD)-induced weight gain compared to other combinations of feeding and exercise under two daily meals and two daily exercise periods. There were no significant differences in total food intake and total wheel counts, but feeding before exercise in the morning groups (F-Ex/F-Ex and F-Ex/Ex-F) increased the morning wheel counts. These results suggest that habitual exercise after feeding in the morning and evening is more effective for preventing HFD-induced weight gain. We also determined whether there were any correlations between food intake, wheel rotation, visceral fat volume and skeletal muscle volumes. We found positive associations between gastrocnemius muscle volumes and morning wheel counts, as well as negative associations between morning food intake volumes/body weight and morning wheel counts. These results suggest that morning exercise-induced increase of muscle volume may refer to anti-obesity. Evening exercise is negatively associated with fat volume increases, suggesting that this practice may counteract fat deposition. Our multifactorial analysis revealed that morning food intake helps to increase exercise, and that evening exercise reduced fat volumes. Thus, exercise in the morning or evening is important for preventing the onset of obesity.  相似文献   

5.
We investigated the effects of dietary whey protein on food intake, body fat, and body weight gain in rats. Adult (11-12 week) male Sprague-Dawley rats were divided into three dietary treatment groups for a 10-week study: control. Whey protein (HP-W), or high-protein content control (HP-S). Albumin was used as the basic protein source for all three diets. HP-W and HP-S diets contained an additional 24% (wt/wt) whey or isoflavone-free soy protein, respectively. Food intake, body weight, body fat, respiratory quotient (RQ), plasma cholecystokinin (CCK), glucagon like peptide-1 (GLP-1), peptide YY (PYY), and leptin were measured during and/or at the end of the study. The results showed that body fat and body weight gain were lower (P < 0.05) at the end of study in rats fed HP-W or HP-S vs. control diet. The cumulative food intake measured over the 10-week study period was lower in the HP-W vs. control and HP-S groups (P < 0.01). Further, HP-W fed rats exhibited lower N(2) free RQ values than did control and HP-S groups (P < 0.01). Plasma concentrations of total GLP-1 were higher in HP-W and HP-S vs. control group (P < 0.05), whereas plasma CCK, PYY, and leptin did not differ among the three groups. In conclusion, although dietary HP-W and HP-S each decrease body fat accumulation and body weight gain, the mechanism(s) involved appear to be different. HP-S fed rats exhibit increased fat oxidation, whereas HP-W fed rats show decreased food intake and increased fat oxidation, which may contribute to the effects of whey protein on body fat.  相似文献   

6.
Human epidemiological studies have supported the hypothesis that a dairy food-rich diet is associated with lower fat accumulation, although prospective studies and intervention trials are not so conclusive and contradictory data exist in animal models. The purpose of this study was to assess the effects on body weight and fat depots of dairy calcium (12 g/kg diet) in wild-type mice under ad libitum high-fat (43%) and normal-fat (12%) diets and to gain comprehension on the underlying mechanism of dairy calcium effects. Our results show that calcium intake decreases body weight and body fat depot gain under high-fat diet and accelerates weight loss under normal-fat diet, without differences in food intake. No differences in gene or protein expression of UCP1 in brown adipose tissue or UCP2 in white adipose tissue were found that could be related with calcium feeding, suggesting that calcium intake contributed to modulate body weight in wild-type mice by a mechanism that is not associated with activation of brown adipose tissue thermogenesis. UCP3 protein but not gene expression increased in muscle due to calcium feeding. In white adipose tissue there were effects of calcium intake decreasing the expression of proteins related to calcium signalling, in particular of stanniocalcin 2. CaSR levels could play a role in decreasing cytosolic calcium in adipocytes and, therefore, contribute to the diminution of fat accretion. Results support the anti-obesity effect of dietary calcium in male mice and indicate that, at least at the time-point studied, activation of thermogenesis is not involved.  相似文献   

7.
We evaluated the effects of difructose anhydride III (DFAIII) on body weights of ovariectomized rats, which are a good model for obesity by estrogen deficiency-induced overeating. Female rats (10 weeks old) were subjected to ovariectomy or sham operation and then fed with or without a diet containing 3% or 6% DFAIII for 33 days or pair-fed control diet during the same period. Rats fed DFAIII showed significantly decreased food intake, energy intake, body weight gain, body energy accumulation, and fat tissue weight than control group, regardless of ovariectomy. DFAIII may decrease body fat dependent of reduced food/energy intake. Compared with the respective pair feeding groups, rats fed DFAIII showed significantly decreased body energy and fat tissue weight, regardless of ovariectomy, suggesting its potential as a low-energy substitute for high-energy sweeteners. The low energy of DFAIII may contribute to decreased body fat, which may not be dependent on obesity.  相似文献   

