首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Mo B  Bewley JD 《Planta》2002,215(1):141-152
Beta-mannosidase, a high-salt-soluble enzyme, increases in activity in seeds of tomato prior to the completion of germination. This increase occurs in both the lateral and micropylar endosperm and becomes more evident during post-germinative seedling growth. The beta-mannosidase activity profile is similar to that of endo beta-mannanase although it is the first to increase in the lateral endosperm. Tomato seed beta-mannosidase was purified to homogeneity and its cDNA (LeMside1) obtained by 3'-RACE PCR using oligonucleotide sequences based on four peptide sequences obtained from the purified enzyme. The derived amino acid sequence of the tomato beta-mannosidase shows the enzyme is a member of the Glycosyl Hydrolases Family 1 (GHF1) but has a very low sequence identity with that of beta-mannosidases from non-plant sources; no other plant sequence for the enzyme is known. There appears to be only one gene encoding beta-mannosidase in tomato, the sequence of which has been determined (LeMSide2). Its expression occurs first in the micropylar endosperm, and then declines after germination. This is followed by an increase in its expression in the lateral endosperm, which precedes that of the gene for endo beta-mannanase. Expression of the beta-mannosidase gene increases appreciably in the growing seedling embryo. With this report, the cloning of all three of the enzymes involved in galactomannan mobilization (endo beta-mannanase, alpha-galactosidase and beta-mannosidase) in tomato seeds has now been achieved.  相似文献   

2.
beta-Mannosidase and endo-beta-mannanase are involved in the mobilization of the mannan-containing cell walls of the tomato seed endosperm. The activities of both enzymes increase in a similar temporal manner in the micropylar and lateral endosperm during and following germination. This increase in enzyme activities in the micropylar endosperm is not markedly reduced in seeds imbibed in abscisic acid although, in the lateral endosperm, endo-beta-mannanase activity is more suppressed by this inhibitor than is the activity of beta-mannosidase. Gibberellin-deficient (gib-1) mutants of tomato do not germinate unless imbibed in gibberellin; low beta-mannosidase activity, and no endo-beta-mannanase activity is present in seeds imbibed in water, but both enzymes increase strongly in activity in the seeds imbibed in the growth regulator. For production of full activity of both beta-mannosidase and endo-beta-mannanase in the endosperm, this tissue must be in contact with the embryo for at least the first 6 h of imbibition, which is indicative of a stimulus diffusing from the embryo to the endosperm during this time. These results suggest some correlation between the activities of beta-mannosidase and endo-beta-mannanase, particularly in the micropylar endosperm, in populations of tomato seeds imbibed in water, abscisic acid and gibberellin. However, when individual micropylar endosperm parts are used to examine the effect of the growth regulators and of imbibition in water on the production of the two enzymes, it is apparent that within these individual seed parts there may be large differences in the amount of enzyme activity present. Micropylar endosperms with high endo-beta-mannanase activity do not necessarily have high beta-mannosidase activity, and vice versa, which is indicative of a lack of co-ordination of the activities of these two enzymes within individuals of a population.  相似文献   

3.
BACKGROUND AND AIMS: Seeds of carob, Chinese senna, date and fenugreek are hard due to thickened endosperm cell walls containing mannan polymers. How the radicle is able penetrate these thickened walls to complete seed germination is not clearly understood. The objective of this study was to determine if radicle emergence is related to the production of endo-beta-mannanase to weaken the mannan-rich cell walls of the surrounding endosperm region, and/or if the endosperm structure itself is such that it is weaker in the region through which the radicle must penetrate. METHODS: Activity of endo-beta-mannanase in the endosperm and embryo was measured using a gel assay during and following germination, and the structure of the endosperm in juxtaposition to the radicle, and surrounding the cotyledons was determined using fixation, sectioning and light microscopy. KEY RESULTS: The activity of endo-beta-mannanase, the major enzyme responsible for galactomannan cell wall weakening increased in activity only after emergence of the radicle from the seed. Thickened cell walls were present in the lateral endosperm in the hard-seeded species studied, but there was little to no thickening in the micropylar endosperm except in date seeds. In this species, a ring of thin cells was visible in the micropylar endosperm and surrounding an operculum which was pushed open by the expanding radicle to complete germination. CONCLUSIONS: The micropylar endosperm presents a lower physical constraint to the completion of germination than the lateral endosperm, and hence its structure is predisposed to permit radicle protrusion.  相似文献   

