首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Variation in mutation rate, attributed to differences in both generation time and in metabolic rate, has been invoked under the neutral theory of molecular evolution to account for differences in substitution rate among mammalian lineages. We show that substitution rates at fourfold-degenerate sites and at sites in noncoding regions do not vary between the primate and rodent lineages, implying mutation- rate uniformity. In contrast, the substitution rates at nondegenerate sites vary both within and between lineages. This difference in substitution-rate pattern between the two types of site is incompatible with neutral theory but may result from substitutions occurring by fixation of slightly deleterious mutations. Variation in the rate of protein evolution among mammalian lineages appears to be due more to differences in population fixation rates than to biochemical or physiological differences affecting mutation rates.   相似文献   

2.
Summary A model of molecular evolution in which the parameter (intrinsic rate of amino acid substitution) fluctuates from time to time was investigated by simulating the process. It was found that the usual method of estimation such as Poisson fitting underestimates this variation of the parameter when remote comparisons are made. At the same time, four distance measures (minimum base difference, Poisson fitting, random nucleotide substitutions and negative binomial fitting) were tested for their accuracy. When the substitution rate is not uniform among the amino acid sites, the negative binomial fitting gives most satisfactory results, however, one needs to know the parameter beforehand in order to use this method. It was pointed out that the fluctuation of the evolutionary rate is expected if the nearly neutral but very slightly deleterious mutations play an important role on molecular evolution.Contribution No. 1087 from the National Institute of Genetics, Mishima, Shizuoka-ken, 411 Japan.  相似文献   

3.
On the rate of molecular evolution   总被引:3,自引:0,他引:3  
Summary There are at least two outstanding features that characterize the rate of evolution at the molecular level as compared with that at the phenotypic level. They are; (1) remarkable uniformity for each molecule, and (2) very high overall rate when extrapolated to the whole DNA content.The population dynamics for the rate of mutant substitution was developed, and it was shown that if mutant substitutions in the population are carried out mainly by natural selection, the rate of substitution is given byk = 4 N e s 1 v, whereN e is the effective population number,s 1 is the selective advantage of the mutants, andv is the mutation rate per gamete for such advantageous mutants (assuming that 4N e s 1 1). On the other hand, if the substitutions are mainly carried out by random fixation of selectively neutral or nearly neutral mutants, we havek = v, wherev is the mutation rate per gamete for such mutants.Reasons were presented for the view that evolutionary change of amino acids in proteins has been mainly caused by random fixation of neutral mutants rather than by natural selection.It was concluded that if this view is correct, we should expect that genes of living fossils have undergone almost as many DNA base replacements as the corresponding genes of more rapidly evolving species.Contribution No. 789 from the National Institute of Genetics, Mishima, Shizuokaken 411 Japan. Aided in part by a grant-in-aid from the Ministry of Education, Japan.  相似文献   

4.
The distribution of the number of nucleotide differences between two randomly chosen cistrons in a finite population is studied here when the population size changes from generation to generation. When genetic variability is measured by heterozygosity (i.e., the probability that two cistrons are different), by the probability that two cistrons differ at two or more nucleotide sites, or by mean number of site differences between cistrons, it is seen that in a population going through a small bottleneck all of these measures decline rapidly but, as soon as population size becomes large, they start to increase owing to new mutations. The amount of reduction in these measures depends not only on the size of bottleneck but also on the rate of population growth. The implications of this study explaining the observed variations in the rates of amino acid substitutions during the evolutionary process are also discussed.  相似文献   

5.
Miyazawa S 《PloS one》2011,6(12):e28892
BACKGROUND: A mechanistic codon substitution model, in which each codon substitution rate is proportional to the product of a codon mutation rate and the average fixation probability depending on the type of amino acid replacement, has advantages over nucleotide, amino acid, and empirical codon substitution models in evolutionary analysis of protein-coding sequences. It can approximate a wide range of codon substitution processes. If no selection pressure on amino acids is taken into account, it will become equivalent to a nucleotide substitution model. If mutation rates are assumed not to depend on the codon type, then it will become essentially equivalent to an amino acid substitution model. Mutation at the nucleotide level and selection at the amino acid level can be separately evaluated. RESULTS: The present scheme for single nucleotide mutations is equivalent to the general time-reversible model, but multiple nucleotide changes in infinitesimal time are allowed. Selective constraints on the respective types of amino acid replacements are tailored to each gene in a linear function of a given estimate of selective constraints. Their good estimates are those calculated by maximizing the respective likelihoods of empirical amino acid or codon substitution frequency matrices. Akaike and Bayesian information criteria indicate that the present model performs far better than the other substitution models for all five phylogenetic trees of highly-divergent to highly-homologous sequences of chloroplast, mitochondrial, and nuclear genes. It is also shown that multiple nucleotide changes in infinitesimal time are significant in long branches, although they may be caused by compensatory substitutions or other mechanisms. The variation of selective constraint over sites fits the datasets significantly better than variable mutation rates, except for 10 slow-evolving nuclear genes of 10 mammals. An critical finding for phylogenetic analysis is that assuming variable mutation rates over sites lead to the overestimation of branch lengths.  相似文献   

