首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 876 毫秒
1.
In the course of the search for N2O-utilizing microorganisms, two novel strains of haloalkaliphilic denitrifying bacteria, Z-7009 and AIR-2, were isolated from soda lakes of Mongolia and Kenya. These microorganisms are true alkaliphiles and grow in the pH ranges of 8.0–10.5 and 7.5–10.6, respectively. They are facultative anaerobes with an oxidative type of metabolism, able to utilize a wide range of organic substrates and reduce nitrate, nitrous oxide, and, to a lesser extent, nitrite to gaseous nitrogen. They can oxidize sulfide in the presence of acetate as the carbon source and nitrous oxide (strain Z-7009) or nitrate (strain AIR-2) as the electron acceptor. The strains require Na+ ions. They grow at 0.16–2.2 M Na+ (Z-7009) and 0.04–2.2 M Na+ (AIR-2) in the medium. The G+C contents of the DNA of strains Z-7009 and AIR-2 are 67.9 and 65.5 mol %, respectively. According to the results of 16S rRNA gene sequencing and DNA-DNA hybridization, as well as on the basis of physiological properties, the strains were classified as new species of the genus Halomonas: Halomonas mongoliensis, with the type strain Z-7009T (=DSM 17332, =VKM B2353), and Halomonas kenyensis, with the type strain AIR-2T (=DSM 17331, =VKM B2354).  相似文献   

2.
An aerobic gram-negative bacterial strain Z-0532 with ring-shaped cells forming spirals in the course of growth was isolated from the humified solution produced by spruce wood decomposition. The new isolate was a chemoorganotrophic, mesophilic, moderately acidophilic organism with the temperature range of 6–32°C (optimum at 25–28°C) and pH range from 4.7 to 7.2 (optimum at pH 5.5–6.5). A broad range of substrates was used as carbon and energy sources, including sugars, some organic acids and polyalcohols, and soluble polymeric compounds (gelatin, esculin, starch, xylan, laminarin, dextrin, casein hydrolysate, and Tween-40). According to its physiological and biochemical characteristics, strain Z-0532 is a typical member of the trophic group of oligotrophic bacteria, which utilize the products of wood hydrolysis dissipated by xylotrophic microorganisms. The G+C base content of strain Z-0532 was 52.1 mol %. Sequencing of the 16S rRNA gene of the new isolate revealed 98% similarity to Larkinella insperata LMG 22510T, which is a recently described species of the family Spirosomaceae of the phylum Bacteroidetes. The level of DNA: DNA homology between this species and strain Z-0532 was only 40%. The differences in the phenotypic and genotypic characteristics suggested classification of the isolate obtained from decomposing wood as a new species of the genus Larkinella, Larkinella arboricola sp. nov., with the type strain Z-0532T (=VKM B-2528T = DSM 21851T).  相似文献   

3.
A search for the organisms responsible for the degradation of biomass of primary producers in Tanatar lakes resulted in the isolation of a novel anaerobic, haloalkaliphilic microorganism, strain Z-710T. The strain grows on proteinaceous substrates (peptides) but not on proteins. A rather limited range of substances of other classes can be utilised together with tryptone but not individually. An interesting physiological feature of the novel strain is a high capacity for hydrogen production (up to 30% v/v) during proteolytic fermentation. Phylogenetic analysis based on the 16S rRNA gene sequence similarity revealed that the organism can be assigned to the previously described genus Proteinivorax. According to its physiological features and the low DNA–DNA hybridisation level of the strain with the type strain of the only previously described Proteinivorax species—Proteinivorax tanatarense Z-910T—strain Z-710T is described here as representing a novel species with the name Proteinivorax hydrogeniformans sp. nov. The type strain is Z-710T (= DSM 102085T = VKM B-3042T).  相似文献   

