首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Development of the photosynthetic electron transport system, under the influence of hormones and nitrate-nutrition, in greening cucumber cotyledon was investigated. Both photosystems, PS I measured as DCPIP MV, and PS II as H2O pBQ, were significantly promoted by GA and kinetin with kinetin being more effective. PS II/PS I ratio, though increased in control, did not change significantly with GA or kinetin treatment. Other partial reactions (H2O MV/K3Fe(CN)6/NADP) were also promoted. Addition of KNO3 showed concentration-dependent effects on growth and photosynthetic electron transport reactions (H2O MV/K3Fe(CN)6/NADP). It is concluded that both hormones and nutritional status influence development of the photosynthetic electron transport system in greening cucumber cotyledons.Abbreviations PS I Photosystem I - PS II Photosystem II - BSA Bovine Serum Albumin - DCMU 3-(3,4-Dichlorophenyl)-1,1-Dimethyl Urea - DCPIP 2,6-Dichlorophenol Indophenol - EDTA Ethylene Diamine Tetra-acetic Acid - GA Gibberellic acid (GA3) - HEPES (N-2-Hydroxyethyl Piperazine-N-2-Ethanesulphonic Acid) - IAA Indole-3-acetic acid - MV Methyl Viologen - NADP Nicotinamide Adenine Dinucleotide Phosphate - pBQ p-benzoquinone  相似文献   

2.
Flash-induced redox reactions in spinach PS II core particles were investigated with absorbance difference spectroscopy in the UV-region and EPR spectroscopy. In the absence of artificial electron acceptors, electron transport was limited to a single turnover. Addition of the electron acceptors DCBQ and ferricyanide restored the characteristic period-four oscillation in the UV absorbance associated with the S-state cycle, but not the period-two oscillation indicative of the alternating appearance and disappearance of a semiquinone at the QB-site. In contrast to PS II membranes, all active centers were in state S1 after dark adaptation. The absorbance increase associated with the S-state transitions on the first two flashes, attributed to the Z+S1ZS2 and Z+S2ZS3 transitions, respectively, had half-times of 95 and 380 s, similar to those reported for PS II membrane fragments. The decrease due to the Z+S3ZS0 transition on the third flash had a half-time of 4.5 ms, as in salt-washed PS II membrane fragments. On the fourth flash a small, unresolved, increase of less than 3 s was observed, which might be due to the Z+S0ZS1 transition. The deactivation of the higher S-states was unusually fast and occurred within a few seconds and so was the oxidation of S0 to S1 in the dark, which had a half-time of 2–3 min. The same lifetime was found for tyrosine D+, which appeared to be formed within milliseconds after the first flash in about 10% inactive centers and after the third and later flashes by active centers in Z+S3.Abbreviations Bis-Tris (bis[2-hydroxyethyl]imino-tris[hydroxymethyl]methane) - D secondary electron donor of PS II - DCBQ 2,5-dichloro-p-benzoquinone - DCMU 3-(3,4dichlorophenyl)-1,1-dimethylurea - PS II Photosystem II - QA secondary electron acceptor of PS II - S0–3 redox state of the oxygen-evolving complex - Z secondary electron donor of PS II  相似文献   

3.
Muthuchelian  K.  Bertamini  M.  Nedunchezhian  N. 《Photosynthetica》2001,39(3):411-418
Photosynthetic electron transfer was studied in thylakoids isolated from control and DCMU-grown wheat (Triticum aestivum L.) seedlings. When exposed to high temperature (HT) and high iradiance (HI), thylakoids showed large variations in the photosynthetic electron transport activities and thylakoid membrane proteins. A drastic reduction in the rate of whole electron transport chain (H2O MV) was envisaged in control thylakoids when exposed to HT and HI. Such reduction was mainly due to the loss of photosystem 2, PS2 (H2O DCBQ) activity. The thylakoids isolated from seedlings grown in the presence of DCMU showed greater resistance to HT and HI treatment. The artificial exogenous electron donors MnCl2, DPC, and NH2OH failed to restore the HI induced loss of PS2 activity in both control and DCMU thylakoids. In contrast, addition of DPC and NH2OH significantly restored the HT induced loss of PS2 activity in control thylakoids and partially in DCMU thylakoids. Similar results were obtained when Fv/Fm was evaluated by chlorophyll fluorescence measurements. The marked loss of PS2 activity in control thylakoids was evidently due to the loss of 33, 23, and 17 kDa extrinsic polypeptides and 28-25 kDa LHCP polypeptides.  相似文献   