4.
beta-1,3-Glucanase (EC 3.2.1.39) and chitinase (EC 3.2.1.14) mRNAs, proteins, and enzyme activities were expressed specifically in the micropylar tissues of imbibed tomato (Lycopersicon esculentum Mill.) seeds prior to radicle emergence. RNA hybridization and immunoblotting demonstrated that both enzymes were class I basic isoforms. beta-1,3-Glucanase was expressed exclusively in the endosperm cap tissue, whereas chitinase localized to both endosperm cap and radicle tip tissues. beta-1,3-Glucanase and chitinase appeared in the micropylar tissues of gibberellin-deficient gib-1 tomato seeds only when supplied with gibberellin. Accumulation of beta-1,3-glucanase mRNA, protein and enzyme activity was reduced by 100 microM abscisic acid, which delayed or prevented radicle emergence but not endosperm cap weakening. In contrast, expression of chitinase mRNA, protein, and enzyme activity was not affected by abscisic acid. Neither of these enzymes significantly hydrolyzed isolated tomato endosperm cap cell walls. Although both beta-1,3-glucanase and chitinase were expressed in tomato endosperm cap tissue prior to radicle emergence, we found no evidence that they were directly involved in cell wall modification or tissue weakening. Possible functions of these hydrolases during tomato seed germination are discussed.  相似文献   

5.
Endo-beta-mannanase (EC 3.2.1.78) is involved in hydrolysis of the mannan-rich cell walls of the tomato (Lycopersicon esculentum Mill.) endosperm during germination and post-germinative seedling growth. Different electrophoretic isoforms of endo-beta-mannanase are expressed sequentially in different parts of the endosperm, initially in the micropylar endosperm cap covering the radicle tip and subsequently in the remaining lateral endosperm surrounding the rest of the embryo. We have isolated a cDNA from imbibed tomato seeds (LeMAN2) that shares 77% deduced amino acid sequence similarity with a post-germinative tomato mannanase (LeMAN1). When expressed in Escherichia coli, the protein encoded by LeMAN2 cDNA was recognized by anti-mannanase antibody and exhibited endo-beta-mannanase activity, confirming the identity of the gene. LeMAN2 was expressed exclusively in the endosperm cap tissue of tomato seeds prior to radicle emergence, whereas LeMAN1 was expressed only in the lateral endosperm after radicle emergence. LeMAN2 mRNA accumulation and mannanase activity were induced by gibberellin in gibberellin-deficient gib-1 mutant seeds but were not inhibited by abscisic acid in wild-type seeds. Distinct mannanases are involved in germination and post-germinative growth, with LeMAN2 being associated with endosperm cap weakening prior to radicle emergence, whereas LeMAN1 mobilizes galactomannan reserves in the lateral endosperm.  相似文献   

