首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Plant invasions have the potential to significantly alter soil microbial communities, given their often considerable aboveground effects. We examined how plant invasions altered the arbuscular mycorrhizal fungi of native plant roots in a grassland site in California and one in Utah. In the California site, we used experimentally created plant communities composed of exotic (Avena barbata, Bromus hordeaceus) and native (Nassella pulchra, Lupinus bicolor) monocultures and mixtures. In the Utah semi-arid grassland, we took advantage of invasion by Bromus tectorum into long-term plots dominated by either of two native grasses, Hilaria jamesii or Stipa hymenoides. Arbuscular mycorrhizal fungi colonizing roots were characterized with PCR amplification of the ITS region, cloning, and sequencing. We saw a significant effect of the presence of exotic grasses on the diversity of mycorrhizal fungi colonizing native plant roots. In the three native grasses, richness of mycorrhizal fungi decreased; in the native forb at the California site, the number of fungal RFLP patterns increased in the presence of exotics. The exotic grasses also caused the composition of the mycorrhizal community in native roots to shift dramatically both in California, with turnover of Glomus spp., and Utah, with replacement of Glomus spp. by apparently non-mycorrhizal fungi. Invading plants may be able to influence the network of mycorrhizal fungi in soil that is available to natives through either earlier root activity or differential carbon provision compared to natives. Alteration of the soil microbial community by plant invasion can provide a mechanism for both successful invasion and the resulting effects of invaders on the ecosystem.  相似文献   

2.
Theory predicts that stability should increase with diversity via several mechanisms. We tested predictions in a 5‐year experiment that compared low‐diversity exotic to high‐diversity native plant mixtures under two irrigation treatments. The study included both wet and dry years. Variation in biomass across years (CV) was 50% lower in mixtures than monocultures of both native and exotic species. Growth among species was more asynchronous and overyielding values were greater during and after a drought in native than exotic mixtures. Mean‐variance slopes indicated strong portfolio effects in both community types, but the intercept was higher for exotics than for natives, suggesting that exotics were inherently more variable than native species. However, this failed to result in higher CV's in exotic communities because species that heavily dominated plots tended to have lower than expected variance. Results indicate that diversity‐stability mechanisms are altered in invaded systems compared to native ones they replaced.  相似文献   

3.
Previous research has found that plant diversity declines more quickly in exotic than native grassland plots, which offers a model system for testing whether diversity decline is associated with specific plant traits. In a common garden experiment in the Southern Great Plains in central Texas, USA, we studied monocultures and 9-species mixtures of either all exotic or all native grassland species. A total of 36 native and exotic species were paired by phylogeny and functional group. We used community-level measures (relative abundance in mixture) and whole-plant (height, aboveground biomass, and light capture) and leaf-level traits (area, specific leaf area, and C:N ratio) to determine whether trait differences explained native-exotic differences in functional group diversity. Increases in species’ relative abundance in mixture were correlated with high biomass, height, and light capture in both native and exotic communities. However, increasing exotic species were all C4 grasses, whereas, increasing native species included forb, C3 grass and C4 grass species. Exotic C4 grasses had traits associated with relatively high resource capture: greater leaf area, specific leaf area, height, biomass, and light capture, but similar leaf C:N ratios compared to native C4 grasses. Leaf C:N was consistently higher for native than exotic C3 species, implying that resource use efficiency was greater in natives than exotics. Our results suggest that functional diversity will differ between grasslands restored to native assemblages and those dominated by novel collections of exotic species, and that simple plant traits can help to explain diversity decline.  相似文献   

