首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Two classes of active-site specific inhibitors of trypsin-like proteases have been shown to inhibit reversibly the multiplication of eukaryotic cells in vitro. The competitive inhibitors p-aminobenzamidine and benzamidine were found to arrest the growth of normal and transformed mouse fibroblasts and human KB cells. The inhibition of cell multiplication occurred within 24 h and was accompanied by substantial decreases in the rates of DNA and protein synthesis. The rate of RNA synthesis was relatively unaffected by the protease inhibitors. In agreement with the known inhibition constants (Ki) for their action against trypsin, p-aminobenzamidine was a much more effective inhibitor of cell multiplication than benzamidine. In addition, tosyllysine chloromethyl ketone (Tos-LysCH2Cl), an active-site titrant and irreversible inhibitor of trypsin, was found to cause a reversible inhibition of growth. These results suggest that an essential protease activity is necessary for cell multiplication. However, in the case of mouse L-cells, all of the inhibitors and particulary p-aminobenzamidine caused excessive accumulation of lactate in the extracellular medium. This observation, which suggests the possibility of additional sites of action of these compounds in cells, was found to depend upon the cell type and appears to be unrelated to the inhibition of growth.  相似文献   

2.
An experimental strategy based on solution viscosity perturbation allowed us to study the energetics of amide substrates,p-aminobenzamidine (p-ABZ) and proflavin binding to the catalytic site of two proteolyzed forms of α-thrombin, i.e. ζ- and γT-thrombin. These thrombin derivatives are cleaved at the Leu144-Gly150 loop and at the fibrinogen recognition exosite (FRS), respectively. A phenomenological analysis of thermodynamic data showed that the amide substrates andp-ABZ interactions with ζ-thrombin were respectively, associated with a chemical compensation (i.e. the linear relationship between entropy and enthalpy of binding) and a hydrophobic phenomenon (i.e. a change in the standard heat capacity). The latter was slightly lower than that previously observed for a α-thrombin (0.78±0.25versus1.01±0.17 kcal/mol K). Both phenomenon were absent in γT-thrombin. The interaction of a α-, ζ- and γT-thrombin with macromolecular substrates that “bridge-bind” to both the catalytic site (CS) and fibrinogen recognition exosite (FRS), such as fibrinogen and the cleavable platelet receptor (CPR), was also evaluated. These interactions ere studied by following fibrinopeptide A (FpA) release and by measuring intraplatelet Ca2+changes induced by thrombin-CPR interaction. It was found that the free energy of activation (RTlnkcat/Km) for both fibrinogen and CPR hydrolysis followed the same hierarchy, i.e. α>ζ>γ. Moreover, the values of ΔCpfot α-, δ- and γT- thrombin interaction withp-ABZ were found to be linearly correlated to the free energy of activation for both fibrinogen and CPR cleavage. In conclusion, these data demonstrate that: (1) the Leu144-Gly150 loop and the FRS are both involved in the conformational transition linked to the binding ofp-aminobenzamidine to the thrombin active site; (2) the extent of thrombin's capacity to undergo conformational transitions in α-, ζ and γTforms is positively correlated to the free energy of activation for hydrolysis of macromolecular substrates interacting with both the catalytic domain and the FRS.f2f3  相似文献   

3.
The maximal velocity, V, for isocitrate cleavage by isocitrate lyase from Neurospora crassa is dependent on two dissociable groups with pKa values of 6.1 and 8.6. A dissociable group with a pKa of 8.5 on the enzyme-substrate complex affects the pKm for isocitrate. The pKi for homoisocitrate is affected in a like manner. The pH dependence of the pKi's for succinate, a product of isocitrate cleavage, and the succinate analog maleate is similar to the pH dependence of the pKm of isocitrate below pH 7.3, but is markedly different above this pH. Both the Km for isocitrate and the Ki for succinate were dependent upon Mg2+ concentration. The pKi for oxalate, an analog of glyoxylate which is also a product of isocitrate cleavage, is dependent on a group with a pKa of 6.8 on the enzyme-inhibitor complex. The pH dependence of the pKi for phosphoenolpyruvate, which binds to the succinate site, suggests that it is dependent on two dissociable groups, one on phosphoenolpyruvate and one, by analogy to the pKm for isocitrate, on the enzyme-glyoxylate-inhibitor complex.  相似文献   