6.
There are three different methods of estimating the number of nucleotide substitutions between a pair of species from amino acid sequence data, i.e. the Poisson correction method, random evolutionary hit method, and counting the actual but minimum number of nucleotide substitutions. In this paper the relationships among the estimates obtained by these methods are studied empirically. The results obtained indicate that there is a high correlation among these estimates and in practice any of the three methods may be used for constructing evolutionary trees or relating nucleotide substitutions to evolutionary time. The effects of varying rates of nucleotide substition among different sites on the Poisson correction and random evolutionary hit methods are also studied mathematically. It is shown that these two methods are quite insensitive to the variation of the rate of nucleotide substitution.  相似文献   

7.
Summary A method of estimating the number of nucleotide substitutions from amino acid sequence data is developed by using Dayhoff's mutation probability matrix. This method takes into account the effect of nonrandom amino acid substitutions and gives an estimate which is similar to the value obtained by Fitch's counting method, but larger than the estimate obtained under the assumption of random substitutions (Jukes and Cantor's formula). Computer simulations based on Dayhoff's mutation probability matrix have suggested that Jukes and Holmquist's method of estimating the number of nucleotide substitutions gives an overestimate when amino acid substitution is not random and the variance of the estimate is generally very large. It is also shown that when the number of nucleotide substitutions is small, this method tends to give an overestimate even when amino acid substitution is purely at random.  相似文献   

8.
Proteins evolve under a myriad of biophysical selection pressures that collectively control the patterns of amino acid substitutions. These evolutionary pressures are sufficiently consistent over time and across protein families to produce substitution patterns, summarized in global amino acid substitution matrices such as BLOSUM, JTT, WAG, and LG, which can be used to successfully detect homologs, infer phylogenies, and reconstruct ancestral sequences. Although the factors that govern the variation of amino acid substitution rates have received much attention, the influence of thermodynamic stability constraints remains unresolved. Here we develop a simple model to calculate amino acid substitution matrices from evolutionary dynamics controlled by a fitness function that reports on the thermodynamic effects of amino acid mutations in protein structures. This hybrid biophysical and evolutionary model accounts for nucleotide transition/transversion rate bias, multi‐nucleotide codon changes, the number of codons per amino acid, and thermodynamic protein stability. We find that our theoretical model accurately recapitulates the complex yet universal pattern observed in common global amino acid substitution matrices used in phylogenetics. These results suggest that selection for thermodynamically stable proteins, coupled with nucleotide mutation bias filtered by the structure of the genetic code, is the primary driver behind the global amino acid substitution patterns observed in proteins throughout the tree of life.  相似文献   

9.
Selectionism and neutralism in molecular evolution   总被引:20,自引:0,他引:20  
Charles Darwin proposed that evolution occurs primarily by natural selection, but this view has been controversial from the beginning. Two of the major opposing views have been mutationism and neutralism. Early molecular studies suggested that most amino acid substitutions in proteins are neutral or nearly neutral and the functional change of proteins occurs by a few key amino acid substitutions. This suggestion generated an intense controversy over selectionism and neutralism. This controversy is partially caused by Kimura's definition of neutrality, which was too strict (|2Ns|< or =1). If we define neutral mutations as the mutations that do not change the function of gene products appreciably, many controversies disappear because slightly deleterious and slightly advantageous mutations are engulfed by neutral mutations. The ratio of the rate of nonsynonymous nucleotide substitution to that of synonymous substitution is a useful quantity to study positive Darwinian selection operating at highly variable genetic loci, but it does not necessarily detect adaptively important codons. Previously, multigene families were thought to evolve following the model of concerted evolution, but new evidence indicates that most of them evolve by a birth-and-death process of duplicate genes. It is now clear that most phenotypic characters or genetic systems such as the adaptive immune system in vertebrates are controlled by the interaction of a number of multigene families, which are often evolutionarily related and are subject to birth-and-death evolution. Therefore, it is important to study the mechanisms of gene family interaction for understanding phenotypic evolution. Because gene duplication occurs more or less at random, phenotypic evolution contains some fortuitous elements, though the environmental factors also play an important role. The randomness of phenotypic evolution is qualitatively different from allele frequency changes by random genetic drift. However, there is some similarity between phenotypic and molecular evolution with respect to functional or environmental constraints and evolutionary rate. It appears that mutation (including gene duplication and other DNA changes) is the driving force of evolution at both the genic and the phenotypic levels.  相似文献   