6.
Several isoforms of endo-1,4-D-mannanase (EC3.2.1.78) are produced in the endosperm and embryo of tomato (Lycopersicon esculentum Mill.) seed prior to the completion of germination. Other isoforms appear in the embryo and in the lateral endosperm following germination. This occurs in seeds removed from the fruit prior to completion of development at 45 d after pollination and placed directly on water, or following drying. Hence desiccation is not required to induce either germination- or post-germination-related mannanase activity. Incubating seeds in abscisic acid or osmoticum results in a reduction of both germination and total mannanase activity, but the isoforms that are produced in the embryo and micropylar region of the endosperm are identical to those produced in water-imbibed seeds prior to germination. Incubation of seeds in a high concentration of abscisic acid prevents all enzyme production. Only after the completion of germination does mannanase increase in the lateral regions of the endosperm. In contrast, mannanase is produced in the micropylar region regardless of whether the seed germinates or not. The isoforms produced in the two regions of the endosperm are different, those in the lateral endosperm being more similar to those produced in the cotyledons and axes of the embryo. Embryos and endosperms dissected prior to completion of germination and incubated separately produce far fewer isoforms than when these parts are together in the intact seed.Abbreviations ABA cis-abscisic acid - DAP days after pollination - GA gibberellin - IEF isoelectric focusing - PEG polyethyleneglycol - pI isoelectric point This work was supported by Natural Sciences and Engineering Council of Canada grant A2210. B.V. received a fellowship from the Deutscher Akademischer Austauschdienst for her research at the University of Guelph. We are grateful to Dr. H.W.M. Hilhorst, Wageningen, for his critical comments.  相似文献   

7.
8.
Genipa americana (Rubiaceae) is important for restoration of riparian forest in the Brazilian Cerrado. The objective was to characterize the mechanism and control of germination of G. americana to support uniform seedling production. Morphology and morphometrics of seeds, embryo and endosperm were assessed by light and scanning electron microscopy during germination. Imbibition and germination curves were generated and over the same time interval endosperm digestion and resistance were measured by puncture force analysis and activity assay of endo-β-mannanase (EBM) in water and in abscisic acid (ABA). The gene encoding for EBM was partially cloned and its expression monitored by quantitative real-time-polymerase chain reaction. Embryos displayed growth prior to radicle protrusion. A two-phase increase in EBM activity coincided with the two stages of weakening of the micropylar endosperm. The second stage also coincided with growth of the embryo prior to radicle protrusion. Enzyme activity was initiated in the micropylar endosperm but spread to the lateral endosperm. ABA completely inhibited germination by inhibiting embryo growth, the second stage of weakening and expression of the EBM gene, but EBM activity was not significantly inhibited. This suggests that a specific isoform of the enzyme is involved in endosperm weakening. EBM may cause a general 'softening' of micropylar endosperm cell walls, allowing the embryo to puncture the endosperm as the driving force of the decrease in puncture force.  相似文献   

9.
The embryo envelope tissues in both mature dry seed and duringearly germination of Phacelia tanacetifolia were investigatedby bright-field and fluorescence light microscopy and scanningelectron microscopy. The ruminate seed had an irregularly reticulatesurface owing to the presence of polygonal areas, correspondingto the cells of the seed coat. The raised margins of these cellsjoined at the lobe tips, where radially arranged thickeningsoccurred. The unitegmic seed coat was made up of three distinctlayers: the frayed outer layer, the middle layer with portionsrising outwards to form the radial thickenings, and the innerlayer, the thickness of which was greatest in the micropylarzone. The endosperm tissue had two regions, the micropylar andthe lateral endosperm, which differed in polysaccharide composition,thickness and metachromasy intensity, and presence (in the lateralendosperm) or absence (in the micropylar endosperm) of birefringenceof the cell walls. Moreover, in the micropylar region, wherethe embryo suspensor remnant was found, Ca-oxalate crystalswere scarce or absent. The presence of a partially permeablecuticle covering the seed endosperm was observed. Incubationof seeds in Lucifer Yellow CH indicated that water was ableto penetrate quickly into the seed coat along the pathway formedby the radial thickenings, the raised margins of the polygonalcells and the middle layer. Afterwards, LY-CH readily infiltratedthe apical portions of the seed lobes and then the whole endosperm.Following imbibition, morphological changes were found in themicropylar endosperm, such as the initial digestion of proteinbodies. In addition, both in the seed coat and in the endosperm,a weaker fluorescence, probably due to leaching of polyphenolicsubstances, was observed. Once the seed coat was broken at themicropylar end of the seed, the endosperm cap surrounding theradicle tip had to be punctured by it so that complete germinationcould occur. Weakening and rupture of the micropylar endospermare briefly discussed. Copyright 2000 Annals of Botany Company Phacelia tanacetifolia, seed coat, micropylar endosperm, endosperm cap, early germination, structure, histochemistry  相似文献   