4.
Tripeptides of the general X-SO2-d-Ser-AA-Arg-CO-Y formula, where X = α-tolyl, p-tolyl, 2,4,6-triisopropylphenyl; AA = alanine, glycine, norvaline and Y = OH, NH-(CH2)5NH2 were obtained and tested for their effect on the amidolytic activities of urokinase, thrombin, trypsin, plasmin, t-PA and kallikrein. The most active compound towards urokinase was PhCH2SO2-d-Ser-Gly-Arg-OH with Ki value 5.4 μM and the most active compound toward thrombin was PhCH2SO2-d-Ser-NVa-Arg-OH with Ki value 0.82 μM. The peptides were nontoxic against porcine erythrocytes in vitro. PhCH2SO2-d-Ser-Gly-Arg-OH showed cytotoxic effect against DLD cell lines with IC50 values of 5 μM. For the highly selective determination of the interaction of some of the synthesised acids of tripeptides with urokinase and plasmin the Surface Plasmon Resonance Imaging sensor has been applied. These compounds bind to urokinase and plasmin in 0.05 mM concentration.  相似文献   

5.
Two polyphenol oxidases (enzymes A and B) from Bartlett pear (Pyrus communis) peelings were purified to electrophoretic homogeneity according to polyacrylamide gel by a combination of Sephadex gel filtration, diethylaminoethyl cellulose chromatography and hydroxyl apatite chromatography. While the two enzymes differ electrophoretically at pH 9.3, chromatographically on hydroxyl apatite, and in the effect of ionic strength on activity, they are similar with respect to chromatography on diethylaminoethyl cellulose, substrate specificity, pH activity relations, inhibition by p-coumaric and benzoic acids, and heat stability. The two enzymes are o-diphenol oxidases with no detectable monophenolase or laccase activities. Pyrocatechol, 4-methyl catechol, chlorogenic acid, and d-catechin are good substrates of the enzymes with Km values in the range of 2 to 20 mm. Dependences of activity on oxygen and chlorogenic acid concentrations indicate a sequential mechanism for binding of these substrates to enzyme B. Vmax and Km values for oxygen and chlorogenic acid were 103 μmoles O2 uptake per minute per milligram of enzyme, 0.11 mm and 7.2 mm, respectively, for enzyme B at pH 4.0. Both enzymes had maximum activity at pH 4.0 on chlorogenic acid. Km values for chlorogenic acid were independent of pH from 3 to 7; the Vmax values for both enzymes gave bell-shaped curves as a function of pH. p-Coumaric acid is a simple, linear noncompetitive inhibitor with respect to chlorogenic acid at pH 6.2 with Ki values of 0.38 and 0.50 mm for enzymes A and B, respectively. Benzoic acid is a linear competitive inhibitor with respect to chlorogenic acid at pH 4.0 with Ki values of 0.04 and 0.11 mm for enzymes A and B, respectively.  相似文献   

6.
《Experimental mycology》1991,15(3):255-262
Transaldolase was purified 42-fold fromDictyostelium discoideum and the resulting preparation exhibited stoichiometry. Kinetic analyses consisted of initial velocity and product inhibition studies in both the forward and the reverse directions. The enzyme exhibited ping-pong kinetics with sedoheptulose 7-phosphate adding first and erythrose 4-phosphate releasing first. TheKm values for sedoheptulose 7-phosphate, glyceraldehyde 3-phosphate, erythrose 4-phosphate, and fructose 6-phosphate were 0.46, 0.072, 0.10, and 1.6 mM, respectively. TheKi values for sedoheptulose 7-phosphate and erythrose 4-phosphate were 3.6 and 0.062 mM, respectively. Inorganic phosphate inhibited enzymatic activity and showed mixed-type inhibition when fructose 6-phosphate was varied. AKi value of 35.2 mM was determined for inorganic phosphate.  相似文献   

