首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Axonemes of sperm flagella were prepared from the annelid, Tylorrhynchus heterochaetus. Dialysis of the axonemes against 1 mm Tris-HCl buffer (pH 8.3)-0.1 mm EDTA-0.1 mm dithiothreitol (Tris-EDTA solution) caused disintegration of typical 9 + 2 microtubules into each doublet, resulting in extraction of one-third of the protein and almost all ATPase activity. Agarose polyacrylamide gel electrophoresis of the extract showed the presence of three kinds of dyneins actively stained for ATPase (designated as bands I, II, and III) and two non-ATPase proteins (bands IV, V). The polypeptide components of each dynein molecule and intact axoneme were analyzed by subsequent sodium dodecyl sulfate-polyacrylamide gel electrophoresis to obtain the following results: (1) In the highmolecular-weight region, the intact axonemes yield two major polypeptides with molecular weights of 365,000 and 345,000 (designated as bands A and B, respectively) and three minor polypeptides, 310,000, 290,00, and 270,00 (C1, C2, C3). (2) All three dyneins contain A-band polypeptide as a common polypeptide component. In addition, band I dynein and band II dynein also contain B and C1 polypeptides, and C3 polypeptide, respectively, as high-molecular-weight components. (3) Band III dynein also contains four polypeptides in the lower molecular-weight region, which migrate similarly with those of 21 S dynein from sea urchin sperm flagella or 18 S dynein from Chlamydomonas.  相似文献   

2.
Calmodulin confers calcium sensitivity on ciliary dynein ATPase   总被引:8,自引:7,他引:1       下载免费PDF全文
Extraction of demembranated cilia of Tetrahymena by Tris-EDTA (denoted by the suffix E) yields 14S-E and 30S-E dyneins with ATPase activities that are slightly increased by Ca++. This effect is moderately potentiated when bovine brain calmodulin is added to the assay mixture. Extraction with 0.5 M KCl (denoted by the suffix K) yeilds a 14S-K dynein with a low basal ATPase activity in the presence of Ca++. Subsequent addition of calmodulin causes marked activation (up to 10- fold) of ATPase activity. Although 14S-K and 14S-E dyneins have Ca++- dependent ATPase activities that differ markedly in the degree of activation, the concentration of calmodulin required for half-maximal saturation is similar for both, approximately 0.1 microM. Both 30S-K and 30S-E dyneins, however, require approximately 0.7 microM bovine brain calmodulin to reach half-maximal activation of their Ca++- dependent ATPase activities. Tetrahymena calmodulin is as effective as bovine brain calmodulin in activating 30S dynein , but may be slightly less effective than the brain calmodulin in activating 14S dynein. Rabbit skeletal muscle troponin C also activates the Ca++-dependent ATPase activity of 30S dynein and, to a lesser extent, that of 14S dynein, but in both cases is less effective than calmodulin. The interaction of calmodulin with dynein that results in ATPase activation is largely complete in less than 1 min, and is prevented by the presence of low concentrations of ATP. Adenylyl imidodiphosphate can partially prevent activation of dynein ATPase by calmodulin plus Ca++, but at much higher concentrations than required for prevention by ATP. beta, gamma-methyl-adenosine triphosphate appears not to prevent this activation. The presence of Ca++-dependent calmodulin-binding sites on 14S and 30S dyneins was demonstrated by the Ca++-dependent retention of the dyneins on a calmodulin-Sepharose-4B column. Gel electrophoresis of 14S dynein that had been purified by the affinity-chromatography procedure showed that presence of two major and one minor high molecular weight components. Similar analysis of 30S dynein purified by this procedure also revealed on major and one minor high molecular weight components that were different from the major components of 14S dynein. Ca++-dependent binding sites for calmodulin were shown to be present on axonemes that had been extracted twice with Tris-EDTA or with 0.5 M KCl by the use of 35S-labeled Tetrahymena calmodulin. It is concluded that the 14S and 30S dyneins of Tetrahymena contain Ca++- dependent binding sites for calmodulin and the calmodulin mediates the Ca++-regulation of the dynein ATPases of Tetrahymena cilia.  相似文献   