4.
Two novel strains of budding bacteria, Z-0071T and Z-0072, were isolated from dystrophic humified waters formed by xylotrophic fungi in the course of spruce wood degradation. The cells of both strains are coccoid (0.95–1.80 μm), nonmotile, single or arranged in pairs. The cells have a complex system of intracellular membranes and are covered with fimbriae and surrounded by a mucous capsule up to 0.3 μm thick. Both strains are aerobic organoheterotrophic, mesophilic, and acid-tolerant microorganisms that are able to grow under microaerobic conditions. They utilize N-acetyl-glucosamine, carbohydrates, and lactate as growth substrates. The strains grow in a pH range of 4.0–7.5 with an optimum at 6.0–6.5. The temperature range for growth is 4–30°C, with an optimum at 25–28°C. Strains Z-0071T and Z-0072, inhabitants of dystrophic low-mineral waters, are NaCl-sensitive: the NaCl content in the media above 0.5 g/l inhibited growth. The main fatty acids of strains Z-0071T and Z-0072 are C16:0, C18:1ω9c, and C18:2ω9c, 12c. The DNA G + C base content is 51.2–51.7 mol %. The sequences of the 16S rRNA gene fragments (1310 bp) of strains Z-0071T and Z-0072 were found to be identical. The obtained sequences showed a 94.3% similarity with the sequences of the type strain of the most closely related species Singulisphaera acidiphila MOB10≅T. The phenotypic and phylogenetic properties of strains Z-0071T and Z-0072 support classification of these strains within the genus Singulisphaera as a new species Singulisphaera mucilagenosa sp. nov., with the type strain Z-0071T (VKM B-2626).  相似文献   

5.
A non-motile and rod shaped bacterium, designated strain B1(T), was isolated from forest soil at Mt. Baekwoon, Republic of Korea. Cells were Gram-negative, catalase-positive, and oxidase-negative. The major fatty acids were 9-octadecenoic acid (C(18:1) omega9c; 42%) and hexadecanoic acid (C(16:0); 25.9%) and summed feature 3 (comprising iso-C(15:0) 2-OH and/or C(16:1) omega7c; 10.0%). The DNA G+C content was 44.1 mol%. A phylogenetic tree based on 16S rRNA gene sequences showed that strain B1(T) formed a lineage within the genus Acinetobacter and was closely related to A. baylyi DSM 14961(T) (98.6% sequence similarity), followed by A. baumannii DSM 30007(T) (97.4%), A. calcoaceticus DSM 30006(T) (97.0%) and 3 genomic species (96.8 approximately 7.6%). Phenotypic characteristics, gyrB gene sequence analysis and DNA-DNA relatedness data distinguished strain B1(T) from type strains of A. baylyi, A. baumannii, and A. calcoaceticus. On the basis of the evidence presented in this study, strain B1(T) represents a novel species of the genus Acinetobacter, for which the name Acinetobacter soli sp. nov. is proposed. The type strain is B1(T) (= KCTC 22184(T)= JCM 15062(T)).  相似文献   

6.
Association between bacteria Photorhabdus and their nematode hosts Heterorhabditis represents one of the emerging models in symbiosis studies. In this study, we isolated the bacterial symbionts of the nematode Heterorhabditis georgiana. Using gyrB sequences for phylogenetic analysis, these strains were shown to be part of the species of Photorhbdus luminescens but with clear separation from currently recognized subspecies. Physiological properties and DNA–DNA hybridization profiles also supported the phylogenetic relationship of these strains. Therefore, a new subspecies, Photorhabdus luminescens subsp. kleinii subsp. nov., is proposed with the type strain KMD37T (=DSM 23513 =ATCC =NRRL B-59419).  相似文献   

7.
A strain EG19T of aerobic bacteria able to form pleomorphic cells was isolated from a brine spring runoff stream in the west central region of the province of Manitoba, Canada. The pale pinkish purple strain contained bacteriochlorophyll a incorporated into light-harvesting I and reaction center complexes. Its inability to grow under anaerobic illuminated conditions prompted designation as a member of the functional group known as aerobic anoxygenic phototrophic bacteria. Phylogenetic analysis of the 16S rRNA gene sequence revealed that it belonged to the Gammaproteobacteria, forming a distinct branch of phototrophs distantly related to most described aerobic anoxygenic phototrophs, quite marginally related (95.6%) both to the only other described gammaproteobacterial aerobic phototroph, Congregibacter litoralis, and also to nonphototrophs in the genus Haliea (95.1–96.1%). Physiological tests demonstrated tolerance profiles to salinity (0–18% NaCl), pH (7–12), and temperature (7–40°C) consistent with survival in a shallow hypersaline stream on the exposed, vegetation-depleted salt playa of its native East German Creek. Phylogenetic data and phenotypic properties such as pigment composition, morphology, and physiology support the proposal of the novel genus and species Chromocurvus halotolerans gen. nov., sp. nov., with EG19T (=DSM 23344T, =VKM B-2659T) as the type strain.  相似文献   