7.
Two simple and generally applicable methods of preparation of affinity gels for affinity electrophoresis in agarose and polyacrylamide gels are described. In the first method, amino ligands are coupled to periodate-oxidized agarose gel beads (Sepharose 4B), and homogeneous affinity gels are obtained after mixing the melted substituted beads with either melted agarose solution or with the polymerization mixture used for the preparation of polyacrylamide gels. This type of affinity gel was used for affinity electrophoresis of lectins (immobilized p-aminophenyl glycosides), ribonuclease (immobilized uridine 3′,5′-diphosphate 5′-p-aminophenyl ester), trypsin (immobilized p-aminobenzamidine), and double-stranded phage DNA fragments (immobilized acriflavine). Alternatively, heterogeneous affinity gels are prepared from the suspension of ligand-substituted agarose, dextran, or polyacrylamide gel beads in the polymerization solution normally used for preparation of polyacrylamide electrophoretic gels. This technique was used for affinity electrophoresis of lectins, ribonuclease, and trypsin on affinity gels containing appropriate ligands coupled to the gel beads “activated” by various methods. Applicability of affinity gels prepared by the two methods described above for affinity isoelectric focusing is demonstrated.  相似文献   

8.
The maximal velocity, V, for isocitrate cleavage by isocitrate lysase from Pseudomonas indigofera was dependent on two dissociable groups (pKa's of 6.9 and 8.6). The pH dependence of the pKi for succinate, a product of isocitrate cleavage, implied that a dissociable group (pKa of 6.0) on the enzyme functions in binding succinate. The pKi's for maleate and itaconate (succinate analogs) were similarly pH dependent. The pKi for oxalate, an analog of glyoxylate which is also a product of isocitrate cleavage, was pH independent. In contrast the pKi's of the four-carbon dicarboxylic acid inhibitors, fumarate and meso-tartrate, both of which affect the glyoxylate site, were dependent on a dissociable group on the enzyme-inhibitor complex. Comparison of the pH dependence of the pKm for isocitrate and the pKi for succinate (and succinate analogs) indicated that the binding of isocitrate was dependent on an acidic dissociable group on the enzyme (pKa of 5.8). The pH dependence of the pKi for homoisocitrate was similar. In addition the Ki for succinate and Km for isocitrate were dependent upon Mg2+ concentration. Inhibition by phosphoenolpyruvate, which binds to the succinate site and may regulate isocitrate lyase from P. indigofera, was twice as pH dependent as that for succinate. Two dissociable groups, one on the enzyme (pKa of 5.8) and one on phosphoenolpyruvate (pKa of 6.35), contributed to the pH dependence observed with phosphoenolpyruvate.  相似文献   

