首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ellis V  Murphy G 《FEBS letters》2001,493(1):1-5
Saccharomyces cerevisiae phosphoenolpyruvate (PEP) carboxykinase catalyzes one of the first reactions in the biosynthesis of carbohydrates. Apart from the physiologically important reaction, the enzyme also presents low oxaloacetate decarboxylase and pyruvate kinase-like activities. Data from the crystalline structure of homologous Escherichia coli PEP carboxykinase suggest that Arg(333) may be involved in stabilization of enolpyruvate, a postulated reaction intermediate. In this work, the equivalent Arg(336) from the S. cerevisiae enzyme was changed to Lys or Gln. Kinetic analyses of the varied enzymes showed that a positive charge at position 336 is critical for catalysis of the main reaction, and further suggested different rate limiting steps for the main reaction and the secondary activities. The Arg336Lys altered enzyme showed increased oxaloacetate decarboxylase activity and developed the ability to catalyze pyruvate enolization. These last results support the proposal that enolpyruvate is an intermediate in the PEP carboxykinase reaction and suggest that in the Arg336Lys PEP carboxykinase a proton donor group has appeared.  相似文献   

2.
The crystal structure of Escherichia coli phosphoenolpyruvate (PEP) carboxykinase shows Lys213 is one of the ligands of enzyme-bound Mn2+ [Nat. Struct. Biol. 4 (1997) 990]. The direct coordination of Mn2+ by N(epsilon) of Lys213 is only consistent with a neutral (uncharged) Lys213, suggesting a low pKa for this residue. This work shows, through theoretical calculations and experimental analyses on homologous Saccharomyces cerevisiae PEP carboxykinase, how the microenvironment affects Mn2+ binding and the protonation state of Lys213. We show that Glu284, a residue close to Lys212, is required for correct protonation states of Lys212 and Lys213, and for Mn2+ binding. deltaG and deltaH values for the proton reorganization processes were calculated to analyze the energetic stability of the two different protonation states of Lys212 and Lys213 in wild-type and Glu284Gln S. cerevisiae PEP carboxykinase. Calculations were done using two modeling approaches, ab-initio density functional calculations and free energy perturbation (FEP) calculations. Both methods suggest that Lys212 must be protonated and Lys213 neutral in the wild-type enzyme. On the other hand, the calculations on the Glu284Gln mutant suggest a more stable neutral Lys212 and protonated Lys213. Experimental measurements showed 3 orders of magnitude lower activity and a threefold increase in Km for Mn2+ for Glu284Gln S. cerevisiae PEP carboxykinase when compared to wild type. The data here presented suggest that Glu284 is required for Mn2+ binding by S. cerevisiae PEP carboxykinase. We propose that Glu284 modulates the pKa value of Lys213 through electrostatic effects mediated by  相似文献   

3.
Saccharomyces cerevisiae phosphoenolpyruvate (PEP) carboxykinase is a key enzyme of the gluconeogenic pathway and catalyzes the decarboxylation of oxaloacetate and transfer of the gamma-phosphoryl group of ATP to yield PEP, ADP, and CO(2) in the presence of a divalent metal ion. Previous experiments have shown that mutation of amino acid residues at metal site 1 decrease the steady-state affinity of the enzyme for PEP, suggesting interaction of PEP with the metal ion [Biochemistry 41 (2002) 12763]. To more completely understand this enzyme interactions with substrate ligands, we have prepared the phosphopyridoxyl (P-pyridoxyl)-derivatives of wild type, Lys213Arg, and His233Gln S. cerevisiae PEP carboxykinase and used the changes in the fluorescence probe to determine the dissociation equilibrium constants of PEP, ATPMn(2-), and ADPMn(1-) from the corresponding derivatized enzyme-Mn(2+) complexes. Homology modeling of P-pyridoxyl-PEP carboxykinase and P-pyridoxyl-PEP carboxykinase-substrate complexes agree with experimental evidence indicating that the P-pyridoxyl group does not interfere with substrate binding. ATPMn(2-) binding is 0.8kcalmol(-1) more favorable than ADPMn(1-) binding to wild type P-pyridoxyl-enzyme. The thermodynamic data obtained in this work indicate that PEP binding is 2.3kcalmol(-1) and 3.2kcalmol(-1) less favorable for the Lys213Arg and His233Gln mutant P-pyridoxyl-PEP carboxykinases than for the wild type P-pyridoxyl-enzyme, respectively. The possible relevance of N and O ligands for Mn(2+) in relation to PEP binding and catalysis is discussed.  相似文献   