10.
Whether evolution is erratic due to random historical details, or is repeatedly directed along similar paths by certain constraints, remains unclear. Epistasis (i.e. non-additive interaction between mutations that affect fitness) is a mechanism that can contribute to both scenarios. Epistasis can constrain the type and order of selected mutations, but it can also make adaptive trajectories contingent upon the first random substitution. This effect is particularly strong under sign epistasis, when the sign of the fitness effects of a mutation depends on its genetic background. In the current study, we examine how epistatic interactions between mutations determine alternative evolutionary pathways, using in vitro evolution of the antibiotic resistance enzyme TEM-1 β-lactamase. First, we describe the diversity of adaptive pathways among replicate lines during evolution for resistance to a novel antibiotic (cefotaxime). Consistent with the prediction of epistatic constraints, most lines increased resistance by acquiring three mutations in a fixed order. However, a few lines deviated from this pattern. Next, to test whether negative interactions between alternative initial substitutions drive this divergence, alleles containing initial substitutions from the deviating lines were evolved under identical conditions. Indeed, these alternative initial substitutions consistently led to lower adaptive peaks, involving more and other substitutions than those observed in the common pathway. We found that a combination of decreased enzymatic activity and lower folding cooperativity underlies negative sign epistasis in the clash between key mutations in the common and deviating lines (Gly238Ser and Arg164Ser, respectively). Our results demonstrate that epistasis contributes to contingency in protein evolution by amplifying the selective consequences of random mutations.  相似文献   

11.
Most chromosomal mutations that cause antibiotic resistance impose fitness costs on the bacteria. This biological cost can often be reduced by compensatory mutations. In Salmonella typhimurium, the nucleotide substitution AAA42 --> AAC in the rpsL gene confers resistance to streptomycin. The resulting amino acid substitution (K42N) in ribosomal protein S12 causes an increased rate of ribosomal proofreading and, as a result, the rate of protein synthesis, bacterial growth and virulence are decreased. Eighty-one independent lineages of the low-fitness, K42N mutant were evolved in the absence of antibiotic to ameliorate the costs. From the rate of fixation of compensated mutants and their fitness, the rate of compensatory mutations was estimated to be > or = 10-7 per cell per generation. The size of the population bottleneck during evolution affected fitness of the adapted mutants: a larger bottleneck resulted in higher average fitness. Only four of the evolved lineages contained streptomycin-sensitive revertants. The remaining 77 lineages contained mutants that were still fully streptomycin resistant, had retained the original resistance mutation and also acquired compensatory mutations. Most of the compensatory mutations, resulting in at least 35 different amino acid substitutions, were novel single-nucleotide substitutions in the rpsD, rpsE, rpsL or rplS genes encoding the ribosomal proteins S4, S5, S12 and L19 respectively. Our results show that the deleterious effects of a resistance mutation can be compensated by an unexpected variety of mutations.  相似文献   