4.
In many systems, native communities are being replaced by novel exotic-dominated ones. We experimentally compared species diversity decline between nine-species grassland communities under field conditions to test whether diversity maintenance mechanisms differed between communities containing all exotic or all native species using a pool of 40 species. Aboveground biomass was greater in exotic than native plots, and this difference was larger in mixtures than in monocultures. Species diversity declined more in exotic than native communities and declines were explained by different mechanisms. In exotic communities, overyielding species had high biomass in monoculture and diversity declined linearly as this selection effect increased. In native communities, however, overyielding species had low biomass in monoculture and there was no relationship between the selection effect and diversity decline. This suggests that, for this system, yielding behaviour is fundamentally different between presumably co-evolved natives and coevolutionarily naive exotic species, and that native-exotic status is important to consider.  相似文献   

5.
Plant diversity drives changes in the soil microbial community which may result in alterations in ecosystem functions. However, the governing factors between the composition of soil microbial communities and plant diversity are not well understood. We investigated the impact of plant diversity (plant species richness and functional group richness) and plant functional group identity on soil microbial biomass and soil microbial community structure in experimental grassland ecosystems. Total microbial biomass and community structure were determined by phospholipid fatty acid (PLFA) analysis. The diversity gradient covered 1, 2, 4, 8, 16 and 60 plant species and 1, 2, 3 and 4 plant functional groups (grasses, legumes, small herbs and tall herbs). In May 2007, soil samples were taken from experimental plots and from nearby fields and meadows. Beside soil texture, plant species richness was the main driver of soil microbial biomass. Structural equation modeling revealed that the positive plant diversity effect was mainly mediated by higher leaf area index resulting in higher soil moisture in the top soil layer. The fungal-to-bacterial biomass ratio was positively affected by plant functional group richness and negatively by the presence of legumes. Bacteria were more closely related to abiotic differences caused by plant diversity, while fungi were more affected by plant-derived organic matter inputs. We found diverse plant communities promoted faster transition of soil microbial communities typical for arable land towards grassland communities. Although some mechanisms underlying the plant diversity effect on soil microorganisms could be identified, future studies have to determine plant traits shaping soil microbial community structure. We suspect differences in root traits among different plant communities, such as root turnover rates and chemical composition of root exudates, to structure soil microbial communities.  相似文献   

6.
Fungal communities play a key role in ecosystem functioning. However, only little is known about their composition in plant roots and the soil of biomass plantations. The goal of this study was to analyze fungal biodiversity in their belowground habitats and to gain information on the strategies by which ectomycorrhizal (ECM) fungi form colonies. In a 2-year-old plantation, fungal communities in the soil and roots of three different poplar genotypes (Populus × canescens, wildtype and two transgenic lines with suppressed cinnamyl alcohol dehydrogenase activity) were analyzed by 454 pyrosequencing targeting the rDNA internal transcribed spacer 1 (ITS) region. The results were compared with the dynamics of the root-associated ECM community studied by morphotyping/Sanger sequencing in two subsequent years. Fungal species and family richness in the soil were surprisingly high in this simple plantation ecosystem, with 5944 operational taxonomic units (OTUs) and 186 described fungal families. These findings indicate the importance that fungal species are already available for colonization of plant roots (2399 OTUs and 115 families). The transgenic modification of poplar plants had no influence on fungal root or soil communities. Fungal families and OTUs were more evenly distributed in the soil than in roots, probably as a result of soil plowing before the establishment of the plantation. Saprophytic, pathogenic, and endophytic fungi were the dominating groups in soil, whereas ECMs were dominant in roots (87%). Arbuscular mycorrhizal diversity was higher in soil than in roots. Species richness of the root-associated ECM community, which was low compared with ECM fungi detected by 454 analyses, increased after 1 year. This increase was mainly caused by ECM fungal species already traced in the preceding year in roots. This result supports the priority concept that ECMs present on roots have a competitive advantage over soil-localized ECM fungi.  相似文献   