8.
We measured diurnal rhythms of food intake, as well as body weight and composition, while varying three major classes of sex-biasing factors: activational and organizational effects of gonadal hormones, and sex chromosome complement (SCC). Four Core Genotypes (FCG) mice, comprising XX and XY gonadal males and XX and XY gonadal females, were either gonad-intact or gonadectomized (GDX) as adults (2.5 months); food intake was measured second-by-second for 7 days starting 5 weeks later, and body weight and composition were measured for 22 weeks thereafter. Gonadal males weighed more than females. GDX increased body weight/fat of gonadal females, but increased body fat and reduced body weight of males. After GDX, XX mice had greater body weight and more fat than XY mice. In gonad-intact mice, males had greater total food intake and more meals than females during the dark phase, but females had more food intake and meals and larger meals than males during the light phase. GDX reduced overall food intake irrespective of gonad type or SCC, and eliminated differences in feeding between groups with different gonads. Diurnal phase of feeding was influenced by all three sex-biasing variables. Gonad-intact females had earlier onset and acrophase (peak) of feeding relative to males. GDX caused a phase-advance of feeding, especially in XX mice, leading to an earlier onset of feeding in GDX XX vs. XY mice, but earlier acrophase in GDX males relative to females. Gonadal hormones and SCC interact in the control of diurnal rhythms of food intake.  相似文献   

9.
Amylin infusion reduces food intake and slows body weight gain in rodents. In obese male rats, amylin (but not pair feeding) caused a preferential reduction of fat mass with protein preservation despite equal body weight loss in amylin-treated (fed ad libitum) and pair-fed rats. In the present study, the effect of prior or concurrent food restriction on the ability of amylin to cause weight loss was evaluated. Retired female breeder rats were maintained on a high-fat diet (40% fat) for 9 wk. Prior to drug treatment, rats were either fed ad libitum or food restricted for 10 days to lose 5% of their starting body weight. They were then subdivided into treatment groups that received either vehicle or amylin (100 microgxkg(-1)xday(-1) via subcutaneous minipump) and placed under either a restricted or ad libitum feeding schedule (for a total of 8 treatment arms). Amylin 1) significantly reduced body weight compared with vehicle under all treatment conditions, except in always restricted animals, 2) significantly decreased percent body fat in all groups, and 3) preserved lean mass in all groups. These results indicate that amylin's anorexigenic and fat-specific weight loss properties can be extended to a variety of nutritive states in female rats.  相似文献   

10.
Prolactin, which induced significant gain in body weight and in the weight of the cervical and abdominal fat deposits had no effect on daily total food intake in spotted munia. The hormone changed the feeding pattern from a modal type to almost continuous feeding, increased whole body oxygen consumption of the birds, and had no effect on total hopping index. Prolactin-induced fattening, therefore seems due to neither an increased caloric intake, nor a decreased metabolic expenditure, but probably reflects better utilization of food.  相似文献   

11.
In parallel with increased prevalence of overweight people in affluent societies are individuals trying to lose weight, often using low-carbohydrate diets. Nevertheless, long-term metabolic consequences of those diets, usually high in (saturated) fat, remain unclear. Therefore, we investigated long-term effects of high-fat diets with different carbohydrate/protein ratios on energy balance and fuel homeostasis in obese (fa/fa) Zucker and lean Wistar rats. Animals were fed high-carbohydrate (HC), high-fat (HsF), or low-carbohydrate, high-fat, high-protein (LC-HsF-HP) diets for 60 days. Both lines fed the LC-HsF-HP diet displayed reduced energy intake compared with those fed the HsF diet (Zucker, -3.7%) or the HC diet (Wistar rats, -12.4%). This was not associated with lower weight gain relative to HC fed rats, because of increased food efficiencies in each line fed HsF and particularly LC-HsF-HP food. Zucker rats were less glucose tolerant than Wistar rats. Lowest glucose tolerances were found in HsF and particularly in LC-HsF-HP-fed animals irrespective of line, but this paralleled reduced plasma adiponectin levels, elevated plasma resistin levels, higher retroperitoneal fat masses, and reduced insulin sensitivity (indexed by insulin-induced hypoglycemia) only in Wistar rats. In Zucker rats, however, improved insulin responses during glucose tolerance testing and tendency toward increased insulin sensitivities were observed with HsF or LC-HsF-HP feeding relative to HC feeding. Thus, despite adverse consequences of LC-HsF diets on blood glucose homeostasis, principal differences exist in the underlying hormonal regulatory mechanisms, which could have benefits for B-cell functioning and insulin action in the obese state but not in the lean state.  相似文献   