4.
Redox changes of the oxygen evolving complex in PS II core particles were investigated by absorbance difference spectroscopy in the UV-region. The oscillation of the absorbance changes induced by a series of saturating flashes could not be explained by the minimal Kok model (Kok et al. 1970) consisting of a 4-step redox cycle, S0 S1 S2 S3 S0, although the values of most of the relevant parameters had been determined experimentally. Additional assumptions which allow a consistent fit of all data are a slow equilibration of the S3 state with an inactive state, perhaps related to Ca2+-release, and a low quantum efficiency for the first turnover after dark-adaptation. Difference spectra of the successive S-state transitions were determined. At wavelengths above 370 nm, they were very different due to the different contribution of a Chl bandshift in each spectrum. At shorter wavelengths, the S1 S2 transition showed a difference spectrum similar to that reported by Dekker et al. 1984b and attributed to an Mn(III) to Mn(IV) oxidation. The spectrum of absorbance changes associated with the S2 S3 transition was similar to that reported by Lavergne 1991 for PS II membranes. The S0 S1 transition was associated with a smaller but still substantial absorbance increase in the UV. Differences with the spectra reported by Lavergne 1991 are attributed to electrostatic effects on electron transfer at the acceptor side associated with the S-state dependence of proton release in PS II membranes.Abbreviations Bis-Tris (bis[2-hydroxyethyl]imino-tris[hydroxymethyl]methane) - DCBQ 2,5-dichloro-p-benzoquinone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - PS II Photosystem II - QA secondary electron acceptor of PS II - S0 to S4 redox state of the oxygen evolving complex - Z secondary electron donor of PS II  相似文献   

5.
Barley seedlings (Hordeum vulgare L. Boone) were grown at 20°C with 16 h/8 h light/dark cycle of either high (H) intensity (500 mole m-2 s-1) or low (L) intensity (55 mole m-2 s-1) white light. Plants were transferred from high to low (H L) and low to high (L H) light intensity at various times from 4 to 8 d after leaf emergence from the soil. Primary leaves were harvested at the beginning of the photoperiod. Thylakoid membranes were isolated from 3 cm apical segments and assayed for photosynthetic electron transport, Photosystem II (PS II) atrazine-binding sites (QB), cytochrome f(Cytf) and the P-700 reaction center of Photosystem I (PS I). Whole chain, PS I and PS II electron transport activities were higher in H than in L controls. QB and Cytf were elevated in H plants compared with L plants. The acclimation of H L plants to low light occurred slowly over a period of 7 days and resulted in decreased whole chain and PS II electron transport with variable effects on PS I activity. The decrease in electron transport of H L plants was associated with a decrease in both QB and Cytf. In L H plants, acclimation to high light occurred slowly over a period of 7 days with increased whole chain, PS I and PS II activities. The increase in L H electron transport was associated with increased levels of QB and Cytf. In contrast to the light intensity effects on QB levels, the P-700 content was similar in both control and transferred plants. Therefore, PS II/PS I ratios were dependent on light environment.Abbreviations Asc ascorbate - BQ 2,5-dimethyl-p-benzoquinone - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DCIP 2,6-dichlorophenolindophenol - H control plants grown under high light intensity - H L plants transferred from high to low light intensity - L low control plants grown under low light intensity - L H plants transferred from low to high light intensity - MV methyl viologen - P-700 photoreaction center of Photosystem I - QB atrazine binding site - TMPD N,N,N,N-tetramethyl-p-phenylenediamine Cooperative investigations of the United States Department of Agriculture, Agricultural Research Service, and the North Carolina Agricultural Research Service, Raleigh, NC. Paper No. 11990 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, NC 27695-7643, USA.  相似文献   