8.
Three thermophilic strains of chemolithoautotrophic Fe(III)-reducers were isolated from mixed sediment and water samples (JW/KA-1 and JW/KA-2(T): Calcite Spring, Yellowstone N.P., WY, USA; JW/JH-Fiji-2: Savusavu, Vanu Levu, Fiji). All were Gram stain positive rods (approximately 0.5 x 1.8 microm). Cells occurred singly or in V-shaped pairs, and they formed long chains in complex media. All utilized H(2) to reduce amorphous iron (III) oxide/hydroxide to magnetite at temperatures from 50 to 75 degrees C (opt. approximately 73 degrees C). Growth occurred within the pH(60C) range of 6.5-8.5 (opt. pH(60C) 7.1-7.3). Magnetite production by resting cells occurred at pH(60C) 5.5-10.3 (opt. 7.3). The iron (III) reduction rate was 1.3 mumol Fe(II) produced x h(-1) x ml(-1) in a culture with 3 x 10(7) cells, one of the highest rates reported. In the presence or absence of H(2), JW/KA-2(T) did not utilize CO. The G + C content of the genomic DNA of the type strain is 52.7 +/- 0.3 mol%. Strains JW/KA-1 and JW/KA-2(T) each contain two different 16S rRNA gene sequences. The 16S rRNA gene sequences from JW/KA-1, JW/KA-2(T), or JW/JH-Fiji-2 possessed >99% similarity to each other but also 99% similarity to the 16S rRNA gene sequence from the anaerobic, thermophilic, hydrogenogenic CO-oxidizing bacterium 'Carboxydothermus restrictus' R1. DNA-DNA hybridization between strain JW/KA-2(T) and strain R1(T) yielded 35% similarity. Physiological characteristics and the 16S rRNA gene sequence analysis indicated that the strains represent two novel species and are placed into the novel genus Thermolithobacter within the phylum 'Firmicutes'. In addition, the levels of 16S rRNA gene sequence similarity between the lineage containing the Thermolithobacter and well-established members of the three existing classes of the 'Firmicutes' is less than 85%. Therefore, Thermolithobacter is proposed to constitute the first genus within a novel class of the 'Firmicutes', Thermolithobacteria. The Fe(III)-reducing Thermolithobacter ferrireducens gen. nov., sp. nov. is designated as the type species with strain JW/KA-2(T) (ATCC 700985(T), DSM 13639(T)) as its type strain. Strain R1(T) is the type strain for the hydrogenogenic, CO-oxidizing Thermolithobacter carboxydivorans sp. nov. (DSM 7242(T), VKM 2359(T)).  相似文献   

9.
Two strains of pink-colored aerobic bacteriochlorophyll a-containing bacteria were isolated from aerobic (strain ROS 10) and anaerobic (strain ROS 35) zones of the water column of Mono Lake (California, United States). Cells of the bacteria were nonmotile oval gram-negative rods multiplying by binary fission by means of a constriction. No intracellular membranes were detected. Polyphosphates and poly-β-hydroxybutyric acid were the storage compounds. Pigments were represented by bacteriochlorophyll a and carotenoids of the spheroidene series. The strains were obligately aerobic, mesophilic (temperature optimum of 25–30°C), alkaliphilic (pH optimum of 8.5–9.5), and moderately halophilic (optimal NaCl concentration of 40 g/l). They were obligately heterotrophic and grew aerobically in the dark and in the light. Respiration was inhibited by light at wavelengths corresponding to the absorption of the cellular pigments. The substrate utilization spectra were strain-specific. In the course of organotrophic growth, the bacteria could oxidize thiosulfate to sulfate; sulfide and polysulfide could also be oxidized. The DNA G+C content was 59.4 mol % in strain ROS 10 and 59 mol % in strain ROS 35. In their phenotypic properties, the new strains were close but not identical to the alkaliphilic bacterium Roseinatronobacter thiooxidans. The distinctions in the nucleotide sequences of the 16S rRNA genes (2%) and low DNA-DNA hybridization level with Rna. thiooxidans (22–25%) allow the new strains to be assigned to a new species of the genus Roseinatronobacter, Roseinatronobacter monicus sp. nov. with the type strain ROS 35T (=UNIQEM U-251T = VKM B-2404T).  相似文献   