7.
Aim To determine why some communities are more invasible than others and how this depends on spatial scale. Our previous work in serpentine ecosystems showed that native and exotic diversity are negatively correlated at small scales, but became positively correlated at larger scales. We hypothesized that this pattern was the result of classic niche partitioning at small scales where the environment is homogeneous, and a shift to the dominance of coexistence mechanisms that depend on spatial heterogeneity in the environment at large scales. Location Serpentine ecosystem, Northern California. Methods We test the above hypotheses using the phylogenetic relatedness of natives and exotics. We hypothesized that (1) at small scales, native and exotic species should be more distantly related than expected from a random assemblage model because with biotic resistance, successful invaders should have niches that are different from those of the natives present and (2) at large scales, native and exotic species should not be more distantly related than expected. Result We find strong support for the first hypothesis providing further evidence of biotic resistance at small scales. However, at large scales, native and exotic species were also more distantly related than expected. Importantly, however, natives and exotics were more distantly related at small scales than they were at large scales, suggesting that in the transition from small to large scales, biotic resistance is relaxed but still present. Communities at large scales were not saturated in the sense that more species could enter the community, increasing species richness. However, species did not invade indiscriminately. Exotic species closely related to species already established the community were excluded. Main conclusions Native communities determine the identity of exotic invaders even at large spatial scales where communities are unsaturated. These results hold promise for predicting which species will invade a community given the species present.  相似文献   

8.
Many exotic species have been introduced or have escaped into grasslands where they form ‘novel ecosystems’ of species with no evolutionary history of interaction. Novel ecosystems are good model systems for understanding how diversity maintenance mechanisms might differ between species with a history of interaction (natives) and species without a history (exotics) in cases where exotics originated from several continents. We tested for lower species diversity and richness in exotic grasslands and found a negative correlation between species diversity measures and proportion of exotic species across 15 grasslands in an observational study in Texas. We then planted 9-species mixtures of all native or all exotics under ambient or elevated summer precipitation to compare dynamics of diversity and to test if exotic species respond more strongly to altered resource availability. Species diversity was lower in communities of exotic than native species by the second year. Reduced diversity in exotic communities resulted from lower complementarity and higher temporal niche overlap among species and occurred in both ambient and irrigated plots. In general, summer irrigation had additive positive effects and did not interact with native–exotic status. Exotic species and communities had much earlier green-up during spring than natives, and altered inter-correlations among phenology variables. There were no differences in flowering dates. Taken together, our results suggest that rapid and synchronous growth may increase niche overlap among exotic species and reduce local diversity in exotic-dominated grassland communities. Earlier green-up by exotics may complicate attempts to ascertain relationships between phenology and climate. An increase in exotic species may cause earlier green-up regardless of any climate change effects and our results suggest that phenology networks should take a species-based rather than an ecosystem approach to evaluate green-up if the abundance of exotics increases within the time-frame in question. These differences between native and exotic species and communities should be considered in future management and restoration projects.  相似文献   

9.
Biodiversity–ecosystem functioning (BEF) studies typically show that species richness enhances community biomass, but the underlying mechanisms remain debated. Here, we combine metrics from BEF research that distinguish the contribution of dominant species (selection effects, SE) from those due to positive interactions such as resource partitioning (complementarity effects, CE) with a functional trait approach in an attempt to reveal the functional characteristics of species that drive community biomass in species mixtures. In a biodiversity experiment with 16 plant species in monocultures, 4‐species and 16‐species mixtures, we used aboveground biomass to determine the relative contributions of CE and SE to biomass production in mixtures in the second, dry year of the experiment. We also measured root traits (specific root length, root length density, root tissue density and the deep root fraction) of each species in monocultures and linked the calculated community weighted mean (CWM) trait values and trait diversity of mixtures to CE and SE. In the second year of the experiment, community biomass, CE and SE increased compared to the first year. The contribution of SE to this positive effect was greater than that of CE. The increased contribution of SE was associated with root traits: SE increased most in communities with high abundance of species with deep, thick and dense roots. In contrast, changes in CE were not related to trait diversity or CWM trait values. Together, these results suggest that increased positive effects of species richness on community biomass in a dry year were mainly driven by increased dominance of deep‐rooting species, supporting the insurance hypothesis of biodiversity. Positive CE indicates that other positive interactions did occur, but we could not find evidence that belowground resource partitioning or facilitation via root trait diversity was important for community productivity in our biodiversity experiment.  相似文献   