6.
In order to characterize the photosystem II (PS II) centers which are inactive in plastoquinone reduction, the initial variable fluorescence rise from the non-variable fluorescence level Fo to an intermediate plateau level Fi has been studied. We find that the initial fluorescence rise is a monophasic exponential function of time. Its rate constant is similar to the initial rate of the fastest phase (-phase) of the fluorescence induction curve from DCMU-poisoned chloroplasts. In addition, the initial fluorescence rise and the -phase have the following common properties: their rate constants vary linearly with excitation light intensity and their fluorescence yields are lowered by removal of Mg++ from the suspension medium. We suggest that the inactive PS II centers, which give rise to the fluorescence rise from Fo to Fi, belong to the -type PS II centers. However, since these inactive centers do not display sigmoidicity in fluorescence, they thus do not allow energy transfer between PS II units like PS II.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl urea - DMQ 2,5-dimethyl-p-benzoquinone - Fo initial non-variable fluorescence yield - Fm maximum fluorescence yield - Fi intermediate fluorescence yield - PS II photosystem II - QA primary quinone acceptor of PS II - QB secondary quinone acceptor of PS II  相似文献   

7.
Results on the effect of sub-lethal concentrations of zinc chloride (ZnCl2), cadmium chloride (CdCl2), and mercuric chloride (HgCl2) on Euglena are presented. During the growth cycle respiratory oxygen uptake and photosynthetic oxygen evolution in the light are initially strongly inhibited by Zn, Cd and Hg. The effects of the three metals on photosynthesis, using oxygen evolution as a criterion was confirmed by carbon fixation techniques.Photosystem I (PSI) associated electron transport 2,6-dichlorophenol indophenol (DCPIP)red. methyl viologen (MV) O2, in contrast to total photosynthetic capacity, was only slightly inhibited by Zn, Cd and Hg, whereas the levels of activity of NADP-oxidoreductase in cells untreated or treated with heavy metals showed development like total photosynthesis. Metals strongly inhibited this enzyme which means that the supply of NADPH is lowered due to the action of Zn, Cd and Hg. Photosystem II (PSII) associated electron transport (H2O dibromothymoquinone/2,3-dimethyl-5,6-methylenedioxy-D-benzoquinone O2), however, was severely inhibited in a way similar to total photosynthesis. Effects on the cooperation of PSI + II showed patterns similar to PSII alone, i.e., heavy metals strongly reduced PSI + II dependent activities.Abbreviations DAD diaminodurene - DBMIB dibromothymoquinone - DCPIP 2,6-dichlorophenolindophenol - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DMMIB 2,3-dimethyl-5,6-methylenedioxy-p-benzoquinone - DPC 1,5-diphenylcarbazide - MV methylviologen - PS photosystem Dedicated to Professor Kandler on occasion of his 60th birthday  相似文献   

8.
The functional size of Photosystem II (PS II) was investigated by radiation inactivation. The technique provides an estimate of the functional mass required for a specific reaction and depends on irradiating samples with high energy -rays and assaying the remaining activity. The analysis is based on target theory that has been modified to take into account the temperature dependence of radiation inactivation of proteins. Using PS II enriched membranes isolated from spinach we determined the functional size of primary charge separation coupled to water oxidation and quinone reduction at the QB site: H2O (Mn)4 Yz P680 Pheophytin Q phenyl-p-benzoquinone. Radiation inactivation analysis indicates a functional mass of 88 ± 12 kDa for electron transfer from water to phenyl-p-benzoquinone. It is likely that the reaction center heterodimer polypeptides, D1 and D2, contribute approximately 70 kDa to the functional mass, in which case polypeptides adding up to approximately 20 kDa remain to be identified. Likely candidates are the and subunits of cytochrome b 559and the 4.5 kDa psbI gene product.Abbreviations Cyt cytochrome - PS Photosystem - P680 primary electron donor of Photosystem II - QA primary quinone acceptor of Photosystem II - QB secondary quinone acceptor of Photosystem II - Yz tyrosine donor to P680  相似文献   