10.
A moderately thermophilic, sporeforming bacterium able to reduce amorphous Fe(III)-hydroxide was isolated from ferric deposits of a terrestrial hydrothermal spring, Kunashir Island (Kurils), and designated as strain Z-0001. Cells of strain Z-0001 were straight, Gram-positive rods, slowly motile. Strain Z-0001 was found to be an obligate anaerobe. It grew in the temperature range from 45 to 70°C with an optimum at 57–60°C, in a pH range from 5.9 to 8.0 with an optimum at 7.0–7.2, and in NaCl concentration range 0–3.5% with an optimum at 0%. Molecular hydrogen, acetate, peptone, yeast and beef extracts, glycogen, glycolate, pyruvate, betaine, choline, N-acetyl-d-glucosamine and casamino acids were used as energy substrates for growth in presence of Fe(III) as an electron acceptor. Sugars did not support growth. Magnetite, Mn(IV) and anthraquinone-2,6-disulfonate served as the alternative electron acceptors, supporting the growth of isolate Z-0001 with acetate as electron donor. Formation of magnetite was observed when amorphous Fe(III) hydroxide was used as electron acceptor. Yeast extract, if added, stimulated growth, but was not required. Isolate Z-0001 was able to grow chemolithoautotrophicaly with molecular hydrogen as the only energy substrate, Fe(III) as electron acceptor and CO2 as the carbon source. Isolate Z-0001 was able to grow with 100% CO as the sole energy source, producing H2 and CO2, requiring the presence of 0.2 g l−1 of acetate as the carbon source. The G+C content of strain Z-0001T DNA G+C was 47.8 mol%. Based on 16S rRNA sequence analyses strain Z-0001 fell into the cluster of family Peptococcaceae, within the low G+C content Gram-Positive bacteria, clustering with Thermincola carboxydophila (98% similarity). DNA–DNA hybridization with T. carboxydophila was 27%. On the basis of physiological and phylogenetic data it is proposed that strain Z-0001T (=DSMZ 14005, VKM B-2307) should be placed in the genus Thermincola as a new species Thermincola ferriacetica sp. nov. The GenBank accession number for the sequence reported in the paper is AY 631277.  相似文献   

11.
Five strains (LN12, LN14T, LN15T, LN16 and LN17T) representing three novel methylotrophic yeast species were isolated from the external surface of plant leaves by three-consecutive enrichments. On the basis of morphological, biochemical, physiological and chemotaxonomic characteristics, the sequence analysis of the D1/D2 domain of the large subunit (LSU) rRNA gene and the phylogenetic analysis, the five strains were assigned to be one novel Ogataea species and two novel Candida species. Three strains (LN12, LN14T and LN16) represent a single novel species of the genus Ogataea, for which the name Ogataea phyllophila sp. nov. is proposed. The type strain is LN14T (= BCC 42666T = NBRC 107780T = CBS 12095T). Strain LN15T was assigned to be Candida chumphonensis sp. nov. (type strain LN15T = BCC 42667T = NBRC 107781T = CBS 12096T). Strain LN17T represented another novel species of Candida that was named Candida mattranensis sp. nov. (type strain LN17T = BCC 42668T = NBRC 107782T = CBS 12097T).  相似文献   