9.
This work describes the purification and characterization of a trypsin-like enzyme with fibrinolytic activity present in the abdomen of Haematobia irritans irritans (Diptera: Muscidae). The enzyme was purified using a one-step process, consisting of affinity chromatography on SBTI-Sepharose. The purified protease showed one major active proteinase band on reverse zymography with 0.15% gelatin, corresponding to a molecular mass of 25.5 kDa, with maximum activity at pH 9.0. The purified trypsin-like enzyme preferentially hydrolyzed synthetic substrates with arginine residue at the P1 position. The K m values determined for three different substrates were 1.88 × 10–4, 1.28 × 10–4, and 1.40 × 10–4 M for H--benzoyl-Ile-Glu-Gly-Arg-p-nitroanilide (S2222), dl-Ile-Pro-Arg-p-nitroanilide (S2288), and DL-Phe-Pip-Arg-p-nitroanilide (S2238), respectively. The enzyme was strongly inhibited by typical serine proteinase inhibitors such as SBTI (soybean trypsin inhibitor, K i = 0.19 nM) and BuXI (Bauhinia ungulata factor Xa inhibitor, K i = 0.48 nM), and less inhibited by LDTI (leech-derived tryptase inhibitor, K i = 1.5 nM) and its variants LDTI 2T and 5T (0.8 and 1.5 nM, respectively). The most effective inhibitor for this protease was r-aprotinin (r-BPTI) with a K i value of 39 pM. Synthetic serine protease inhibitors presented only weak inhibition, e.g., benzamidine with K i = 3.0 × 10–4 M and phenylmethylsulfonyl fluoride (PMSF) showed traces of inhibition. The purified trypsin-like enzyme also digested natural substrates such as fibrinogen and fibrin net. The protease showed higher activity against fibrinogen and fibrin than did bovine trypsin. These data suggest that the proteolytic enzyme of H. irritans irritans is more specific to proteins from blood than are the vertebrate digestive enzymes. This enzyme's characteristics may be an adaptation resulting from the feeding behavior of this hematophagous insect.  相似文献   

10.
ATP-Dependent Proteolytic Activity from Spinach Leaves   总被引:4,自引:1,他引:3       下载免费PDF全文
Spinach (Spinacia oleracea CV Bloomsdale Long Standing) leaf cytoplasmic starch phosphorylase and rabbit muscle phosphorylase a were inactivated by incubation with partially purified leaf extract in the presence of ATP and Mg2+. The inactivating factor(s) were heat stable and susceptible to protease attack. Phosphorylase inactivation was prevented by incubation in the presence of p-aminobenzamidine and phenylboronic acid, or prolonged treatment with phenylmethylsulfonyl fluoride or leupeptin for the ATP-stimulated inhibitory activity. Mg2+ -dependent inactivation was prevented by incubation with leupeptin, phenylmethylsulfonyl fluoride, p-aminobenzamidine, or 5′-adenylate. ATP-mediated inactivation of phosphorylase was stimulated by Mg2+ with a reduction in the apparent Km for ATP. Casein-degrading activities with the same properties of ATP and/or Mg2+ stimulation, heat stability, and susceptibility to proteinase inhibitors were detected suggesting that phorphorylase inactivation was due to proteolysis. The activity was greatest at about the time of flowering and also appeared to depend on the light regime.  相似文献   

11.
The enzymatic activity of activated bovine blood clotting factor X toward the synthetic substrate N α-benzoyl-l-arginine ethyl ester and the inhibitory effects of a series of low molecular weight synthetic aromatic amidine and guanidine compounds on that activity were studied using the steady-state kinetic method. The kinetic parameters, Km and κcat, and the apparent dissociation constant Ki for each inhibitor, were determined for activated factor X hydrolysis of Bz-Arg-OEt at 37 °C, pH 7.8 in 0.1 n NaCl and 0.001 m CaCl2. The same constants were determined for bovine β-trypsin under identical conditions. Comparison of kinetic constants determined for both enzymes shows that activated factor X binds the substrate Bz-Arg-OEt less efficiently than β-trypsin by several orders of magnitude. However, binding of the inhibitors benzamidine, p-aminobenzamidine, pentamidine, M&B 4596, phenylguanidine, and p-guanidinobenzoic acid is similar for both enzymes. The results indicate that these two closely related serine proteases differ little in the structural arrangement and accessibility of the anionic “pocket” at which these inhibitors bind. The large differences observed with respect to substrate binding activity probably reflect substantial structural differences between the two enzymes at secondary sites adjacent to the primary anionic site.  相似文献   