9.
The yield of photosynthetic O2 evolution was measured in cultures of Dunaliella C9AA over a range of light intensities, and a range of low temperatures at constant light intensity. Changes in the rate of charge separation at Photosystem I (PS I) and Photosystem II (PS II) were estimated by the parameters PS I and PS II . PS I is calculated on the basis of the proportion of centres in the correct redox state for charge separation to occur, as measured spectrophotometrically. PS II is calculated using chlorophyll fluorescence to estimate the proportion of centres in the correct redox state, and also to estimate limitations in excitation delivery to reaction centres. With both increasing light intensity and decreasing temperature it was found that O2 evolution decreased more than predicted by either PS I or PS II. The results are interpreted as evidence of non-assimilatory electron flow; either linear whole chain, or cyclic around each photosystem.Abbreviations F0 dark level of chlorophyll fluorescence yield (PS II centres open) - Fm maximum level of chlorophyll fluorescence yield (PS II centres closed) - Fv variable fluorescence (Fm-F0) - PS I Photosystem I - PS II Photosystem II - P700 reaction centre chlorophyll(s) of PS I - qN coefficient of non-photochemical quenching of chlorophyll fluorescence - qP coefficient of photochemical quenching of fluorescence yield - qE high-energy-state quenching coefficient - PS I yield of PS I - PS II yield of PS II - S yield of photosynthetic O2 evolution - P intrinsic yield of open PS II centres  相似文献   

10.
Chlorella was used to study the effects of dehydration on photosynthetic activities. The use of unicellular green algae assured that the extent of dehydration was uniform throughout the whole cell population during the course of desiccation. Changes in the activities of the cells were monitored by measurements of fluorescence induction kinetics. It was found that inhibition of most of the photosynthetic activities started at a similar level of cellular water content. They included CO2 fixation, photochemical activity of Photosystem II and electron transport through Photosystem I. The blockage of electron flow through Photosystem I was complete and the whole transition occurred within a relative short time of dehydration. On the other hand, the suppression of Photosystem II activity was incomplete and the transition took a longer time of dehydration. Upon rehydration, the inhibition of Photosystem II activity was fully reversible when samples were in the middle of the transition, but was not thereafter. The electron transport through Photosystem I was also reversible during the transition, but was only partially afterward.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl urea - Fm maximum fluorescence yield - F0 non-variable fluorescence level emitted when all PS II centers are open - Fv variable part of fluorescence - PS photosystem - QA primary quinone acceptor of Photosystem II  相似文献   

11.
The flash-induced kinetics of various characteristics of Photosystem II (PS II) in the thylakoids of oxygenic plants are modulated by a period of two, due to the function of a two-electron gate in the electron acceptor side, and by a period of four, due to the changes in the state of the oxygen-evolving complex. In the absence of inhibitors of PS II, the assignment of measured signal to the oxygen-evolving complex or to quinone acceptor side has frequently been done on the basis of the periodicity of its flash-induced oscillations, i.e. four or two. However, in some circumstances, the period four oscillatory processes of the donor side of PS II can generate period two oscillations. It is shown here that in the Kok model of oxygen evolution (equal misses and equal double hits), the sum of the concentrations of the S 0 and S 2 states (as well as the sum of concentrations of S 1 and S 3 states) oscillates with period of two: S 0+S 2S 1+S 3S 0+S 2S 1+S 3. Moreover, in the generalized Kok model (with specific miss factors and double hits for each S-state) there always exist such 0, 1, 2, 3 that the sum 0[S0] + 1[S1] + 2[S2] + 3[S3] oscillates with period of two as a function of flash number. Any other coefficients which are linearly connected with these coefficients, % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGak0dh9WrFfpC0xh9vqqj-hEeeu0xXdbba9frFj0-OqFf% ea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs0dXdbPYxe9vr0-vr% 0-vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbew7aLzaaja% aaaa!3917!\[\hat \varepsilon \]i = c1i + c2, also generate binary oscillations of this sum. Therefore, the decomposition of the flash-induced oscillations of some measured parameters into binary oscillations, depending only on the acceptor side of PS II, and quaternary oscillations, depending only on the donor side of PS II, becomes practically impossible when measured with techniques (such as fluorescence of chlorophyll a, delayed fluorescence, electrochromic shift, transmembrane electrical potential, changes of pH and others) that could not spectrally distinguish the donor and acceptor sides. This property of the Kok cycle puts limits on the simultaneous analysis of the donor and acceptor sides of the RC of PS II in vivo and suggests that binary oscillations are no longer a certain indicator of the origin of a signal in the acceptor side of PS II.Abbreviations PS II Photosystem II - P680 primary electron donor of reaction center of PS II - QA one electron acceptor plastoquinone - QB two electron acceptor plastoquinone - S n redox state of the oxygen evolving complex, where n=0,1,2,3 and 4 - Chl a chlorophyll a This paper is dedicated to the memory of Alexander Kononenko.  相似文献   