3.
The effects of five sulfhydryl (SH) reagents – N-ethylmaleimide (NEM), a spin-labeled maleimide (SLM), N-N′-phenylenedimaleimide (PPDM), bis(4-fluoro-3-nitrophenyl)sulfone (FNS), and carboxypyridine disulfide (CPDS) – on glycerol-treated, Triton X-100-demembranated ciliary axonemes of Tetrahymena, on the 30S and 14S dyneins extracted from such axonemes, and on the residual ATPase activity remaining associated with axonemes that have been extracted twice with Tris-EDTA have been examined as a function of pH in the range 6.9–8.6. Preincubation of axonemes and of solubilized 30S dynein with low concentrations of each of the five SH reagents, at 0°C and at 25°C, caused enhancement of the latent ATPase activity. PPDM was the most effective reagent, causing half-maximal enhancement (after 18 h at 0°C) at ~ 0.5 μM, corresponding to 0.19 moles/105 g axonemal protein. The rate constants, ka, for the enhancement reaction at 0°C depended on whether the 30S dynein was in situ or solubilized; the ratio ka (in situ) /ka (solubilized) was > 1 for NEM, ~ 1 for PPDM, and < 1 for FNS. For each SH reagent except CPDS, ka (at 0°C) increased markedly with increasing pH in the range pH 6.9–8.6; for CPDS ka increased only about fourfold. At long times of preincubation and high concentrations of NEM, SLM, PPDM, and CPDS, the enhancement of ATPase activity was followed by a loss of activity. The values of kL, the rate constants for loss of ATPase activity from the peak enhanced level, were much lower than the corresponding values for ka, and increased with increasing pH. With SLM and PPDM, inhibition continued until the ATPase activity was almost completely inhibited. With NEM, however, the initial rate of loss from the peak enhanced value decreased as the ATPase activity returned toward the control (unmodified) level, and further inhibition was very slow. The differences in degree of inhibition obtained with SLM as compared to NEM suggest that there are at least two classes of inhibitory SH groups on 30S dynein. The ATPase activity of 14S dynein was only inhibited by preincubation with NEM, SLM, PPDM, and, to a lesser extent, CPDS; kL increased with increasing pH. Preincubation of 14S dynein with FNS yielded conflicting results when the reaction was “stopped” by adding dithiothreitol. When 14S dynein was preincubated at 0 C with FNS and the ATPase activity was then assayed at 25°C, a biphasic pattern of enhancement followed by inhibition was obtained. The residual ATPase activity of twice-extracted axomenes was relatively insensitive to each of the SH reagents studied; an initial rapid loss of some 20–40% of the ATPase activity occurred, followed by a very slow further loss of activity. Increasing the pH increased this slow rate of inhibition. The residual ATPase activity of unmodified twice-extracted axonemes decreased slightly with increasing pH, in contrast to the slight increase observed with increasing pH for the ATPase activity of axonemes and of solubilized 30S and 14S dyneins. The presence of ATP during preincubation of axonemes with PPDM at O°C prevented the enhancement of ATPase activity; only a slow loss of ATPase activity was observed. This rate of loss of ATPase activity was slower than the rate of loss observed (after peak enhancement of activity was reached) when PPDM reacted with axonemes in the absence of ATP. In these properties the SH groups of 30s dynein responsible for the enhancement of latent ATPase activity and for the inhibition of ATPase activity do not resemble the SH1 and SH2 groups of myosin, respectively, since the presence of ATP increases the rates of reaction of SH1 and SH2 of myosin with SH reagents.  相似文献   

4.
Outer dynein arm polypeptides that possess Mg+2-adenosine triphosphatase (ATPase) activity have been extracted from the flagellar axonemes of demembranated bovine sperm. Electron microscopy of intact and salt-extracted sperm demonstrates a relatively selective removal of the outer dynein arms. The salt extract contains a specific ATPase activity of 55 nmoles inorganic phosphate (Pi)/min/mg protein. Sucrose density gradient centrifugation of this extract results in a 6-fold increase in specific activity of ATPase (333 nmole/Pi/min/mg protein), which sediments as a single 13S peak. Concomitant with the increase in specific activity, there is enrichment of three high molecular weight polypeptides (Mr greater than 300,000) characteristic of dynein heavy chains. ATPase activities in the initial extract and in the 13S peak are inhibited by concentrations of vanadate and erythro-9-[3-2-(hydroxynonyl)]adenine similar to those that inhibit ATPase activity in sea urchin sperm dynein. These findings indicate that outer arm dynein ATPase can be extracted and partially purified from bovine sperm.  相似文献   