4.
Anaerobiospirillum succiniciproducens phosphoenolpyruvate (PEP) carboxykinase catalyses the reversible metal-dependent formation of oxaloacetate (OAA) and ATP from PEP, ADP and CO(2). Mutations of PEP carboxykinase have been constructed where the residues His(225) and Asp(263), two residues of the enzyme's putative Mn(2+) binding site, were altered. Kinetic studies of the His225Glu, and Asp263Glu PEP carboxykinases show 600- and 16,800-fold reductions in V(max) relative to the wild-type enzyme, respectively, with minor alterations in K(m) for Mn(2+). Molecular modeling of wild-type and mutant enzymes suggests that the lower catalytic efficiency of the Asp263Glu enzyme could be explained by a movement of the lateral chain of Lys(248), a critical catalytic residue, away from the reaction center. The effect on catalysis of introducing a negatively charged oxygen atom in place of N(epsilon-2) at position 225 is discussed in terms of altered binding energy of the intermediate enolpyruvate.  相似文献   

5.
Saccharomyces cerevisiae phosphoenolpyruvate (PEP) carboxykinase catalyzes the reversible formation of oxaloacetate and adenosine triphosphate from PEP, adenosine diphosphate and carbon dioxide, and uses Mn(2+) as the activating metal ion. Comparison with the crystalline structure of homologous Escherichia coli PEP carboxykinase [Tari et al. Nature Struct. Biol. 4 (1997) 990-994] shows that Lys(213) is one of the ligands to Mn(2+) at the enzyme active site. Coordination of Mn(2+) to a lysyl residue is infrequent and suggests a low pK(a) value for the epsilon-NH(2) group of Lys(213). In this work, we evaluate the role of neighboring Phe(416) in contributing to provide a low polarity microenvironment suitable to keep the epsilon-NH(2) of Lys(213) in the unprotonated form. Mutation Phe416Tyr shows that the introduction of a hydroxyl group in the lateral chain of the residue produces a substantial loss in the enzyme affinity for Mn(2+), suggesting an increase of the pK(a) of Lys(213). A study of the effect of pH on K(m) for Mn(2+) indicate that the affinity of recombinant wild type enzyme for the metal ion is dependent on deprotonation of a group with pK(a) of 7.1+/-0.2, compatible with the low pK(a) expected for Lys(213). This pK(a) value increases at least 1.5 pH units upon Phe416Tyr mutation, in agreement with the expected effect of an increase in the polarity of Lys(213) microenvironment. Theoretical calculations of the pK(a) of Lys(213) indicate a value of 6.5+/-0.9, and it increases to 8.2+/-1.6 upon Phe416Tyr mutation. Additionally, mutation Phe416Tyr causes a loss of 1.3 kcal mol(-1) in the affinity of the enzyme for PEP, an effect perhaps related to the close proximity of Phe(416) to Arg(70), a residue previously shown to be important for PEP binding.  相似文献   

6.
Saccharomyces cerevisiae phosphoenolpyruvate (PEP) carboxykinase is a key enzyme of the gluconeogenic pathway and catalyzes the decarboxylation of oxaloacetate and transfer of the gamma-phosphoryl group of ATP to yield PEP, ADP, and CO2 in the presence of a divalent metal ion. Previous experiments indicate that mutation of amino acid residues at metal site 1 decrease the enzyme catalytic efficiency and the affinity of the protein for PEP, evidencing the relevance of hydrogen-bond interactions between PEP and water molecules of the first coordination sphere of the metal ion for catalysis [Biochemistry 41 (2002) 12763]. To further understand the function of amino acid residues located in the PEP binding site, we have now addressed the catalytic importance of Arg70, whose guanidinium group is close to the PEP carboxyl group. Arg70 mutants of PEP carboxykinase were prepared, and almost unaltered kinetic parameters were found for the Arg70Lys PEP carboxykinase, while a decrease in 4-5 orders of magnitude for the catalytic efficiency was detected for the Arg70Gln and Arg70Met altered enzymes. To evaluate the enzyme interaction with PEP, the phosphopyridoxyl-derivatives of wild type, Arg70Lys, Arg70Gln, and Arg70Met S. cerevisiae PEP carboxykinase were prepared, and the change in the fluorescence emission of the probe upon PEP binding was used to obtain the dissociation equilibrium constant of the corresponding derivatized enzyme-PEP-Mn2+ complex. The titration experiments showed that a loss in 2.1 kcal/mol in PEP binding affinity is produced in the Arg70Met and Arg70Gln mutant enzymes. It is proposed that the electrostatic interaction between the guanidinium group of Arg70 and the carboxyl group of PEP is important for PEP binding and for further steps in catalysis.  相似文献   