12.
A method is described for the isolation and purification of active oxygen-evolving photosystem II (PS II) membranes from the green alga Chlamydomonas reinhardtii. The isolation procedure is a modification of methods evolved for spinach (Berthold et al. 1981). The purity and integrity of the PS II preparations have been assesssed on the bases of the polypeptide pattern in SDS-PAGE, the rate of oxygen evolution, the EPR multiline signal of the S2 state, the room temperature chlorophyll a fluorescence yield, the 77 K emission spectra, and the P700 EPR signal at 300 K. These data show that the PS II characteristics are increased by a factor of two in PS II preparations as compared to thylakoid samples, and the PS I concentration is reduced by approximately a factor ten compared to that in thylakoids.Abbreviations BSA bovine serum albumin - Chl chlorophyll - DCBQ 2,6-dichloro-p-benzoquinone - DCMU (diuron) 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DMQ 2,5-dimethyl-p-benzoquinone - EDTA ethylenediamine tetraacetic acid - EPR electron paramagnetic resonance - Hepes N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - MES 2-[N-Morpholino]ethanesulfonic acid - OEE oxygen evolving enhancer - PS II photosystem II - SDS-PAGE sodium dedocyl sulfate polyacrylamide gel electrophoresis  相似文献   

13.
Oxygen evolving photosystem II particles were exposed to 100 and 250 W m–2 white light at 20°C under aerobic, anaerobic and strongly reducing (presence of dithionite) conditions. Three types of photoinactivation processes with different kinetics could be distinguished: (1) The fast process which occurs under strongly reducing (t 1/21–3 min) and anaerobic conditions (t 1/24–12 min). (2) The slow process (t 1/215–40 min) and (3) the very slow process (t 1/2>100 min), both of which occur under all three sets of conditions.The fast process results in a parallel decline of variable fluorescence (F v) and of Hill reaction rate, accompanied by an antiparallel increase of constant fluorescence (F o). We assume that trapping of QA in a negatively charged stable state, (QA )stab, is responsible for the effects observed.The slow process is characterized by a decline of maximal fluorescence (F m). In presence of oxygen this decline is due to the well known disappearance of F v which proceeds in parallel with the inhibition of the Hill reaction; F o remains essentially constant. Under anaerobic and reducing conditions the decline of F m represents the disappearance of the increment in F o generated by the fast process. We assume that the slow process consists in neutralization of the negative charge in the domain of QA in a manner that renders QA non-functional. The charge separation in the RC is still possible, but energy of excitation becomes thermally dissipated.The very slow photoinactivation process is linked to loss of charge separation ability of the PS II RC and will be analyzed in a forthcoming paper.Abbreviations F chlorophyll a fluorescence - F o, F v, F m constant, variable, maximum fluorescence - F o, F v, F m the same, measured in presence of dithionite (F v suppression method) - PS II photosystem II - RC reaction centre (P680. Pheo) - P680 primary electron donor - Pheo pheophytin, intermediary electron acceptor - QA, QB the primary and secondary electron acceptor - Z, D electron donors to P680 - (QA)stab, (QA H)stab hypothetical modifications of QA resulting from photoinactivation - O-, A- and R-conditions aerobic, anaerobic and strongly reducing (presence of dithionite) conditions - MES 2-(N-morpholine) ethanesulphonic acid - DCPIP 2,6-dichlorphenolindophenol - GGOC mixture of glucose, glucose oxidase and catalase - DT-20 oxygen-evolving PS II particles  相似文献   