12.
Intake of food, protein, fat and carbohydrates and their fecal output and the birds' weights were recorded during different feeding trials with specific nutrient reduced diets in the old-world long-distance migratory garden warbler. The birds' body weights were affected by low dietary protein as well as low dietary fat levels. Low dietary protein and fat levels were associated with significant changes in daily gross and net food intake and in the efficiency of food and nutrient utilization. Birds fed on diets with low nutrient levels for an extended length of time recovered in weight after an initial weight loss. They obviously compensated the restricted nutrient levels primarily by increasing the daily food intake and by changing the efficiency of food and nutrient utilization. Effects of restricted dietary nutrient levels on body weight and adaptation depended on the previous composition of the food. The average daily net fat intake was much higher than the average daily net protein intake, both for maintenance of a constant body weight and for successful regain of weight. The data were further discussed with respect to the role of a fruit diet in omnivorous passerine birds.  相似文献   

13.
Hypotheses on total body chemical composition were tested using data from 350 Suffolk sheep grown to a wide range of live weights, and fed in a non-limiting way, or with reduced amounts of feed, or ad libitum on feeds of reduced protein content. The sheep were from an experiment where selection used an index designed to increase the lean deposition rate while restricting the fat deposition rate. Ultrasound muscle and fat depths were the only composition measurements in the index. The animals were males and females from a selection (S) line and its unselected control (C). The protein content of the lipid-free dry matter was unaffected by live weight, sex or feeding treatment with only a very small effect of genetic line (0.762 kg/kg in S and 0.753 kg/kg in C; P < 0.05). The form of the relationship between water and protein was not affected by any of the factors; in the different kinds of sheep it was consistent with no effect other than through differences in mature protein weight. The water : protein ratio at maturity was estimated as 3.45. Over the whole dataset, lipid weight (L) increased with protein weight (P) according to L = 0.3135 × P1.850. Allowing for this scaling, fatness increased on low-protein feeds, was greater in females than in males and in C than in S (P < 0.001). Lipid content (g/kg fleece-free empty body weight) was reduced by restricted feeding only in males at the highest slaughter weight (114 kg). The lines differed in lipid content (P < 0.001) with means of 265.1 g/kg for C and 237.3 g/kg for S. Importantly, there was no interaction between line and feeding treatments. A higher proportion of total body protein was in the carcass in S than in C (0.627 v. 0.610; P < 0.001). For lipid, the difference was reversed (0.736 v. 0.744; P < 0.05). The total energy content increased quadratically with slaughter weight. At a particular weight, the energy content of gain was higher in females than in males and in C than in S. Genetic selection affected body composition at a weight favouring the distribution of protein to the carcass and lipid to the non-carcass. Once allowing for effects of genetic selection, sex and feeding treatment on fatness, simple rules can be used to generate the chemical composition of sheep.  相似文献   

14.
Objective: The literature is divided over whether variation in resting metabolic rate (RMR) is related to subsequent obesity. We set out to see whether the effect of RMR on weight gain in mice could be revealed with high‐fat feeding. Research Methods and Procedures: Female C57BL/6J mice received a low‐ (10 kcal%fat n = 47), medium‐ (45 kcal%fat n = 50), or high‐fat diet (60 kcal%fat n = 50) for 12 weeks. Pre‐treatment RMR was measured by indirect calorimetry. Body composition was estimated using DXA before and after treatment. Results: Mice on the high‐fat diet gained 39% of body mass, whereas control animals gained 3.5%. There was no interaction between RMR and dietary type on weight gain, and there was no association between weight gain and RMR for any of the treatments. RMR accounted for 2.4% of the variation in pre‐treatment food intake corrected for initial body mass; however, the gradient of this relationship indicated that variations in RMR were, on average, compensated for by adjustments in food intake. Discussion: Individual variations in RMR did not predispose mice to weight gain independent of the dietary treatment. Deviations from the relationship between RMR and food intake were not associated with weight gain. This suggests that variations in energy expenditure, caused by RMR and physical activity, are closely linked to dietary intake, and, therefore, well compensated. Individual variations in the strength of this association may underpin individual variability in the responses to diet.  相似文献   