12.
A novel actinomycete strain, designated YIM 45720T, was isolated from a Cephalotaxus fortunei rhizophere soil sample collected from Yunnan Province, southwest China. The strain formed well-differentiated aerial and substrate mycelia. Chemotaxonomically, it contained LL-diaminopimelic acid in the cell wall. The cell-wall sugars contained ribose, mannose, and galactose with traces of glucose and xylose. Phospholipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine and phosphatidylinositol. MK-9 (H8) was the predominant menaquinone. The major fatty acids (>10%) were iso-C16:0, iso-C15:1 and anteiso-C15:0. The G + C content of the DNA was 70 mol%. Phylogenetic analysis data based on 16S rRNA gene sequence showed that strain YIM 45720T formed a distinct branch with the type strain of Streptomyces scabrisporus JCM 11712T within the genus Streptomyces. On the basis of the phenotypic and genotypic characteristics, strain YIM 45720T (=DSM 41883T = CCTCC AA 206006T) is proposed as the type strain of a novel species, Streptomyces serianimatus sp. nov.  相似文献   

13.
A new obligately methylotrophic bacterium, strain OVT, was isolated from roots of sedge (Carex sp.). The isolate was represented by aerobic gram-negative motile, non-spore-forming rods, which divided by binary fission. Optimal growth occurred at 22?29°C and pH 7.5?8.5 in the presence of 0.5?2% NaCl; growth was inhibited by 3.5% NaCl. Strain OVT utilized methanol as the only carbon and energy source. The organism used the KDPG variant of the ribulose monophosphate pathway (RuMP) of С1 metabolism. Ammonium was assimilated by reductive amination of α-ketoglutarate. The major cellular fatty acids were C16:0 (45.5%), C16:1ω7c (40.7%), and C17cyc (8.0%). The major ubiquinone was Q8. The dominant phospholipids were phosphatidylethanolamine, phosphatidylglycerol, and diphosphatidylglycerol. The DNA G + C content of strain OVT was 51.4 mol % (Tm). While the 16S rRNA gene sequence of strain OVT exhibited high similarity to those of Methylobacillus species: M. gramineus LapT (99.6%) and M. glycogenes TK 0113T (98.7%), the DNA-DNA hybridization level between strain OVT and M. gramineus LapT was only 52%. Based on the data obtained, strain OVT was assigned to the new species Methylobacillus caricis sp. nov. (=VKM B-3158T = JCM 32031T).  相似文献   

14.
Two strains of purple sulfur bacteria of the family Ectothiorhodospiraceae were isolated from moderately saline steppe lakes (with pH above 9.0) of the Transbaikal region (strain B7-7) and Mongolia (strain M10). The cells of the novel strains were spiral-shaped, 2.0–3.2 × 9.6–20.0 μm, motile due to a polar tuft of flagella. Photosynthetic pigments were represented by bacteriochlorophyll a and carotenoids of the spirilloxanthin series. Photosynthetic membranes were represented by long strands of lamellae distributed throughout the whole cell; unlike most Ectothiorhodospiraceae species, the membranes were not packed into regular stacks. Bacteria were capable of weak growth on sulfide and slow grow on hydrogen under photoautotrophic conditions. The best growth was noted on sulfide in the presence of acetate and bicarbonate. Thiosulfate did not stimulate phototrophic growth, even in the presence of organic substrates. The new isolates were alkaliphiles growing at a pH optimum of 9–10. Growth was possible within a salinity range of 0–80 g/l NaCl, with an optimum at 5–15 g/l NaCl. The morphology, the structure of the photosynthetic apparatus (strands of lamellae), and the physiology of the new strains were similar to those of Thiorhodospira sibirica. However, analysis of the 16S rRNA gene sequences demonstrated that the studied isolates were closely related to the type strain Ectothiorhodospira shaposhnikovii (99% similarity) of the family Ectothiorhodospiraceae, whereas the level of similarity between the new strains and Thiorhodospira sibirica was only 94–95%. According to the results of DNA-DNA hybridization, the DNA-DNA homology level between the tested strains was almost 100%; the similarity between the new isolates and the type strain Ectothiorhodospira shaposhnikovii was only 58%. The isolates differed from other representatives of the genus Ectothiorhodospira in the structure of the gene encoding the key enzyme of autotrophic CO2 fixation, ribulose-1,5-bisphosphate carboxylase (RuBisCo), which was similar to the RuBisCo genes of members of another family of sulfur bacteria, Chromatiaceae. The new isolates of purple bacteria were described as a new species of the genus Ectothiorhodospira, Ect. magna sp. nov. with the type strain B7-7T (= VKM B-2537 = DSM 22250).  相似文献   