10.
Electron microscopic observations of the endosperm of tomato ( Lycopersicon esculentum Mill.) seeds revealed that changes in the cell wall structures along with the vacuolation of protein bodies occurred in the micropylar portion of the endosperm prior to germination. No changes were detected at that time in the rest of the endosperm. Endo‐β‐mannanase activity was restricted to the micropylar region of the endosperm prior to germination. Cell wall digestion by this pregerminative mannanase seemed to be associated with the changes in cell wall structures occurring in the micropylar region prior to germination. The protein content in the micropylar part of the endosperm began to decrease shortly after imbibition and attained about 40% of the initial level by the time of radicle protrusion (38 h after imbibition). On the other hand, only slight changes in the content were detected in the lateral endosperm during the same time; the protein content in the lateral endosperm decreased only after germination started. In conformity with the results on protein contents, proteolytic activity began to develop first in the micropylar portion prior to germination, and then in the lateral portion after germination. Thus, the timing of the biochemical activation of the endosperm after imbibition differed between the micropylar and the lateral region. Some qualitative differences in patterns of polypeptides synthesized in vivo were detected, as analyzed by pulse‐labeling and fluorography, between the micropylar and the lateral portions of the endosperm of seeds imbibed for 25 h. This suggests that processes of the biochemical activation of the endosperm may be qualitatively, as well as quantitatively, different depending on the regions of the endosperm.  相似文献   

11.
12.
A galactomannan-hydrolyzing enzyme that develops pregerminatively in the micropylar region of the endosperm of the tomato (Lycopersicon esculentum [L.] Mill.) seed was characterized. The enzyme was endo-[beta]-mannanase (EC 3.2.1.78), since it hydrolyzed galactomannan into oligosaccharides with no release of galactose and mannose. The mobility of this pregerminative enzyme in sodium dodecyl sulfate and native polyacrylamide gel electrophoresis was not identical to that of any of the three endo-[beta]-mannanases that develop in the same tissue (endosperm) after germination (H. Nonogaki, M. Nomaguchi, Y. Morohashi [1995] Physiol Plant 94: 328-334). There were also some differences in the products of galactomannan hydrolysis between the pregerminative and the postgerminative enzymes, indicating that the action pattern is different between the two types of enzymes. The pregerminative enzyme began to develop in the micropylar region of the endosperm at about 18 h postimbibition and increased up to the time immediately before radicle protrusion (24 h postimbibition). This enzyme was not present in the lateral part of the endosperm at any stage before or after germination. It is proposed that the enzyme develops prior to germination specifically at the micropylar region of the endosperm.  相似文献   

13.
Laminarin-hydrolysing activity developed in the endosperm of tomato (Lycopersicon esculentum) seeds following germination. The enzyme was basic (pI>10) and the apparent molecular mass was estimated to be 35 kDa by SDS-PAGE. It was specific for linear beta-1,3-glucan substrates. Laminarin was hydrolysed by the enzyme to yield a mixture of oligoglucosides, indicating that the enzyme had an endo-action pattern. Thus, the enzyme was identified as beta-1,3- endoglucanase (EC 3.2.1.39). The activity of the enzyme developed in the endosperm after radicle protrusion (germination) had occurred and the enzyme activity was localized exclusively in the micropylar region of the endosperm where the radicle had penetrated. When the lateral endosperm region, where no induction of the enzyme occurred, was wounded (cut or punctured), there was a marked enhancement of beta-1,3-glucanase activity. Thus the post-germinative beta-1, 3-glucanase activity in the micropylar endosperm portion might be brought about by wounding resulting from endosperm rupture by radicle penetration.  相似文献   