12.
We sequenced the nearly complete mtDNA of 3 species of parasitic wasps, Nasonia vitripennis (2 strains), Nasonia giraulti, and Nasonia longicornis, including all 13 protein-coding genes and the 2 rRNAs, and found unusual patterns of mitochondrial evolution. The Nasonia mtDNA has a unique gene order compared with other insect mtDNAs due to multiple rearrangements. The mtDNAs of these wasps also show nucleotide substitution rates over 30 times faster than nuclear protein-coding genes, indicating among the highest substitution rates found in animal mitochondria (normally <10 times faster). A McDonald and Kreitman test shows that the between-species frequency of fixed replacement sites relative to silent sites is significantly higher compared with within-species polymorphisms in 2 mitochondrial genes of Nasonia, atp6 and atp8, indicating directional selection. Consistent with this interpretation, the Ka/Ks (nonsynonymous/synonymous substitution rates) ratios are higher between species than within species. In contrast, cox1 shows a signature of purifying selection for amino acid sequence conservation, although rates of amino acid substitutions are still higher than for comparable insects. The mitochondrial-encoded polypeptides atp6 and atp8 both occur in F0F1ATP synthase of the electron transport chain. Because malfunction in this fundamental protein severely affects fitness, we suggest that the accelerated accumulation of replacements is due to beneficial mutations necessary to compensate mild-deleterious mutations fixed by random genetic drift or Wolbachia sweeps in the fast evolving mitochondria of Nasonia. We further propose that relatively high rates of amino acid substitution in some mitochondrial genes can be driven by a "Compensation-Draft Feedback"; increased fixation of mildly deleterious mutations results in selection for compensatory mutations, which lead to fixation of additional deleterious mutations in nonrecombining mitochondrial genomes, thus accelerating the process of amino acid substitutions.  相似文献   

13.
A higher rate of molecular evolution in rodents than in primates at synonymous sites and, to a lesser extent, at amino acid replacement sites has been reported previously for most nuclear genes examined. Thus in these genes the average ratio of amino acid replacement to synonymous substitution rates in rodents is lower than in primates, an observation at odds with the neutral model of molecular evolution. Under Ohta's mildly deleterious model of molecular evolution, these observations are seen as the consequence of the combined effects of a shorter generation time (driving a higher mutation rate) and a larger effective population size (resulting in more effective selection against mildly deleterious mutations) in rodents. The present study reports the results of a maximum-likelihood analysis of the ratio of amino acid replacements to synonymous substitutions for genes encoded in mitochondrial DNA (mtDNA) in these two lineages. A similar pattern is observed: in rodents this ratio is significantly lower than in primates, again consistent only with the mildly deleterious model. Interestingly the lineage-specific difference is much more pronounced in mtDNA-encoded than in nuclear-encoded proteins, an observation which is shown to run counter to expectation under Ohta's model. Finally, accepting certain fossil divergence dates, the lineage-specific difference in amino acid replacement-to-synonymous substitution ratio in mtDNA can be partitioned and is found to be entirely the consequence of a higher mutation rate in rodents. This conclusion is consistent with a replication-dependent model of mutation in mtDNA. Received: 24 September 1999 / Accepted: 18 September 2000  相似文献   

14.
McAllister BF  McVean GA 《Genetics》2000,154(4):1711-1720
The amino acid sequence of the transformer (tra) gene exhibits an extremely rapid rate of evolution among Drosophila species, although the gene performs a critical step in sex determination. These changes in amino acid sequence are the result of either natural selection or neutral evolution. To differentiate between selective and neutral causes of this evolutionary change, analyses of both intraspecific and interspecific patterns of molecular evolution of tra gene sequences are presented. Sequences of 31 tra alleles were obtained from Drosophila americana. Many replacement and silent nucleotide variants are present among the alleles; however, the distribution of this sequence variation is consistent with neutral evolution. Sequence evolution was also examined among six species representative of the genus Drosophila. For most lineages and most regions of the gene, both silent and replacement substitutions have accumulated in a constant, clock-like manner. In exon 3 of D. virilis and D. americana we find evidence for an elevated rate of nonsynonymous substitution, but no statistical support for a greater rate of nonsynonymous relative to synonymous substitutions. Both levels of analysis of the tra sequence suggest that, although the gene is evolving at a rapid pace, these changes are neutral in function.  相似文献   