10.
Aims Biodiversity–ecosystem function experiments can test for causal relationships between planting diversity and community productivity. Planting diversity is routinely introduced as a design element in created wetlands, yet substantive support for the finding that early diversity positively affects ecosystem functioning is lacking for wetlands. We conducted a 2-year diversity–productivity experiment using freshwater wetland mesocosms to investigate community biomass production as affected by planted macrophyte functional richness.Methods A richness gradient of macrophytes in four emergent wetland plant functional groups was established in freshwater mesocosms for two consecutive years. Species-specific aboveground morphological traits of plant size were measured at peak growth in both years; rooting depth was measured for each species in the second year. Aboveground biomass (AGB) and belowground biomass (BGB) were harvested after peak growth in the second year; first year AGB was estimated from morphological traits in constructed regression equations. Net richness effects (i.e. both complementarity effects and selection effects) were calculated using an additive partitioning method.Important findings Species richness had a positive effect on community AGB relative to monocultures in the first year. In the second year, mean AGB was significantly reduced by competition in the most species-rich mixtures and all mixtures underyielded relative to the average monoculture. Competition for soil resources was weaker belowground, whereby root distribution at depths>20cm was reduced at the highest richness levels but overall BGB production was not affected. Changes in species biomass were strongly reflected by variation in species morphological traits, and species above and belowground performances were highly correlated. The obligate annual (Eleocharis obtusa), a dominant competitor, significantly contributed to the depression of perennial species' growth in the second growing season. To foster primary productivity with macrophyte richness in early successional communities of created wetlands where ruderal strategies are favored and competition may be stronger than species complementarity, unsystematic planting designs such as clustering the same or similar species could provide protection for some individuals. Additionally, engineering design elements fostering spatial or temporal environmental variability (e.g. microtopography) in newly created wetlands helps diversify the responses of wetland macrophyte species to their environment and could allow for greater complementarity in biomass production.  相似文献   

11.
Plant invasions have dramatic aboveground effects on plant community composition, but their belowground effects remain largely uncharacterized. Soil microorganisms directly interact with plants and mediate many nutrient transformations in soil. We hypothesized that belowground changes to the soil microbial community provide a mechanistic link between exotic plant invasion and changes to ecosystem nutrient cycling. To examine this possible link, monocultures and mixtures of exotic and native species were maintained for 4 years in a California grassland. Gross rates of nitrogen (N) mineralization and nitrification were quantified with 15N pool dilution and soil microbial communities were characterized with DNA‐based methods. Exotic grasses doubled gross nitrification rates, in part by increasing the abundance and changing the composition of ammonia‐oxidizing bacteria in soil. These changes may translate into altered ecosystem N budgets after invasion. Altered soil microbial communities and their resulting effects on ecosystem processes may be an invisible legacy of exotic plant invasions.  相似文献   

12.
Understanding the links between plant diversity and soil communities is critical to disentangling the mechanisms by which plant communities modulate ecosystem function. Experimental plant communities varying in species richness, evenness, and density were established using a response surface design and soil community properties including bacterial and archaeal abundance, richness, and evenness were measured. The potential to perform a representative soil ecosystem function, oxidation of ammonium to nitrite, was measured via archaeal and bacterial amoA genes. Structural equation modeling was used to explore the direct and indirect effects of the plant community on soil diversity and potential function. Plant communities influenced archaea and bacteria via different pathways. Species richness and evenness had significant direct effects on soil microbial community structure, but the mechanisms driving these effects did not include either root biomass or the pools of carbon and nitrogen available to the soil microbial community. Species richness had direct positive effects on archaeal amoA prevalence, but only indirect impacts on bacterial communities through modulation of plant evenness. Increased plant evenness increased bacterial abundance which in turn increased bacterial amoA abundance. These results suggest that plant community evenness may have a strong impact on some aspects of soil ecosystem function. We show that a more even plant community increased bacterial abundance, which then increased the potential for bacterial nitrification. A more even plant community also increased total dissolved nitrogen in the soil, which decreased the potential for archaeal nitrification. The role of plant evenness in structuring the soil community suggests mechanisms including complementarity in root exudate profiles or root foraging patterns.  相似文献   