14.
15.
Gibberellins and Light-Stimulated Seed Germination   总被引:3,自引:0,他引:3  
Bioactive gibberellins (GAs) promote seed germination in a number of plant species. In dicots, such as tomato and Arabidopsis, de novo GA biosynthesis after seed imbibition is essential for germination. Light is a crucial environmental cue determining seed germination in some species. The red (R) and far-red light photoreceptor phytochrome regulates GA biosynthesis in germinating lettuce and Arabidopsis seeds. This effect of light is, at least in part, targeted to mRNA abundance of GA 3-oxidase, which catalyzes the final biosynthetic step to produce bioactive GAs. The R-inducible GA 3-oxidase genes are predominantly expressed in the hypocotyl of Arabidopsis embryos. This predicted location of GA biosynthesis appears to correlate with the photosensitive site determined by using R micro-beam in lettuce seeds. The GA-deficient non-germinating mutants have been useful for studying how GA stimulates seed germination. In tomato, GA promotes the growth potential of the embryo and weakens the structures surrounding the embryo. Endo-b-mannanase, which is produced specifically in the micropylar endosperm in a GA-dependent manner, may be responsible for breaking down the endosperm cell walls to assist germination. Recently, a role for GA in overcoming the resistance imposed by the seed coat was also suggested in Arabidopsis from work with a range of seed coat mutants. Towards understanding the GA signaling pathway, GA response mutants have been isolated and characterized, some of which are affected in GA-stimulated seed germination.  相似文献   

16.
Water uptake of tomato (Lycopersicon esculentum Mill. cv. Moneymaker) seeds during germination was obviously triphasic. The completion of the first phase of water uptake by whole seed could not be realized until 10~12 h later after sowing though varies in different parts of seed. The mechanical resistance of endosperm and seed coat restricted water uptake of the embryo envoleped by the endosperm. Water potential of the intact embryo was still 0. 6~0. 9 Mpa lower than the whole seed when the equilibrium between seed and imbibing solution was established. GA and ABA had no direct effects on the water uptake of tomato seeds. The water potential of embryo was positively correlated with its moisture content. The osmotic potential of tomato embryos decreased slowly during imbibition in water and osmotic solution as well.  相似文献   

17.
Seed germination of Nicotiana tabacum L. cv. Havana 425 is determined by the balance of forces between the growth potential of the embryo and the mechanical restraint of the micropylar endosperm. In contrast to the gibberellin GA4, the brassinosteroid (BR) brassinolide (BL) did not release photodormancy of dark-imbibed photodormant seeds. Brassinolide promoted seedling elongation and germination of non-photodormant seeds, but did not appreciably affect the induction of class I beta-1,3-glucanase (betaGLU I) in the micropylar endosperm. Brassinolide, but not GA4, accelerated endosperm rupture of tobacco seeds imbibed in the light. Brassinolide and GA4 promoted endosperm rupture of dark-imbibed non-photodormant seeds, but only GA4 enhanced betaGLU I induction. Promotion of endosperm rupture by BL was dose-dependent and 0.01 microM BL was most effective. Brassinolide and GA4 promoted abscisic acid (ABA)-inhibited dark-germination of non-photodormant seeds, but only GA4 replaced light in inducing betaGLU I. These results indicate that BRs and GAs promote tobacco seed germination by distinct signal transduction pathways and distinct mechanisms. Gibberellins and light seem to act in a common pathway to release photodormancy, whereas BRs do not release photodormancy. Induction of betaGLU I in the micropylar endosperm and promotion of release of 'coat-enhanced' dormancy seem to be associated with the GA-dependent pathway, but not with BR signalling. It is proposed that BRs promote seed germination by directly enhancing the growth potential of the emerging embryo in a GA- and betaGLU I-independent manner.  相似文献   