12.
A trypsin inhibitor was isolated from grains of two row barley (cv. Proctor). The purified protein was identical with the corresponding inhibitor of a six row barley (cv. Pirkka); both proteins showed, a Pi of 7.4. The N-terminal amino acid was phenylalanine and an arginine residue was involved in the active site. Effects of substrate concentration showed that the inhibition was noncompetitive with a Ki of about 0.9 × 10?7M. An enzyme-inhibitor complex was demonstrated by disc electrophoresis.  相似文献   

13.
Hexokinase was partially purified from the leaves of Dendrophthoe falcata. The optimum pH for the enzyme was 8.5. The enzyme was sensitive to p-CMB and the inhibition could be reversed by 2-mercaptoethanol. The optimum temperature was 40° and energy of activation 6900 cal/mol. The enzyme had an absolute requirement for a divalent metal ion. Although Mg2+ was the preferred metal, it could be partially replaced by Mn2+ and Ca2+. ATP was the most effective phosphoryl donor. Glucose was the best substrate, the Km values of 0.14 and 0.26 mM were obtained at saturated and sub-saturated ATP concentration. Phosphorylation coefficients show the following order of reactivity of sugars: glucose mannose 2-deoxy D-glucose fructose glucosamine galactose ribose. The Km value for ATP was 0.16 mM, which increased to 0.35 mM in the presence of 0.5 mM ADP. ADP and 5′-AMP were competitive inhibitors with respect to ATP, and Ki values were 0.4 and 1.2 mM respectively.  相似文献   

14.
Two thermostable endocellulases, CelA and CelB, were purified from Thermotoga neapolitana. CelA (molecular mass, 29 kDa; pI 4.6) is optimally active at pH 6.0 at 95°C, while CelB (molecular mass, 30 kDa; pI 4.1) has a broader optimal pH range (pH 6.0 to 6.6) at 106°C. Both enzymes are characterized by a high level of activity (high Vmax value and low apparent Km value) with carboxymethyl cellulose; the specific activities of CelA and CelB are 1,219 and 1,536 U/mg, respectively. With p-nitrophenyl cellobioside the Vmax values of CelA and CelB are 69.2 and 18.4 U/mg, respectively, while the Km values are 0.97 and 0.3 mM, respectively. The major end products of cellulose hydrolysis, glucose and cellobiose, competitively inhibit CelA, and CelB. The Ki values for CelA are 0.44 M for glucose and 2.5 mM for cellobiose; the Ki values for CelB are 0.2 M for glucose and 1.16 mM for cellobiose. CelB preferentially cleaves larger cellooligomers, producing cellobiose as the end product; it also exhibits significant transglycosylation activity. This enzyme is highly thermostable and has half-lives of 130 min at 106°C and 26 min at 110°C. A single clone encoding the celA and celB genes was identified by screening a T. neapolitana genomic library in Escherichia coli. The celA gene encodes a 257-amino-acid protein, while celB encodes a 274-amino-acid protein. Both proteins belong to family 12 of the glycosyl hydrolases, and the two proteins are 60% similar to each other. Northern blots of T. neapolitana mRNA revealed that celA and celB are monocistronic messages, and both genes are inducible by cellobiose and are repressed by glucose.  相似文献   

15.
An O-methyltransferase which catalyses the methylation of caffeic acid to ferulic acid using S-adenosyl-l-methionine as methyl donor has been isolated and purified ca 70-fold from root nodules of alfalfa. The enzyme also catalysed the methylation of 5-hydroxyferulic acid. Chromatography on 1,6-diaminohexane agarose (AH-Sepharose-4B) linked with S-adenosyl-l-homocysteine (SAH) gave 35% recovery of enzyme activity. The Km values for caffeic acid and S-adenosyl-l-methionine were 58 and 4.1 μM, respectively. S-Adenosyl-l-homocysteine was a potent competitive inhibitor of S-adenosyl-l-methionine with a Ki of 0.44 μM. The MW of the enzyme was ca 103 000 determined by gel filtration chromatography.  相似文献   