14.
Mutations conferring herbicide resistance in 3 mutant strains of the cyanobacterium Synechocystis 6714 have been characterized by gene cloning and sequencing. The mutants display very different phenotypes: DCMU-IIA is DCMU-resistant and atrazine-resistant, DCMU-IIB is DCMU-resistant and atrazine-sensitive, and Az-V is DCMU-sensitive, atrazine-resistant and presents particular photoinhibition properties. These mutants were originally obtained either by one-step selection (DCMU-IIA) or by two-step selection (DCMU-IIB and Az-V). psbA copies carrying herbicide resistance have been identified by transformation experiments as psbAI in all cases. Sequences of the psbAI copy of each mutant have been compared to the wild-type sequence. In the single mutant DCMU-IIA, a point mutation at codon 264 (SerAla) results in resistance to both DCMU and atrazine. In the double mutants DCMU-IIB and Az-V, two point mutations were found. DCMU-IIB was derived from DCMU-IIA and had acquired a second mutation at codon 255 (PheLeu) resulting in a slight increase in DCMU resistance and complete abolition of atrazine resistance. Az-V contains two changes at codons 211 (PheSer) and 251 (AlaVal) resulting in high atrazine resistance but only slight DCMU resistance.Abbreviations DCMU: 3-(3,4-dichlorophenyl)-1,1-dimethylurea - PSII: photosystem II  相似文献   

15.
Our recent EPR and EXAFS experiments investigating the structure of the oxygen-evolving complex of PS II are discussed. PS II treatments which affect the cofactors calcium and chloride have been used to poise samples in modified forms of the S-states, S1, S2 and S3. X-ray absorption studies indicate a similar overall structure for the manganese complex between treated and native samples although the influence of the treatments and cofactors is observed. Manganese oxidation (or oxidation of a ligand to the manganese cluster) is indicated to occur on each of the transitions S1 S2 and S2 S3 in these modified samples. The cluster appears to contain at least two inequivalent Mn-Mn pairs. In the native samples the Mn-Mn distance is 2.7 Å, but in samples where the calcium site is affected, one of the pairs has a 3.0 Å Mn-Mn distance. The intensity of the 3.3/3.6 Å interaction is reduced on sodium chloride treatment (calcium depletion) perhaps indicating calcium binding close to the manganese cluster. From EPR data we also propose that treatments which affect calcium and chloride binding cause a modification of the native S2 state, slow the reduction of Yz and allow an S3 EPR signal to be observed following illumination. The origin of the S3 EPR signal, a modified S3 or S2 X where X is an organic radical of unknown charge, is discussed in relation to the results from the EXAFS studies.Abbreviations EPR electron paramagnetic resonance spectroscopy - EXAFS extended X-ray absorption fine structure - HTG n-heptyl -d-thioglucoside - MES 2(N-morpholino)ethanesulfonic acid - OEC oxygen evolving complex - PPBQ phenyl-1,4-benzoquinone - PS II Photosystem II - Yz redox active tyrosine  相似文献   

16.
High light treatments were given to attached leaves of pumpkin (Cucurbita pepo L.) at room temperature and at 1°C where the diffusion- and enzyme-dependent repair processes of Photosystem II are at a minimum. After treatments, electron transfer activities and fluorescence induction were measured from thylakoids isolated from the treated leaves. When the photoinhibition treatment was given at 1°C, the Photosystem II electron transfer assays that were designed to require electron transfer to the plastoquinone pool showed greater inhibition than electron transfer from H2O to paraphenyl-benzoquinone, which measures all PS II centers. When the light treatment was given at room temperature, electron transfer from H2O to paraphenyl-benzoquinone was inhibited more than whole-chain electron transfer. Variable fluorescence measured in the presence of ferricyanide decreased only during room-temperature treatments. These results suggest that reaction centers of one pool of Photosystem II, non-QB-PS II, replace photoinhibited reaction centers at room temperature, while no replacement occurs at 1°C. A simulation of photoinhibition at 1°C supports this conclusion.Abbreviations BSA bovine serum albumin - Chl chlorophyll - DCMU 3-(3,4,-dichlorophenyl)-1,1,-dimethylurea - DCPIP dichlorophenol-indophenol (2,6-dichloro-4((4-hydroxyphenyl)imino)-2,5-cyclohexadien-1-one) - DPC diphenyl carbazide (2,2-diphenylcarbonic dihydrazide) - FeCN ferricyanide (hexacyanoferrate(III)) - app apparent quantum yield of photosynthetic oxygen evolution - MV methyl viologen (1,1-dimethyl-4,4-bipyridinium dichloride) - PPBQ phenyl-p-benzoquinone - PPFD photosynthetic photon flux density - PQ pool plastoquinone - QB secondary quinone acceptor of PS II - RT room temperature - WC whole chain electron transfer  相似文献   