18.
Wu CT  Bradford KJ 《Plant physiology》2003,133(1):263-273
Class I chitinase (Chi9) and beta-1,3-glucanase (GluB) genes are expressed in the micropylar endosperm cap of tomato (Lycopersicon esculentum) seeds just before radicle emergence through this tissue to complete germination. In gibberellin (GA)-deficient mutant (gib-1) seeds, expression of Chi9 and GluB mRNA and protein is dependent upon GA. However, as expression occurs relatively late in the germination process, we investigated whether the genes are induced indirectly in response to tissue wounding associated with endosperm cap weakening and radicle protrusion. Wounding and methyl jasmonate (MeJA) induced Chi9 expression, whereas ethylene, abscisic acid, sodium salicylate, fusicoccin, or beta-aminobutyric acid were without effect. Chi9 expression occurred only in the micropylar tissues when seeds were exposed to MeJA or were wounded at the chalazal end of the seed. Expression of Chi9, but not GluB, mRNA was reduced in germinating seeds of the jasmonate-deficient defenseless1 tomato mutant and could be restored by MeJA treatment. Chi9 expression during germination may be associated with "wounding" from cell wall hydrolysis and weakening in the endosperm cap leading to radicle protrusion, and jasmonate is involved in the signaling pathway for this response. Among these treatments and chemicals (other than GA), only MeJA and wounding induced a low level of GluB expression in gib-1 seeds. However, MeJA, wounding, and particularly ethylene induced both genes in leaves, whereas GA induced only Chi9 in leaves. Although normally expressed simultaneously during tomato seed germination, Chi9 and GluB genes are regulated distinctly and tissue specifically by hormones and wounding.  相似文献   

19.
BACKGROUND AND AIMS: Solanaceae seed morphology and physiology have been widely studied but mainly in domesticated crops. The present study aimed to compare the seed morphology and the physiology of germination of Solanum lycocarpum, an important species native to the Brazilian Cerrado, with two species with endospermic seeds, tomato and coffee. METHODS: Morphological parameters of fruits and seeds were determined by microscopy. Germination was monitored for 40 d under different temperature regimes. Endosperm digestion and resistance, with endo-beta-mannanase activity and required force to puncture the endosperm cap as respective markers, were measured during germination in water and in abscisic acid. KEY RESULTS: Fruits of S. lycocarpum contain dormant seeds before natural dispersion. The best germination condition found was a 12-h alternating light/dark and high/low (20/30 degrees C) temperature cycle, which seemed to target properties of the endosperm cap. The endosperm cap contains 7-8 layers of elongated polygonal cells and is predestined to facilitate radicle protrusion. The force required to puncture the endosperm cap decreased in two stages during germination and showed a significant negative correlation with endo-beta-mannanase activity. As a result of the thick endosperm cap, the puncture force was significantly higher in S. lycocarpum than in tomato and coffee. Endo-beta-mannanase activity was detected in the endosperm cap prior to radicle protrusion. Abscisic acid inhibited germination, increase of embryo weight during imbibition, the second stage of weakening of the endosperm cap and of endo-beta-mannanase activity in the endosperm cap. CONCLUSIONS: The germination mechanism of S. lycocarpum bears resemblance to that of tomato and coffee seeds. However, quantitative differences were observed in embryo pressure potential, endo-beta-mannanase activity and endosperm cap resistance that were related to germination rates across the three species.  相似文献   

20.
Cytokinin activity was determined in dry mature rice seeds,in endosperm and embryo tissues 24, 48 and 72 over imbibitionand in radicles 96 h after germination. Cytokinins with chromatographicproperties similar to zeatin, zeatin riboside, zeatin glucosideand zeatin riboside glucoside were datected in embryo and endosperm,but only the latter two were detected in mature seeds. Cytokininactivity was low during early toges of germination. Qualitativeand quantitative changes in cytokinins were observed in bothembryo and endosperm. The presence of higher cytokinin activityin the endosperm than in the embryo during the first 24 h aftergermination suggests that the endosperm may supply cytokininsuntil the embryo is able to synthaize its own cytokinins. Thepossible significance of high cytokinin glucoside activity inthe embryo early during germination and high cytokinin activityin the radicle during the later stages is discussed. Oryza sativa L., rice, cytokinin, germination, seed  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号