5.
Cilia from the protozoan Tetrahymena pyriformis were demembranated and then extracted for 5 min with a buffer containing 0.5 M NaCl. The briefly extracted axonemal pellet was then reextracted for about 20 hr. The soluble material obtained from each extraction was resolved into 14S and 30S dynein ATPases by sedimentation on sucrose density gradients and tested for sensitivity to added calmodulin. The 14S dynein obtained by a 5-min extraction was generally insensitive to added calmodulin, whereas that obtained by 20-hr extraction of the 5-min extracted axonemes was activated by calmodulin, the activation being much larger in the “light” 14S fractions than in the “heavy” fractions. The 30S dynein ATPase obtained by a 5-min extraction was generally activated over 1.6-fold by added calmodulin, whereas that obtained by the subsequent long extraction was usually activated only 1.3-fold. After further purification of the 5-min extracted 30S dynein and of the 5-min to 20-hr-extracted 14S dynein on DEAE-Sephacel, these dyneins retained much of their calmodulin activatability. The ATPase activity of both 14S and 30S dyneins was inhibited more strongly by erythro-9-[3-(2-hydroxynonyl)] adenine and by vanadate in the presence of added calmodulin than in its absence. These data suggest that the only ATPase activity present in the fractions studied is that of the dyneins and demonstrate that both the 14S and 30S dynein ATPases may be obtained in forms mat are activated by added calmodulin as well as in forms that are insensitive to added calmodulin.  相似文献   

6.
Dynein arms and isolated dynein from Paramecium tetraurelia ciliary axonemes are comparable in structure, direction of force generation, and microtubule translocation ability to other dyneins. In situ arms have dimensions and substructure similar to those of Tetrahymena. Based on spoke arrangement in intact axonemes, arms translocate axonemal microtubules in sliding such that active dynein arms are (-) end directed motors and the doublet to which the body and cape of the arms binds (N) translocates the adjacent doublet (N + 1) tipward. After salt extraction, based on ATPase activity, paramecium dynein is found as a 22S and a 14S species. The 22S dynein is a three-headed molecule that has unfolded from the in situ dimensions; the 14S dynein is single headed. Both dyneins can be photocleaved by UV light (350 nm) in the presence of Mg2+, ATP and vanadate; the photocleavage pattern of 22S dynein differs from that seen with Tetrahymena. Both isolated dyneins translocate taxol-stabilized, bovine brain microtubules in vitro. Under standard conditions, 22S dynein, like comparable dyneins from other organisms, translocates at velocities that are about three times faster than 14S dynein.  相似文献   

7.
ABSTRACT Dynein arms and isolated dynein from Paramecium tetraurelia ciliary axonemes are comparable in structure, direction of force generation, and microtubule translocation ability to other dyneins. In situ arms have dimensions and substructure similar to those of Tetrahymena. Based on spoke arrangement in intact axonemes, arms translocate axonemal microtubules in sliding such that active dynein arms are (-) end directed motors and the doublet to which the body and cape of the arms binds (N) translocates the adjacent doublet (N+1) upward. After salt extraction, based on ATPase activity, paramecium dynein is found as a 22S and a 14S species. the 22S dynein is a three-headed molecule that has unfolded from the in situ dimensions; the 14S dynein is single headed. Both dyneins can be photocleaved by UV light (350 nm) in the presence of Mg2-, ATP and vanadate; the photocleavage pattern of 22S dynein differs from that seen with Tetrahymena. Both isolated dyneins translocate taxol-stabilized, bovine brain microtubules in vitro. Under standard conditions, 22S dynein, like comparable dyneins from other organisms, translocates at velocities that are about three times faster than 14S dynein.  相似文献   