17.
The oxygen flash yield (YO2) and photochemical yield of PS II (PS II) were simultaneously detected in intact Chlorella cells on a bare platinum oxygen rate electrode. The two yields were measured as a function of background irradiance in the steady-state and following a transition from light to darkness. During steady-state illumination at moderate irradiance levels, YO2 and PS II followed each other, suggesting a close coupling between the oxidation of water and QA reduction (Falkowski et al. (1988) Biochim. Biophys. Acta 933: 432–443). Following a light-to-dark transition, however, the relationship between QA reduction and the fraction of PS II reaction centers capable of evolving O2 became temporarily uncoupled. PS II recovered to the preillumination levels within 5–10 s, while the YO2 required up to 60 s to recover under aerobic conditions. The recovery of YO2 was independent of the redox state of QA, but was accompanied by a 30% increase in the functional absorption cross-section of PS II (PS II). The hysteresis between YO2 and the reduction of QA during the light-to-dark transition was dependent upon the reduction level of the plastoquinone pool and does not appear to be due to a direct radiative charge back-reaction, but rather is a consequence of a transient cyclic electron flow around PS II. The cycle is engaged in vivo only when the plastoquinone pool is reduced. Hence, the plastoquinone pool can act as a clutch that disconnects the oxygen evolution from photochemical charge separation in PS II.Abbreviations ADRY acceleration of the deactivation reactions of the water-splitting enzyme (agents) - Chl chlorophyll - cyt cytochrome - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - FO minimum fluorescence yield in the dark-adapted state - FI minimum fluorescence yield under ambient irradiance or during transition from the light-adapted state - FM maximum fluorescence yield in the dark-adapted state - FM maximum fluorescence yield under ambient irradiance or during transition from light-adapted state - FV, FV variable fluorescence (FV=FM–FO ; FV=FM–FI) - FRR fast repetition rate (fluorometer) - PS II quantum yield of QA reduction (PS II=(FM – FO)/FM or PS II)=(FM= – FI=)/FM=) - LHCII Chl a/b light harvesting complexes of Photosystem II - OEC oxygen evolving complex of PS II - P680 reaction center chlorophyll of PS II - PQ plastoquinone - POH2 plastoquinol - PS I Photosystem I - PS II Photosystem II - RC II reaction centers of Photosystem II - PS II the effective absorption cross-section of PHotosystem II - TL thermoluminescence - YO2 oxygen flash yield The US Government right to retain a non-exclusive, royalty free licence in and to any copyright is acknowledged.  相似文献   