13.
Aim Increasingly, ecologists are using evolutionary relationships to infer the mechanisms of community assembly. However, modern communities are being invaded by non‐indigenous species. Since natives have been associated with one another through evolutionary time, the forces promoting character and niche divergence should be high. On the other hand, exotics have evolved elsewhere, meaning that conserved traits may be more important in their new ranges. Thus, co‐occurrence over sufficient time‐scales for reciprocal evolution may alter how phylogenetic relationships influence assembly. Here, we examined the phylogenetic structure of native and exotic plant communities across a large‐scale gradient in species richness and asked whether local assemblages are composed of more or less closely related natives and exotics and whether phylogenetic turnover among plots and among sites across this gradient is driven by turnover in close or distant relatives differentially for natives and exotics. Location Central and northern California, USA. Methods We used data from 30 to 50 replicate plots at four sites and constructed a maximum likelihood molecular phylogeny using the genes: matK, rbcl, ITS1 and 5.8s. We compared community‐level measures of native and exotic phylogenetic diversity and among‐plot phylobetadiversity. Results There were few exotic clades, but they tended to be widespread. Exotic species were phylogenetically clustered within communities and showed low phylogenetic turnover among communities. In contrast, the more species‐rich native communities showed higher phylogenetic dispersion and turnover among sites. Main conclusions The assembly of native and exotic subcommunities appears to reflect the evolutionary histories of these species and suggests that shared traits drive exotic patterns while evolutionary differentiation drives native assembly. Current invasions appear to be causing phylogenetic homogenization at regional scales.  相似文献   

14.
Several components of the diversity of plant communities, such as species richness, species composition, number of functional groups and functional composition, have been shown to directly affect the performance of exotic species. Exotics can also be affected by herbivores of the native plant community. However, these two possible mechanisms limiting invasion have never been investigated together. The aim of this study was to investigate the relationships between plant diversity, herbivory and performance of two annual exotics, Conyza bonariensis and C. canadensis, in Mediterranean annual communities. We wanted to test whether herbivory of these exotics was influenced either by species richness, functional-group richness or functional-group composition. We also studied the relationship between herbivory on the exotic species and their performance. Herbivory increased with increasing species and functional-group richness for both Conyza species. These patterns are interpreted as reflecting a greater number of available herbivore niches in a richer, more complex, plant community. The identities of functional groups also affected Conyza herbivory, which decreased in the presence of Asteraceae or Fabaceae and increased in the presence of Poaceae. Increasing herbivory had consequences for vegetative and demographic parameters of both invasive species: survival, final biomass and net fecundity decreased with increasing herbivory, leading to a loss of reproductive capacity. We conclude that communities characterised by a high number of grass species instead of Asteraceae or Fabaceae may be more resistant to invasion by the two Conyza species, in part due to predation by native herbivores.  相似文献   