15.
A chemoorganotrophic, moderately halophilic bacterium (strain SMB35) has been isolated from a naphthalene-utilizing microbial community obtained from salt mines (Perm region of Russia). Strain SMB35 grows in a wide salinity range, 0.5 to 30% (wt/vol) NaCl. Cells are gram-negative rods motile by means of a single polar flagellum. The predominant fatty acids are 16:1ω7, 16:0, 18:1ω7, and 19 cy. The major lipoquinone is an unsaturated ubiquinone with nine isoprene units (Q9). The DNA G+C content is 63.0 mol %. The 16S rDNA-based phylogenetic analysis has shown that strain SMB35 formed a separate clade in the cluster of the family Halomonadaceae. The 16S rDNA sequence similarity of the isolate to the members of the family is in the range from 90.6 to 95.1%. The phylogenetic and phenotypic differences from Halomonas elongata (the type species of the genus) and from other members of the family suggest that the isolate represents a novel genus and species, for which the name Salinicola socius gen. nov., sp. nov. is proposed. The type strain is SMB35T(=VKM B-2397T).  相似文献   

16.
An endophytic actinobacterial strain was isolated from a yellowwood tree growing on the slope of Devil’s Peak, Cape Town, South Africa. Analysis of the 16S rRNA gene showed that the strain belongs to the genus Kribbella. Phylogenetic analyses using the 16S rRNA gene and multilocus sequence analysis using the concatenated gene sequences of the gyrB, rpoB, relA, recA and atpD genes showed that strain YPL1T is closely related to the type strains of Kribbella karoonensis and Kribbella shirazensis. DDH experiments showed that strain YPL1T is a distinct genomic species from its close phylogenetic relative, K. karoonensis Q41T. Physiological comparisons further showed that strain YPL1T is phenotypically distinct from the type strains of Kribbella jejuensis, Kribbella aluminosa, K. karoonensis, K. shirazensis and Kribbella swartbergensis. Strain YPL1T is thus presented as the type strain of a novel species, for which the name Kribbella podocarpi sp. nov. (= DSM 29424T = NRRL B-65063T), is proposed.  相似文献   

17.
A halotolerant bacterium, strain SMB34T, was isolated from a naphthalene-utilizing bacterial consortium obtained from primitive technogeneous soil (Verkhnekamsk salt deposit, Perm region, Russia) by enrichment procedure. The strain itself was unable to degrade naphthalene and grew at NaCl concentrations up to 11% (w/v). The 16S rRNA-based phylogenetic analysis showed that the strain belongs to the genus Thalassospira. The DNA-DNA hybridization values between SMB34T and the type strains of phylogeneti-cally closest species (T. xiamenensis, T. profundimaris and T. tepidiphila) did not exceed 50%. The novel strain could be distinguished from the above species by the cell motility, MALDI/TOF mass spectra of whole cells and a range of physiological and biochemical characteristics. SMB34T also considerably differs from the recently described species T. xianhensis, with the most striking differences in the DNA G + C content (53. ± 1.0 vs. 61.2 ± 1.0 mol %) and predominant ubiquinones (Q-10 vs. Q-9). The data obtained suggest strain SMB34T (=VKM B-2527T = NBRC 106175T), designated as the type strain, represents a novel species, named Thalassospira permensis sp. nov.  相似文献   

18.
Nine strains isolated from mycetoma patients and received as Streptomyces somaliensis were the subject of a polyphasic taxonomic study. The organisms shared chemical markers consistent with their classification in the genus Streptomyces and formed two distinct monophyletic subclades in the Streptomyces 16S rRNA gene tree. The first subclade contained four organisms, including the type strain of S. somaliensis, and the second clade the remaining five strains which had almost identical 16S rRNA sequences. Members of the two subclades were sharply separated using DNA:DNA relatedness and phenotypic data which also showed that the subclade 1 strains formed an heterogeneous group. In contrast, the subclade 2 strains were assigned to a single genomic species and had identical phenotypic profiles. It is evident from these data that the subclade 2 strains should be recognised as a new species of Streptomyces. The name proposed for this new species is Streptomyces sudanensis sp. nov. The type strain is SD 504T (DSM = 41923T = NRRL B-24575T). Erika T. Quintana and Katarzyna Wierzbicka contributed equally to this work. The GenBank accession numbers for the 16S rRNA gene sequences of Streptomyces somaliensis DSM 40738T and Streptomyces sudanensis DSM 41607, DSM 41608, DSM 41609, SD 504T and SD 509 are EF540897, EF540898, EF540999, EF515876 and EF540900.  相似文献   