8.
ATPase activity of Tetrahymena cilia before and after extraction of dynein   总被引:2,自引:0,他引:2  
Cilia from Tetrahymena pyriformis were extracted twice with Tris-EDTA. The first extraction increased the total ATPase activity by about one-third. No increase in activity occurred as a result of the second extraction, but 40% of the original ATPase activity remained in the pellet. The activity remaining in the pellet differed in its substrate specificity, its thermostability, and its sensitivity to monovalent cation chlorides from the solubilized dynein. Several of the properties of the ATPase activity of whole cilia differed from those computed for a mixture of 40% pellet ATPase + 60% solubilized dynein ATPase. From these differences it was deduced that dynein in situ is more thermostable than is solubilized dynein and, in contrast to solubilized dynein, is slightly inhibited by KCl, NaCl, LiCl, and NH4Cl. The increase in total activity upon solubilization of the dynein and the changes in thermostability and in sensitivity to monovalent cations indicates that dynein ATPase in situ is modified by interaction with other components of the axonemal bend generating system.The pellet remaining after extraction of dynein by two dialyses against Tris-EDTA was treated with 0.4% Triton X-100 to solubilize ciliary membranes. Less than half of the ATPase activity was solubilized by this treatment. The possibility that the activity remaining in the Tris-EDTA- and Triton X-100-extracted residue represents an additional ATPase of cilia is discussed.  相似文献   

9.
Demembranated cilia of Tetrahymena pyriformis were extracted with KCl or Tris-EDTA and the crude dyneins from each resolved by sucrose density gradient sedimentation into 14S-K, 30S-K, 14S-E and 30S-E dyneins, respectively. The calmodulin activation ratio (ATPase activity in presence of added calmodulin/ATPase activity in absence of added calmodulin) did not vary across the 30S dynein fractions regardless of the method of extraction nor did it vary across the 14S-E region. However, in going from the “heavy” fractions to the “light” fractions of the 14S-K region, it increased markedly. The concentration of calmodulin required for half-maximal activation did not differ appreciably in the “light” versus the “heavy” fractions of the 14S-K region, suggesting that the affinity for calmodulin does not vary in these fractions. SDS-polyacrylamide gel electrophoresis studies showed the presence of several polypeptides that varied in a systematic fashion across the 14S-K region and hence may be involved in regulating the sensitivity of 14S-K dynein ATPase activity to added calmodulin.  相似文献   

10.
Some properties of bound and soluble dynein from sea urchin sperm flagella   总被引:24,自引:19,他引:5  
Axonemes were isolated from sperm of Colobocentrotus by a procedure involving two extractions with 1% Triton X-100 and washing The isolated axonemes contained 7 x 1015 g protein per µm of their length. Treatment of the axonemes with 0 5 M KCl for 30 min extracted 50–70% of the flagellar ATPase protein, dynein, and removed preferentially the outer arms from the doublet tubules. Almost all of the dynein (85–95%) could be extracted from the axonemes by dialysis at low ionic strength. In both cases the extracted dynein sedimented through sucrose gradients at 12–14S, and no 30S form was observed The enzymic properties of dynein changed when it was extracted from the axonemes into solution. Solubilization had a particularly marked effect on the KCl- and pH-dependence of the ATPase activity. The pH-dependence of soluble dynein was fairly simple with a single peak extending from about pH 6 to pH 10. The pH-dependence of bound dynein was more complex. In 0.1 M KCl, the bound activity appeared to peak at about pH 9, and dropped off rapidly with decreasing pH, reaching almost zero at pH 7; an additional peak at pH 10 0 resulted from the breakdown of the axonemal structure and solubilization of dynein that occurred at about this pH. A similar curve was obtained in the absence of KCl, except for the presence of a further large peak at pH 8 Measurement of the kinetic parameters of soluble dynein showed that both Km and Vmax increased with increasing concentrations of KCl up to 0.5 M When bound dynein was assayed under conditions that would induce motility in reactivated sperm (0 15 M KCl with Mg++ activation), it did not obey Michaelis-Menten kinetics, although it did when assayed under other conditions. The complex enzyme-kinetic behavior of bound dynein, and the differences between its enzymic properties and those of soluble dynein, may result from its interactions with tubulin and other axonemal proteins  相似文献   