16.
Ten trypsin (EC 3.4.21.4) inhibitors have been isolated and purified by gel filtration and ion-exchange chromatography from the tubers of sweet potato (Ipomoea batatas). The molecular weights of the three most active inhibitors were estimated by molecular sieve chromatography and found to be 12 000, 10 000 and 9300, respectively. They showed maximum activity at pH 7.5–8.5 as well as maximum Ki within this pH range. They displayed different trypsin inhibitory activity, and this activity was completely lost on boiling for 40 min.  相似文献   

17.
Chalcone isomerase (EC 5.5.1.6) from cell suspension cultures of Phaseolus vulgaris has been purified about 400-fold. The molecular weight, as estimated by gel-filtration and SDS-polyacrylamide gel electrophoresis, is approx. 28 000. No isoenzymic forms are observed. The enzyme, which appears to require no cofactors, catalyses the isomerisation of both 6′-hydroxy and 6′-deoxy chalcones to the corresponding flavones. Likewise, a range of both 5-hydroxy and 5-deoxy flavonoids and isoflavonoids act as competitive inhibitors. The most potent inhibitors include the naturally occurring antimicrobial comcpounds kievitone (Ki 9.2 μM) and coumestrol (Ki 2.5 μM). The kinetics of the isomerisation of 2′,4,4′-trihydroxychalcone to the flavanone liquiritigenin have been investigated at a range of pH values. The pH optimum was around 8.0 and Km changed with pH in a manner consistent with control by groups which ionise with pKa values of 7.05 and 8.7 respectively. At pH 8.0, the energy of activation was 17.56 kJ/mol in the range 25–40°C. The role of the enzyme in the induced accumulation of flavonoid/isoflavonoid derivatives inthe Frech bean in discussed.  相似文献   

18.
Activated factor XII (FXIIa) is selectively inhibited by corn Hageman factor inhibitor (CHFI) among other plasma proteases. CHFI is considered a canonical serine protease inhibitor that interacts with FXIIa through its protease-binding loop. Here we examined whether the protease-binding loop alone is sufficient for the selective inhibition of serine proteases or whether other regions of a canonical inhibitor are involved. Six CHFI mutants lacking different N- and C-terminal portions were generated. CHFI-234, which lacks the first and fifth disulfide bonds and 11 and 19 amino acid residues at the N and C termini, respectively, exhibited no significant changes in FXIIa inhibition (Ki = 3.2 ± 0.4 nm). CHFI-123, which lacks 34 amino acid residues at the C terminus and the fourth and fifth disulfide bridges, inhibited FXIIa with a Ki of 116 ± 16 nm. To exclude interactions outside the FXIIa active site, a synthetic cyclic peptide was tested. The peptide contained residues 20–45 (Protein Data Bank code 1BEA), and a C29D substitution was included to avoid unwanted disulfide bond formation between unpaired cysteines. Surprisingly, the isolated protease-binding loop failed to inhibit FXIIa but retained partial inhibition of trypsin (Ki = 11.7 ± 1.2 μm) and activated factor XI (Ki = 94 ± 11 μm). Full-length CHFI inhibited trypsin with a Ki of 1.3 ± 0.2 nm and activated factor XI with a Ki of 5.4 ± 0.2 μm. Our results suggest that the protease-binding loop is not sufficient for the interaction between FXIIa and CHFI; other regions of the inhibitor also contribute to specific inhibition.  相似文献   