15.
Summary Selection for post-weaning weight gain in mice from 21 to 42 days, on either a full or restricted feeding level during this period was carried out for seven generations. Control lines were maintained for each feeding level. The rate of selection response was higher on full feeding due to a higher heritability and a larger phenotypic variance. Realised heritabilities of 0.29±0.05 and 0.19±0.04 for selection on full and restricted feeding respectively, were in close agreement with base population estimates.Selection on full feeding led to positive correlated responses in 21 day weight, 42 day weight, food intake and efficiency between 21 and 42 days, and 42 day tail length, but with little change in reproductive performance.Correlated responses to selection on restricted feeding were reduced 21 day weight, but an increase in 42 day weight and increased efficiency from 21 to 42 days. However, overall reproductive performance fell.  相似文献   

16.
Residual feed intake (RFI), defined as the difference between observed and expected feed intake based on growth and backfat, has been used to investigate genetic variation in feed efficiency in cattle, poultry and pigs. However, little is known about the biological basis of differences in RFI in pigs. To this end, the objective of this study was to evaluate the fifth generation of a line of pigs selected for reduced RFI against a randomly selected Control line for performance, carcass and chemical carcass composition and overall efficiency. Here, emphasis was on the early grower phase. A total of 100 barrows, 50 from each line, were paired by age and weight (22.6 ± 3.9 kg) and randomly assigned to one of four feeding treatments in 11 replicates: ad libitum (Ad), 75% of Ad (Ad75), 55% of Ad (Ad55) and weight stasis (WS), which involved weekly adjustments in intake to keep body weight (BW) constant for each pig. Pigs were individually penned (group housing was used for selection) and were on treatment for 6 weeks. Initial BW did not significantly differ between the lines (P > 0.17). Under Ad feeding, the low RFI pigs consumed 8% less feed compared with Control line pigs (P < 0.06), had less carcass fat (P < 0.05), but with no significant difference in growth rate (P > 0.85). Under restricted feeding, low RFI pigs under the Ad75 treatment had a greater rate of gain while consuming the same amount of feed as Control pigs. Despite the greater gain, no significant line differences in carcass composition or carcass traits were observed. For the WS treatment, low RFI pigs had similar BW (P > 0.37) with no significant difference in feed consumption (P > 0.32). Overall, selection for reduced RFI has decreased feed intake, with limited differences in growth rate but reduced carcass fat, as seen under Ad feeding. Collectively, results indicate that the effects of selection for low RFI are evident during the early grower stage, which allows for greater savings to the producer.  相似文献   

17.
The importance of fat oxidation and fatty acid synthesis were examined in rats fed approximately one half their ad libitum food intake for a period of 13 days followed by 7 days of ad libitum feeding (refed rats). This study was undertaken because previous reports demonstrated that refed rats rapidly accumulated body fat. Our results confirmed this observation: refed rats accrued body fat and body weight at rates that were approximately 3 times higher than controls. Evidence for a period of increased metabolic efficiency was demonstrated by measuring the net energy requirement for maintenance over the refeeding period: refed rats had a reduced metabolic rate during the period of energy restriction (approximately 30% lower than control) and this persisted up to 2 days after the reintroduction of ad libitum feeding. The major factor responsible for the rapid fat gain was a depressed rate of fatty acid oxidation. Calculations of protein and carbohydrate intake over the refeeding period showed that the simplest explanation for the decrease in fatty acid oxidation is fat sparing. This is possible because of the large increase in dietary carbohydrate and protein intake during the refeeding period when metabolic rates are still depressed. The increased carbohydrate and protein may adequately compensate for the increasing energy requirements of the ER rats over the refeeding period affording rats the luxury of storing the excess dietary fat energy.  相似文献   