11.
Recombination of ciliary dyneins of Tetrahymena pyriformis with the outer fibers was investigated using turbidimetry, co-sedimentation analysis and electron microscopy. As reported by Gibbons, 30S dynein could recombine with the outer fibers, while 14S dynein did to so a lesser extent. At acidic pH, however, most of the 14S dynein was also rebound to the outer fibers. When an excess of crude dynein fraction was added to the outer fiber fraction at pH 8.2, electron microscopic observations showed that the outer doublet microtubules were decorated not only with arms but also with other electron-dense materials. On the other hand, when crude dynein fraction was mixed with the outer fibers in an appropriate quantity, only arms were reconstituted at the regular positions of A-subfibers. ATP had an inhibitory effect on the recombination of dynein with the outer fibers.  相似文献   

12.
Axonemal dynein ATPase [EC 3.6.1.3] was extracted from cilia of sea urchin embryos for a study of its enzymatic properties. Sedimentation analysis on a sucrose density gradient revealed that ATPase activity was associated with the 12S particles. The partially purified 12S enzyme was characterized mainly with regard to the optimum pH, divalent cation and ionic strength requirments and substrate specificity. Comparative investigation of the data obtained indicates that the properties of the present dyneine ATPase resemble those of other dynein(-like) ATPase hitherto reported. In addition, the possible relationship among dyneins within a single species, in particular between the ciliary dynein and cytoplasmic dynein-like ATPase, is discussed.  相似文献   

13.
J J Blum  A Hayes  C C Whisnant  G Rosen 《Biochemistry》1977,16(9):1937-1943
The effects of N-1-oxyl-2,2,6,6-tetramethyl-4-piperidinyl)maleimide(SLM) on the pellet height response and ATPase activity of glycerinated Triton X-100 extracted cilia of Tetrahymena pyriformis have been studied. Preincubation of cilia with SLM caused complete inhibition of the pellet height response and an initial increase in ATPase activity followed upon longer exposure to SLM by inhibition of ATPase. The effect of SLM on extracted 30S dynein was the reverse of that for whole cilia: ATPase activity was increased when 30S dynein was added to a mixture of ATP and SLM and inhibited when the 30S dynein was preincubated with SLM. The activity of 14S dynein was only inhibited by SLM. Electron spin resonance spectra of ciliary axonemes that had reacted with SLM for various times showed that much of the covalently bound SLM was strongly immobilized even after 1 min of reaction, when ATPase activity increased twofold. The proportion of strongly immobilized label increased with longer times of reaction. Addition of ATP to SLM-labeled axonemes caused a small decrease in the height of the spectral peak corresponding to strongly immobilized label as compared with that of weakly immobilized label, indicating an increase in rotational freedom of some covalently bound label. The results suggest that ATP causes a conformation change affecting a sulfhydryl group(s) involved in the mechanochemical system. It was also shown that beta,gamma-methylene ATP(AMP-PCP) is an inhibitor of dynein ATPase. This analogue of ATP is not hydrolyzed by whole cilia or by the extracted dyneins and does not cause a pellet height response. With Mg2+ as divalent cation, AMP-PCP inhibits 30S dynein more than it inhibits 14S dynein; with Ca2+, the inhibition of 30S dynein is reduced, and there is no inhibition of 14S dynein. Under conditions where AMP-PCP inhibited 30S dynein ATPase it was much less effective than ATP in protecting against the loss of ATPase activity by SLM. Although SLM inhibited Mg2+-activated 14S and 30S dyneins in solution, it did not inhibit ciliary ATPase activity. These results support the view that at least 2 SH groups are involved in ciliary motility and that their reactivity to SH reagents depends on whether the dyneins are in situ or have been extracted.  相似文献   