19.
The synthesis of a number of leucyl derivatives of substituted anilides and their properties as substrates and inhibitors of Zn2+-Mg2+ leucine aminopeptidase (EC 3.4.11.1) at pH 8.5 and 30 °C are described. The compounds include leucyl-X where X is o-, m-, or p-aminobenzenesulfonic acid, o-, m-, or p-anisidine, and m- or p-aminobenzenesulfonyl fluoride. The latter two sulfonyl fluorides, designed to be active site-directed irreversible inhibitors, turned out to be good substrates for leucine aminopeptidase. The Km and V values of the above compounds as substrates for leucine aminopeptidase are reported. N-Leucyl-m-aminobenzenesulfonate exhibits desirable properties (solubility much greater than Km, Δ? at 295 nm of 2000 m?1 cm?1, and V of 300 μmol min?1 mg?1) as a substrate for a spectrophotometric assay of leucine aminopeptidase. With the exception of N-leucyl-p-aminobenzenesulfonate, all of the above compounds are inhibitors of the hydrolysis of leucyl-p-nitroanilide by leucine aminopeptidase with Ki values approximately their Km values when they are used as substrates. Despite wide variability in steric bulk, chemical composition, and electrical charge of the substituted anilides, the Km values of the above compounds vary over a narrow range (0.5 to 4.8 mm), which indicates that the leucyl moiety plays the predominant role in the determination of Km values. Although the Km values of m- substituents are similar to those of o- substituents, the V values for m-substituents are much greater than those for o- substituents, which suggests that o-substituents interfere with the catalytic process. N-Leucyl-p-aminobenzenesulfonate and N-alanyl-p-aminobenzenesulfonate as well as the nonsubstrate p-aminobenzenesulfonate stimulate rather than inhibit the proteolysis of leucyl-p-nitroanilide. The stimulation has no effect on V but lowers the Km for the hydrolysis of leucyl-p-nitroanilide, which is compatible with these compounds' serving as nonessential activators.  相似文献   

20.
Kinetic properties of homogeneous preparations of pig kidney and pig muscle pyruvate kinases (EC 2.7.1.40) were studied. Both isozymes showed a hyperbolic relationship to ADP with an apparent Km of 0.3 mm. K+ and Mg2+ were necessary for the activity of both isozymes, and their dependences on these cations were similar. The muscle isozyme expressed Michaelis-Menten type of kinetics with respect to phosphoenolpyruvate, and the apparent Km was the same (0.03 mm) from pH 5.5 to pH 8.0. In contrast, the dependence on phosphoenolpyruvate changed with pH for the kidney isozyme. It showed similar properties to the muscle isozyme at pH 5.5–7.0 (apparent Km of 0.08 mm), while two apparent Km values for this substrate were present at pH 7.5–8.0, one low (0.1 mm) and one high (0.3–0.6 mm). At pH 7.5, fructose 1,6-bisphosphate converted the kidney isozyme to a kinetical form where only the lower apparent Km for phosphoenolpyruvate was detected. On the other hand, in the presence of alanine or phenylalanine the kidney pyruvate kinase showed only the higher Km for this substrate. At low phosphoenolpyruvate levels both isozymes were inhibited by phenylalanine, and half-maximal inhibition was found at 0.3 and 2.2 mm for the kidney and muscle isozymes, respectively. At a 5 mm concentration of the substrate only the kidney isozyme was inhibited, the apparent Ki being the same. Alanine inhibited the kidney isozyme (apparent Ki at 0.3 mm, irrespective of substrate concentration). No effect was seen on the muscle isozyme. Fructose 1,6-bisphosphate was an activator of the kidney isozyme at phosphoenolpyruvate concentrations below 1.0 mm It also counteracted the inhibition by alanine or phenylalanine of this isozyme. ATP inhibited both isozymes, and this inhibition was not counteracted by fructose 1,6-bisphosphate. The kidney isozyme showed both a high and a low apparent Km for phosphoenolpyruvate in the presence of ATP. The influence of the effectors on the activity of both isozymes varied markedly with pH, except for the action of ATP. At low substrate concentrations, however, the inhibitor action of ATP on the muscle enzyme was diminished around pH 7.5, in contrast to higher or lower pH values. Alanine or phenylalanine were more effective as inhibitors at higher pH values, and fructose 1,6-bisphosphate stimulated the kidney isozyme only at pH levels above pH 6.5. The influence of activators and inhibitors on the regulation of the kidney and muscle pyruvate kinases is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号