18.
The effects of high calcium diet on body weight in OC treated rats are unknown. This study therefore investigated the effect of increasing dietary calcium from 0.9% to 2.5% on body weight, food ingestion, water intake, heart weight index and renal weight index in female Sprague-Dawley rats treated with a combination of OC steroids (ethinyloestradiol + norgestrel). The rats were assigned into three groups of average of 11 rats each; control, OC-treated and OC + Calcium – treated groups and administered orally for 10 weeks. Food and water intake, body weight, cardiac weight index, left ventricular weight index, renal weight index and serum calcium level were determined. The result shows that OC treated rats had significantly lower serum calcium concentration, body weight gain, food, water and calcium intake than those of the control rats. The OC + Calcium – treated rat had significantly higher serum calcium concentration, food, water and calcium intake but significantly lower body weight than those of the OC - treated rats. OC + Calcium - treated rats had significantly higher water intake, calcium intake and significantly lower body weight and food intake when compared with the control rats. Cardiac weight index and renal weight index was comparable in all groups. In conclusion, combined OC-induced reduction in weight gain might be associated with inhibition of the feeding center and consequent inhibition of the thirst center. Co-administration of dietary calcium augmented the reduction in weight gain seen in OC-treated rats probably by further suppression of the feeding and thirst centers.  相似文献   

19.
The aims of this study were to determine in the marsupial Sminthopsis crassicaudata, the effects of leptin on food intake, body weight, tail width (a reflection of fat stores), and leptin mRNA, after caloric restriction followed by refeeding ad libitum with either a standard or high-fat preferred diet. S. crassicaudata (n = 32), were fed standard laboratory diet (LabD; 1.01 kcal/g, 20% fat) ad libitum fo 3 days. On days 4-10, animals received LabD at 75% of basal intake and then (days 11-25) were fed either LabD or a choice of LabD and mealworms (MW; 2.99 kcal/g, 30% fat); during this time, half the animals (n = 8) in each group received either leptin (2.5 mg/kg) or PBS intraperitoneally two times daily. On day 26, animals were killed and fat was removed for assay of leptin mRNA. At baseline, body weight, tail width, and food intake were similar in each group. After caloric restriction, body weight (P < 0.001) and tail width (P < 0.001) decreased. On return to ad libitum feeding in the PBS-treated animals, body weight and tail width returned to baseline in the LabD-fed animals (P < 0.001) and increased above baseline in the MW-fed animals (P < 0.001). In the LabD groups, tail width (P < 0.001) and body weight (P < 0.001) decreased after leptin compared with PBS. In the MW groups, the increase in tail width (P < 0.001) and body weight (P = 0.001) were attenuated after leptin compared with PBS. The expression of leptin mRNA in groups fed MW were greater in PBS than in leptin-treated animals (P < 0.05). Therefore, after diet-induced weight loss, leptin prevents a gain in fat mass in S. crassicaudata; this has potential implications for the therapeutic use of leptin.  相似文献   

20.
A three-generation full-sib resource family was constructed by crossing two commercial pig lines. Genotypes for 37 molecular markers covering chromosomes SSC1, SSC6, SSC7 and SSC13 were obtained for 315 F2 animals of 49 families and their parents and grandparents. Phenotypic records of traits including carcass characteristics measured by the AutoFOM grading system, dissected carcass cuts and meat quality characteristics were recorded at 140 kg slaughter weight. Furthermore, phenotypic records on live animals were obtained for chemical composition of the empty body, protein and lipid accretion (determined by the deuterium dilution technique), daily gain and feed intake during the course of growth from 30 to 140 kg body weight. Quantitative trait loci (QTL) detection was conducted using least-squares regression interval mapping. Highest significance at the 0.1% chromosome-wise level was obtained for five QTL: AutoFOM belly weight on SSC1; ham lean-meat weight, percentage of fat of primal cuts and daily feed intake between 60 and 90 kg live weight on SSC6; and loin lean-meat weight on SSC13. QTL affecting daily gain and protein accretion were found on SSC1 in the same region. QTL for protein and lipid content of empty body at 60 kg liveweight were located close to the ryanodine receptor 1 (RYR1) locus on SSC6. On SSC13, significant QTL for protein accretion and feed conversion ratio were detected during growth from 60 to 90 kg. In general, additive genetic effects of alleles originating from the Piétrain line were associated with lower fatness and larger muscularity as well as lower daily gain and lower protein accretion rates. Most of the QTL for carcass characteristics were found on SSC6 and were estimated after adjustment for the RYR1 gene. QTL for carcass traits, fatness and growth on SSC7 reported in the literature, mainly detected in crosses of commercial lines x obese breeds, were not obtained in the present study using crosses of only commercial lines, suggesting that these QTL are not segregating in the analysed commercial lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号