14.
Dynein was obtained by high salt extraction of Tetrahymena cilia and purified by DEAE-Sephacel chromatography. This fraction consisted of a mixture of 30 S dynein (80%) and the 14 S ATPase (15%). The column purification effectively removed tubulin and adenylate kinase. Sodium dodecyl sulfate-polyacrylamide electrophoresis indicated that the 30 S dynein was composed of a major heavy chain (approximately 400 kD, three copies), three intermediate chains (70, 85, and 100 kD), and a group of light chains (approximately 20 kD). The binding of the column-purified dynein to bovine brain microtubules was characterized as follows. (i) Titration of the dynein with microtubules showed a linear increase in turbidity up to an equivalence point of 2.7 mg of dynein/mg of tubulin with apparently tight binding; (ii) the addition of ATP caused the turbidity of the solution of decrease to a level equal to the sum of free dynein plus microtubules; (iii) transmission electron microscopy indicated that microtubules were decorated with dynein arms spaced at a 24-nm longitudinal repeat and that the dynein decoration was removed upon addition of ATP; (iv) cross-section images of microtubules that were saturated with dynein showed six to seven dynein arms around a microtubule consisting of 14 protofilaments, corresponding to a molar ratio of one dynein/six tubulin dimers; (v) the dynein arms were bound primarily by their broader end which corresponds to the end normally bound to the B-subfiber in vivo. Experiments with purified 30 and 14 S dyneins indicated that the dynein-microtubule binding activity and the ATP-induced dissociation were the properties of the 30 S dynein alone. These studies demonstrate that the 30 S dynein under our conditions (50 mM PIPES, pH 6.96, 4 mM MgSO4) interacts with bovine brain microtubules through the ATP-sensitive site of the dynein arm.  相似文献   

15.
The high salt extract obtained from demembranated human spermatozoa contains high molecular weight proteins. These proteins are associated with an ATPase activity inhibited by sodium orthovanadate. In association with lower molecular weight proteins, they constitute a 20 S particle and are probably localized in the dynein arms (and in the radial spokes) of the human spermatozoon axonemes. Evidence is shown for a biochemical analogy between the dynein ATPases extracted from the invertebrate axonemes and the human dynein-like ATPase described in this study.  相似文献   

16.
The basal ATPase activity of 30S dynein, whether obtained by extraction of ciliary axonemes with a high (0.5 M NaCl) or low (1 mM Tris-0.1 mM EDTA) ionic strength buffer is increased by NaCl, NaNO3, and Na acetate, with NaNO3 causing the largest increase. The calmodulin-activated ATPase activity of 30S dynein is also increased by addition of NaCl, NaNO3, or Na acetate, but the effects are less pronounced than on basal activity, so that the calmodulin activation ratio (CAR) decreases to 1.0 as salt concentration increases to 0.2 M. These salts also reduce the CAR of 14S dynein ATPase to 1.0 but by strongly inhibiting the calmodulin-activated ATPase activity and only slightly inhibiting the basal activity. Sodium fluoride differs both quantitatively and qualitatively from the other three salts studied. It inhibits the ATPase activity of both 14S and 30S dyneins at concentrations below 5 mM and, by a stronger inhibition of the calmodulin-activated ATPase activities, reduces the CAR to 1.0. Na acetate does not inhibit axonemal ATPase, nor does it interfere with the drop in turbidity caused by ATP and extracts very little protein from the axonemes. NaCl and, especially, NaNO3, cause a slow decrease in A350 of an axonemal suspension and an inhibition of the turbidity response to ATP. NaF, at concentrations comparable to those that inhibit the ATPase activities of the solubilized dyneins, also inhibits axonemal ATPase activity and the turbidity response. Pretreatment of demembranated axonemes with a buffer containing 0.25 M sodium acetate for 5 min followed by extraction for 5 min with a buffer containing 0.5 M NaCl and resolution of the extracted dynein on a sucrose density gradient generally yields a 30S dynein that is activated by calmodulin in a heterogeneous manner, ie, the "light" 30S dynein ATPase fractions are more activated than the "heavy" 30S dynein fractions. These results demonstrate specific anion effects on the basal and calmodulin-activated dynein ATPase activities, on the extractability of proteins from the axoneme, and on the turbidity response of demembranated axonemes to ATP. They also provide a method that frequently yields 30S dynein fractions with ATPase activities that are activated over twofold by added calmodulin.  相似文献   