18.
The possibility that zeaxanthin mediates the dissipation of an excess of excitation energy in the antenna chlorophyll of the photochemical apparatus has been tested through the use of an inhibitor of violaxanthin de-epoxidation, dithiothreitol (DTT), as well as through the comparison of two closely related organisms (green and blue-green algal lichens), one of which (blue-green algal lichen) naturally lacks the xanthophyll cycle. In spinach leaves, DTT inhibited a major component of the rapidly relaxing high-energy-state quenching' of chlorophyll fluorescence, which was associated with a quenching of the level of initial fluorescence (F0) and exhibited a close correlation with the zeaxanthin content of leaves when fluorescence quenching was expressed as the rate constant for radiationless energy dissipation in the antenna chlorophyll. Green algal lichens, which possess the xanthophyll cycle, exhibited the same type of fluorescence quenching as that observed in leaves. Two groups of blue-green algal lichens were used for a comparison with these green algal lichens. A group of zeaxanthin-free blue-green algal lichens did not exhibit the type of chlorophyll fluorescence quenching indicative of energy dissipation in the pigment bed. In contrast, a group of blue-green algal lichens which had formed zeaxanthin slowly through reactions other than the xanthophyll cycle, did show a very similar response to that of leaves and green algal lichens. Fluorescence quenching indicative of radiationless energy dissipation in the antenna chlorophyll was the predominant component of high-energy-state quenching in spinach leaves under conditions allowing for high rates of steady-state photosynthesis. A second, but distinctly different type of high-energy-state quenching of chlorophyll fluorescence, which was not inhibited by DTT (i.e., it was zeaxanthin independent) and which is possibly associated with the photosystem II reaction center, occurred in addition to that associated with zeaxanthin in leaves under a range of conditions which were less favorable for linear photosynthetic electron flow. In intact chloroplasts isolated from (zeaxanthin-free) spinach leaves a combination of these two types of rapidly reversible fluorescence quenching occurred under all conditions examined.Abbreviations DTT dithiothreitol - F0 (or F0) yield of instantaneous fluorescence at open PS II reaction centers in the dark (or during actinic illumination) - FM (or FM) yield of maximum fluorescence induced by a saturation pulse of light in the dark (or during actinic illumination) - FV (or FV) yield of variable fluorescence induced by a saturating pulse of light in the dark (or during actinic illumination) - k D rate constant for radiationless energy dissipation in the antenna chlorophyll - SV Stern-Volmer equation - PFD photon flux density - PS I photosystem I - PS II photosystem II - QA acceptor of photosystem II - qN coefficient of nonphotochemical chlorophyll fluorescence quenching - qP coefficient of photochemical chlorophyll fluorescence quenching  相似文献   

19.
High energy state quenching of chlorophyll fluorescence (qE) is inhibited by low concentrations of the inhibitor antimycin A in intact and osmotically shocked chloroplasts isolated from spinach and pea plants. This inhibition is independent of any effect upon pH (as measured by 9-aminoacridine fluorescence quenching). A dual control of qE formation, by pH and the redox state of an unidentified chloroplast component, is implied. Results are discussed in terms of a role for qE in the dissipation of excess excitation energy within photosystem II.Abbreviations 9-AAmax = Maximum yield of 9-aminoacridine fluorescence - DCMU = 3(3,4-dichlorophenyl)-1,1-dimethylurea; Fmax ± Maximum yield of chlorophyll fluorescence - hr = hour - PAR = Photosynthetically Active Radiation - QA = Primary stable electron acceptor within photosystem II - qE = High energy state quenching of chlorophyll fluorescence - qI = quenching of chlorophyll fluorescence related to photoinhibition - qP = Quenching of chlorophyll fluorescence by oxidised plastoquinone - qQ = photochemical quenching of chlorophyll fluorescence - qR = (Fmax—maximum level of chlorophyll fluorescence induced by the addition of saturating DCMU) - qT = Quenching of chlorophyll fluorescence attributable to state transitions  相似文献   

20.
Preliminary dark incubation of etiolated pea and maize plants at 38 °C allowed to observe a new dark reaction of Chl biosynthesis occuring after photoconversion of protochlorophyllide Pchld 655/650 into chlorophyllide Chld 684/676. This reaction was accompanied by chlorophyllide esterification and by the bathochromic shift of pigment spectra: Chld 684/676 Chl 688/680. After completion of the reaction, a rapid (20–30 s at 26 °C) quenching of Chl 688/680 low-temperature fluorescence was observed. The reaction Chld 684/676 Chl 688/680 was inhibited under anaerobic conditions as well as in the presence of KCN; the reaction accompanied by Chl fluorescence quenching was inhibited in the leaves of pea mutants with impaired function of Photosystem II reaction centers. The spectra position of newly formed Chl, effects of Chl fluorescence quenching allowed to assume that the new dark reaction is responsible for biosynthesis of P–680, the key pigment of Photosystem II reaction centres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号