15.
The molecular clock of neutral mutations, which represents linear mutation fixation over generations, is theoretically explained by genetic drift in fitness-steady evolution or hitchhiking in adaptive evolution. The present study is the first experimental demonstration for the molecular clock of neutral mutations in a fitness-increasing evolutionary process. The dynamics of genome mutation fixation in the thermal adaptive evolution of Escherichia coli were evaluated in a prolonged evolution experiment in duplicated lineages. The cells from the continuously fitness-increasing evolutionary process were subjected to genome sequencing and analyzed at both the population and single-colony levels. Although the dynamics of genome mutation fixation were complicated by the combination of the stochastic appearance of adaptive mutations and clonal interference, the mutation fixation in the population was simply linear over generations. Each genome in the population accumulated 1.6 synonymous and 3.1 non-synonymous neutral mutations, on average, by the spontaneous mutation accumulation rate, while only a single genome in the population occasionally acquired an adaptive mutation. The neutral mutations that preexisted on the single genome hitchhiked on the domination of the adaptive mutation. The successive fixation processes of the 128 mutations demonstrated that hitchhiking and not genetic drift were responsible for the coincidence of the spontaneous mutation accumulation rate in the genome with the fixation rate of neutral mutations in the population. The molecular clock of neutral mutations to the fitness-increasing evolution suggests that the numerous neutral mutations observed in molecular phylogenetic trees may not always have been fixed in fitness-steady evolution but in adaptive evolution.  相似文献   

16.
On the Overdispersed Molecular Clock   总被引:16,自引:8,他引:8       下载免费PDF全文
Naoyuki Takahata 《Genetics》1987,116(1):169-179
Rates of molecular evolution at some loci are more irregular than described by simple Poisson processes. Three situations under which molecular evolution would not follow simple Poisson processes are reevaluated from the viewpoint of the neutrality hypothesis: concomitant or multiple substitutions in a gene, fluctuating substitution rates in time caused by coupled effects of deleterious mutations and bottlenecks, and changes in the degree of selective constraints against a gene (neutral space) caused by successive substitutions. The common underlying assumption that these causes are lineage nonspecific excludes the case where mutation rates themselves change systematically among lineages or taxonomic groups, and severely limits the extent of variation in the number of substitutions among lineages. Even under this stringent condition, however, the third hypothesis, the fluctuating neutral space model, can generate fairly large variation. This is described by a time-dependent renewal process, which does not exhibit any episodic nature of molecular evolution. It is argued that the observed elevated variances in the number of nucleotide or amino acid substitutions do not immediately call for positive Darwinian selection in molecular evolution.  相似文献   

17.
Summary The neutral theory of molecular evolution postulates that nucleotide substitutions inherently take place in DNA as a result of point mutations followed by random genetic drift. In the absence of selective constraints, the substitution rate reaches the maximum value set by the mutation rate. The rate in globin pseudogenes is about 5 × 10–9 substitutions per site per year in mammals. Rates slower than this indicate the presence of constraints imposed by negative (natural) selection, which rejects and discards deleterious mutations.We wish to dedicate this paper to the memory of Professor Jack Lester King  相似文献   

18.
Rates of molecular evolution: the hominoid slowdown   总被引:2,自引:0,他引:2  
It is proposed that early in phylogeny a large proportion of amino acid substitutions were selectively neutral, but that bursts of adaptive substitutions during major radiations of life so increased selective constraints that most mutations in modern proteins are detrimental. Recent findings on DNA nucleotide sequences indicate that decreasing mutation rates further slowed the rate of molecular evolution in the lineage to humans.  相似文献   

19.
Neutral evolution results from random recurrent mutation and genetic drift. A small part of random evolution, that which is related to protein or DNA polymorphisms, is the subject of the Neutral Theory of Evolution. One of the foundations of this theory is the demonstration that the mutation rate (m) is equal to the substitution rate. Since both rates are independent of population size, they are independent of drift, which is dependent upon population size. Neutralists have erroneously equated the substitution rate with the fixation rate, despite the fact that they are antithetical conceptions. The neutralists then applied the random walk stochastic model to justify alleles or bases that were fixated or eliminated. In this model, once the allele or base frequencies reach the monomorphic states (values of 1.0 or 0.0), the absorbing barriers, they can no longer return to the polymorphic state. This operates in a pure mathematical model. If recurrent mutation occurs (as in biotic real systems) fixation and elimination are impossible. A population of bacteria in which m = 10(-8) base mutation (or substitution)/site/generation and the reproduction rate is 1000 cell cycle/year should replace all its genome bases in approximately 100,000 years. The expected situation for all sites is polymorphism for the four bases rather than monomorphism at 1.0 or 0.0 frequencies. If fixation and elimination of a base for more than 500,000 years are impossible, then most of the neutral theory is untenable. A new complete neutral model, which allows for recurrent substitutions, is proposed here based on recurrent mutation or substitution and drift alone. The model fits a binomial or Poisson distribution and not a geometric one, as does neutral theory.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号