15.
Considerable research has been devoted to understanding how plant invasions are influenced by properties of the native community and to the traits of exotic species that contribute to successful invasion. Studies of invasibility are common in successionally stable grasslands, but rare in recently disturbed or seral forests. We used 16 yr of species richness and abundance data from 1 m2 plots in a clearcut and burned forest in the Cascade Range of western Oregon to address the following questions: 1) is invasion success correlated with properties of the native community? Are correlations stronger among pools of functionally similar taxa (i.e. exotic and native annuals)? Do these relationships change over successional time? 2) Does exotic abundance increase with removal of potentially dominant native species? 3) Do the population dynamics of exotic and native species differ, suggesting that exotics are more successful colonists? Exotics were primarily annual and biennial species. Regardless of the measure of success (richness, cover, biomass, or density) or successional stage, most correlations between exotics and natives were non‐significant. Exotic and native annuals showed positive correlations during mid‐succession, but these were attributed to shared associations with bare ground rather than to direct biotic interactions. At peak abundance, neither cover nor density of exotics differed between controls and plots from which native, mid‐successional dominants were removed. Tests comparing nine measures of population performance (representing the pace, magnitude, and duration of population growth) revealed no significant differences between native and exotic species. In this early successional system, local richness and abundance of exotics are not explained by properties of the native community, by the presence of dominant native species, or by superior colonizing ability among exotics species. Instead natives and exotics exhibit individualistic patterns of increase and decline suggesting similar sets of life‐history traits leading to similar successional roles.  相似文献   

16.
Interactions between above‐ and belowground invertebrate herbivores alter plant diversity, however, little is known on how these effects may influence higher trophic level organisms belowground. Here we explore whether above‐ and belowground invertebrate herbivores which alter plant community diversity and biomass, in turn affect soil nematode communities. We test the hypotheses that insect herbivores 1) alter soil nematode diversity, 2) stimulate bacterial‐feeding and 3) reduce plant‐feeding nematode abundances. In a full factorial outdoor mesocosm experiment we introduced grasshoppers (aboveground herbivores), wireworms (belowground herbivores) and a diverse soil nematode community to species‐rich model plant communities. After two years, insect herbivore effects on nematode diversity and on abundance of herbivorous, bacterivorous, fungivorous and omni‐carnivorous nematodes were evaluated in relation to plant community composition. Wireworms did not affect nematode diversity despite enhanced plant diversity, while grasshoppers, which did not affect plant diversity, reduced nematode diversity. Although grasshoppers and wireworms caused contrasting shifts in plant species dominance, they did not affect abundances of decomposer nematodes at any trophic level. Primary consumer nematodes were, however, strongly promoted by wireworms, while community root biomass was not altered by the insect herbivores. Overall, interaction effects of wireworms and grasshoppers on the soil nematodes were not observed, and we found no support for bottom‐up control of the nematodes. However, our results show that above‐ and belowground insect herbivores may facilitate root‐feeding rather than decomposer nematodes and that this facilitation appears to be driven by shifts in plant species composition. Moreover, the addition of nematodes strongly suppressed shoot biomass of several forb species and reduced grasshopper abundance. Thus, our results suggest that nematode feedback effects on plant community composition, due to plant and herbivore parasitism, may strongly depend on the presence of insect herbivores.  相似文献   

17.
Among the greatest challenges currently facing terrestrial plant communities are anthropogenic nutrient amendments. Nutrient inputs can change community attributes, such as diversity and composition, and have been implicated in the increasing dominance of certain groups of species, like exotics. Overall effects of nutrients will likely be contingent on other factors in the community. One such factor is within-season change in plant communities, which has seldom been examined but may be of considerable importance. We examined within-season effects of nutrient manipulations (fertilization and litter removal) on overall community attributes and different species groups in a temperate grassland. We found the effects of nutrient amendments varied significantly over the growing season. Fertilization reduced species richness and diversity at all census points, but had the greatest effects on communities early and late in the growing season. There were few seasonal effects on species richness within functional groups, suggesting that nutrient effects were consistent and established early. Although fertilization reduced both native and exotic forb species richness throughout the season, exotics surprisingly suffered greater species losses than natives. Comparisons between within-season data and data from the end of season showed nutrient amendments have stronger community effects than previously recognized. We found that differences in cumulative species richness (all species detected during the growing season) between fertilized and unfertilized plots were greater than differences in species richness measures from any single census date. Our results suggest that predicting the overall response of plant communities to anthropogenic nutrient amendments will require thorough temporal assessments, particularly of early season species, which are generally overlooked in community studies.  相似文献   