17.
Two dyneins can be extracted from Tetrahymena ciliary axonemes. The 22S dynein contains three heavy chains (HC), sediments at 22S in a sucrose gradient, and makes up the outer arms. The 14S dynein contains two to six HCs, sediments at 14S, and is thought to contribute to formation of the inner arms. We have identified two large proteins that are extracted from Tetrahymena axonemes with high salt and that sediment together at approximately 18S. The two large proteins cleave when subjected to UV light in the presence of ATP and vanadate, suggesting both proteins are dynein HC. Antibodies against one of the 18S HCs do not recognize 22S dynein HCs. Antibodies to 22S dynein HC do not bind appreciably to 18S dynein photocleavage fragments. Taken together, these results indicate that the large proteins that sediment at 18S are axonemal dynein heavy chains.  相似文献   

18.
Purification and properties of dyneins from Paramecium cilia   总被引:3,自引:0,他引:3  
Dynein ATPases were purified from Paramecium cilia by salt extraction followed by sucrose density gradient centrifugation and anion exchange chromatography. The two major dyneins sedimented in sucrose gradients as species of 22 S and 12 S. After purification by anion exchange chromatography, their specific activities were about 0.4 and 0.5 mumol/min per mg, respectively. The dyneins could be distinguished by subunit composition and immunological crossreactivity. Sucrose density gradient centrifugation revealed additional ATPase activity in the region between the 22 S and 12 S dyneins, including a 19 S activity. Mg2+-ATPase activities of the dyneins and the 19 S activity were inhibited by vanadate and Zn2+, and were activated by Triton X-100. Antibodies against the 22 S dynein from Paramecium reacted on immunoblots with most of the polypeptides of 22 S dynein, and showed that the heavy chains of 22 S dynein are not identical to those that sediment at 19 S and 12 S. Several minor ATPase activities were revealed by anion exchange chromatography of fractions from the 22 S, 19 S and 12 S regions of sucrose gradients. These minor activities were stimulated by Mg2+, inhibited by vanadate, and could be distinguished from each other by their elution positions and polypeptide compositions.  相似文献   

19.
Outer arm dynein was purified from sperm flagella of a sea anemone, Anthopleura midori, and its biochemical and biophysical properties were characterized. The dynein, obtained at a 20S ATPase peak by sucrose density gradient centrifugation, consisted of two heavy chains, three intermediate chains, and seven light chains. The specific ATPase activity of dynein was 1.3 micromol Pi/mg/min. Four polypeptides (296, 296, 225, and 206 kDa) were formed by UV cleavage at 365 nm of dynein in the presence of vanadate and ATP. In addition, negatively stained images of dynein molecules and the hook-shaped image of the outer arm of the flagella indicated that sea anemone outer arm dynein is two-headed. In contrast to protist dyneins, which are three-headed, outer arm dyneins of flagella and cilia in multicellular animals are two-headed molecules corresponding to the two heavy chains. Phylogenetic considerations were made concerning the diversity of outer arm dyneins.  相似文献   

20.
We highly purified the Chlamydomonas inner-arm dyneins e and c, considered to be single-headed subspecies. These two dyneins reside side-by-side along the peripheral doublet microtubules of the flagellum. Electron microscopic observations and single particle analysis showed that the head domains of these two dyneins were similar, whereas the tail domain of dynein e was short and bent in contrast to the straight tail of dynein c. The ATPase activities, both basal and microtubule-stimulated, of dynein e (kcat = 0.27 s–1 and kcat,MT = 1.09 s–1, respectively) were lower than those of dynein c (kcat = 1.75 s–1 and kcat,MT = 2.03 s–1, respectively). From in vitro motility assays, the apparent velocity of microtubule translocation by dynein e was found to be slow (Vap = 1.2 ± 0.1 μm/s) and appeared independent of the surface density of the motors, whereas dynein c was very fast (Vmax = 15.8 ± 1.5 μm/s) and highly sensitive to decreases in the surface density (Vmin = 2.2 ± 0.7 μm/s). Dynein e was expected to be a processive motor, since the relationship between the microtubule landing rate and the surface density of dynein e fitted well with first-power dependence. To obtain insight into the in vivo roles of dynein e, we measured the sliding velocity of microtubules driven by a mixture of dynein e and c at various ratios. The microtubule translocation by the fast dynein c became even faster in the presence of the slow dynein e, which could be explained by assuming that dynein e does not retard motility of faster dyneins. In flagella, dynein e likely acts as a facilitator by holding adjacent microtubules to aid dynein c’s power stroke.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号