19.
A bacterial strain, designated Iso4T, was isolated from the East Sea of Korea and was subjected to a poly-phasic taxonomy study including phenotypic and chemotaxonomic characteristics as well as 16S rRNA gene sequence analysis. Cells of the strain were Gram-negative, motile, non-budding, non-stalked, and strictly aerobic. Strain Iso4T grew optimally at 20°C in the presence of 1∼2% (w/v) NaCl and at pH 6.9∼7.6. The major respiratory quinone was Q-10 and the major cellular fatty acids were C18:1 ω7c (53.5%), C17:1 ω5c (11.7%), C17:1 ω6c (8.1%), C16:0 (7.8%), C17:0 (4.8%), C15:0 (2.9%), and C16:1 ω5c (2.2%). The DNA G+C content of strain Iso4T was 56.2 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain Iso4T formed a monophyletic clade in the family Hyphomonadaceae, supported by high bootstrap value and was most closely related to the genus Hyphomonas (92∼94%), a member of marine bacteria in the family. The phenotypic, genotypic, and chemotaxonomic evidences also suggest strain Iso4T represents a novel genus and species in the family Hyphomonadaceae, for which the name Henriciella gen. nov., sp. nov. is proposed. The type strain is Iso4T (=KCTC 12513T =DSM 19595T =JCM 15116T).  相似文献   

20.
Enrichments for anaerobic, organotrophic hyperthermophiles were performed with hydrothermal chimney samples collected from the Mid-Atlantic Ridge at a depth of 3,550 m (23°22N, 44°57W) and the Guaymas Basin (27°01N, 111°24W) at a depth of 2,616 m. Positive enrichments were submitted to -irradiation at doses of 20 and 30 kGy. Two hyperthermophilic, anaerobic, sulfur-metabolizing archaea were isolated. Strain EJ1T was isolated from chimney samples collected from the Mid-Atlantic Ridge after -irradiation at 20 kGy, and strain EJ2T was isolated from the Guaymas Basin after -irradiation at 30 kGy. Only strain EJ2T was motile, and both formed regular cocci. These new strains grew between 55 and 95 °C with the optimal temperature being 88 °C. The optimal pH for growth was 6.0, and the optimal NaCl concentration for growth was around 20 g l–1. These strains were obligate anaerobic heterotrophs that utilized yeast extract, tryptone, and peptone as a carbon source for growth. Ten amino acids were essential for the growth of strain EJ1T, such as arginine, aspartic acid, isoleucine, leucine, methionine, phenylalanine, proline, threonine, tyrosine, and valine, while strain EJ2T was unable to grow on a mixture of amino acids. Elemental sulfur or cystine was required for EJ2T growth and was reduced to hydrogen sulfide. Rifampicin inhibited growth for both strains EJ1T and EJ2T. The G+C contents of the genomic DNA were 52.3 and 54.5 mol% for EJ1T and EJ2T, respectively. As determined by 16S rRNA gene sequence analysis, these strains were more closely related to Thermococcus gorgonarius, T. celer, T. guaymasensis, T. profundus, and T. hydrothermalis. However, no significant homology was observed between them with DNA–DNA hybridization. These novel organisms also possess phenotypic traits that differ from those of its closest phylogenetic relatives. Therefore, it is proposed that these isolates, which are amongst the most radioresistant hyperthermophilic archaea known to date with T. gammatolerans (Jolivet et al. 2003a), should be described as novel species T. marinus sp. nov. and T. radiotolerans sp. nov. The type strain of T. marinus is strain EJ1T (=DSM 15227T=JCM 11825T) and the type strain of T. radiotolerans is strain EJ2T (=DSM 15228T=JCM 11826T).Communicated by J. WiegelThe GenBank accession numbers for the 16S rRNA sequence of Thermococcus marinus strain EJ1T and Thermococcus radiotolerans EJ2T are AF479012 and AF479013, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号