18.
Invasive exotic plant species effects on soil biota and processes in their new range can promote or counteract invasions via changed plant–soil feedback interactions to themselves or to native plant species. Recent meta-analyses reveale that soil influenced by native and exotic plant species is affecting growth and performance of natives more strongly than exotics. However, the question is how uniform these responses are across contrasting life forms. Here, we test the hypothesis that life form matters for effects on soil and plant–soil feedback. In a meta-analysis we show that exotics enhanced C cycling, numbers of meso-invertebrates and nematodes, while having variable effects on other soil biota and processes. Plant effects on soil biota and processes were not dependent on life form, but patterns in feedback effects of natives and exotics were dependent on life form. Native grasses and forbs caused changes in soil that subsequently negatively affected their biomass, whereas native trees caused changes in soil that subsequently positively affected their biomass. Most exotics had neutral feedback effects, although exotic forbs had positive feedback effects. Effects of exotics on natives differed among plant life forms. Native trees were inhibited in soils conditioned by exotics, whereas native grasses were positively influenced in soil conditioned by exotics. We conclude that plant life form matters when comparing plant–soil feedback effects both within and between natives and exotics. We propose that impact analyses of exotic plant species on the performance of native plant species can be improved by comparing responses within plant life form.  相似文献   

19.
Contemporary biodiversity experiments, in which plant species richness is manipulated and aboveground productivity of the system measured, generally demonstrate that lowering plant species richness reduces productivity. However, we propose that community density may in part compensate for this reduction of productivity at low diversity. We conducted a factorial experiment in which plant functional group richness was held constant at three, while plant species richness increased from three to six to 12 species and community density from 440 to 1050 to 2525 seedlings m−2. Response variables included density, evenness and above- and belowground biomass at harvest. The density gradient converged slightly during the course of the experiment due to about 10% mortality at the highest sowing density. Evenness measured in terms of aboveground biomass at harvest significantly declined with density, but the effect was weak. Overall, aboveground, belowground and total biomass increased significantly with species richness and community density. However, a significant interaction between species richness and community density occurred for both total and aboveground biomass, indicating that the diversity–productivity relationship was flatter at higher than at lower density. Thus, high species richness enabled low-density communities to reach productivity levels otherwise seen only at high density. The relative contributions of the three functional groups C3, C4 and nitrogen-fixers to aboveground biomass were less influenced by community density at high than at low species richness. We interpret the interaction effects between community density and species richness on community biomass by expanding findings about constant yield and size variation from monocultures to plant mixtures.  相似文献   

20.
Exotic plants establish persistent communities   总被引:1,自引:0,他引:1  
Many exotic plants utilize early successional traits to invade disturbed sites, but in some cases these same species appear able to prevent re-establishment of late-successional and native species. Between 2002 and 2004, I studied 25 fields that represent a 52-year chronosequence of agricultural abandonment in a shrub-steppe ecosystem in Washington State, USA, to determine if exotic plants behaved as early successional species (i.e., became less abundant over time) or if they established persistent communities. Exotics maintained dominance in tilled (73% of total cover) relative to never-tilled (6% of total cover) fields throughout the chronosequence. Exotic community composition, however, changed on annual and decadal timescales. Changes in exotic community composition did not reflect typical successional patterns. For example, some exotic perennial species (e.g., Centaurea diffusa and Medicago sativa) were less common and some exotic annual species (e.g., Sissymbrium loeselii and S. altissimum) were more common in older relative to younger fields. Exotics in the study area appeared to establish communities that are resistant to re-invasion by natives, resilient to losses of individual exotic species, and as a result, maintain total exotic cover over both the short- and long-term: exotics replaced exotics. Exotics did not invade native communities and natives did not invade exotic communities across the chronosequence. These results suggest that, in disturbed sites, exotic plants establish an alternative community type that while widely variable in composition, maintains total cover over annual and decadal timescales. Identifying alternative state exotic communities and the mechanisms that explain their growth is likely to be essential for native plant restoration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号