7.
Phosphoenolpyruvate (PEP) carboxykinases catalyse the reversible formation of oxaloacetate (OAA) and ATP (or GTP) from PEP, ADP (or GDP) and CO2. They are activated by Mn2+, a metal ion that coordinates to the protein through the ?-amino group of a lysine residue, the N?-2-imidazole of a histidine residue, and the carboxylate from an aspartic acid residue. Neutrality in the ?-amino group of Lys213 of Saccharomyces cerevisiae PEP carboxykinase is expected to be favoured by the vicinity of ionised Lys212. Glu272 and Glu284, located close to Lys212, should, in turn, electrostatically stabilise its positive charge and hence assist in keeping the ?-amino group of Lys213 in a neutral state. The mutations Glu272Gln, Glu284Gln, and Lys212Met increased the activation constant for Mn2+ in the main reaction of the enzyme up to seven-fold. The control mutation Lys213Gln increased this constant by ten-fold, as opposed to control mutation Lys212Arg, which did not affect the Mn2+ affinity of the enzyme. These observations indicate a role for Glu272, Glu284, and Lys212 in assisting Lys213 to properly bind Mn2+. In an unexpected result, the mutations Glu284Gln, Lys212Met and Lys213Gln changed the nucleotide-independent OAA decarboxylase activity of S. cerevisiae PEP carboxykinase into an ADP-requiring activity, implying an effect on the OAA binding characteristics of PEP carboxykinase.  相似文献   

8.
Phosphoenolpyruvate (PEP) carboxykinase was identified to be the only C3-carboxylating enzyme in Alcaligenes eutrophus. The enzyme requires GDP or inosine diphosphate (GTP or inosine triphosphate) for activity. Pyruvate- and other PEP-dependent CO2-fixing enzyme activities were not detected, regardless of whether the cells were grown autotrophically or heterotrophically. It is suggested that two pathways are present in the organism for the formation of PEP from C4 dicarboxylic acids. Besides decarboxylation of oxaloacetate by PEP carboxykinase, the consecutive action of NADP+-malic enzyme and PEP synthetase can also accomplish this synthesis. An oxaloacetate decarboxylase activity observed in the cell extracts may also contribute to the latter route. The properties of a mutant deficient in PEP synthetase supported the biochemical data. This mutant was unable to grow on pyruvate or lactate and grew slower than the wild type on direct or indirect metabolites of the tricarboxylic acid cycle such as succinate, glutamate, or acetate. Growth on fructose and autotrophic growth were not affected by the enzyme defect. The findings suggest that, depending on the growth substrate utilized, PEP carboxykinase can serve a dual physiological function in A. eutrophus, an anaplerotic function in oxaloacetate synthesis from PEP, or a gluconeogenic function in PEP synthesis from oxaloacetate.  相似文献   

9.
SYNOPSIS. Fractions containing soluble enzymes from Crithidia fasciculata had an ADP-linked phosphoenolpyruvate (PEP) carboxykinase. The enzyme produced ATP and oxaloacetate (OAA) from PEP, ADP and HCO3. OAA was determined as the endproduct of reactions by forming the 2,4-dinitrophenylhydrazone derivative; the hydrazone was identified by thin-layer chromatography. Approximate Michaelis constants (PEP, Mg, HCO3, ADP) were determined spectrophotometrically by linking OAA production to malic dehydrogenase. The PEP carboxykinase did not utilize GDP, UDP or IDP as cofactors; the metal requirement was also satisfied by Mn. The enzyme was inhibited by the biotin antagonists avidin and desthiobiotin.
A pyruvate carboxylase was also present in the preparations, generating OAA from pyruvate and ATP. The role of both enzymes in OAA production and subsequent production of succinate is discussed with regard to C. fasciculata and other trypanosomatids.  相似文献   

10.
Nematodes which have adapted to an anaerobic lifestyle in their adult stages oxidise phosphoenolpyruvate (PEP) to oxaloacetate rather than pyruvate as the final product of glycolysis. This adaptation involves selective expression of the enzyme phosphoenolpyruvate carboxykinase (PEPCK), instead of pyruvate kinase (PK). However, such adaptation is not absolute in aerobic nematode species. We have examined the activity and kinetics of PEPCK and PK in larvae (L3) and adults of Teladorsagia circumcincta, a parasite known to exhibit oxygen uptake. Results revealed that PK and PEPCK activity existed in both L3s and adults. The enzymes had differing affinity for nucleotide diphosphates: while both can utilise GDP, only PK utilised ADP and only PEPCK utilised IDP. In both life cycle stages, enzymes showed similar affinity for PEP. PK activity was predominant in both stages, although activity of this enzyme was lower in adults. When combined, both the activity levels and the enzyme kinetics showed that pyruvate production is probably favoured in both L3 and adult stages of T. circumcincta and suggest that metabolism of PEP to oxaloacetate is a minor metabolic pathway in this species.  相似文献   

11.
Escherichia coli phosphoenolpyruvate (PEP) carboxykinase catalyzes the decarboxylation of oxaloacetate and transfer of the gamma-phosphoryl group of ATP to yield PEP, ADP, and CO2. The interaction of the enzyme with the substrates originates important domain movements in the protein. In this work, the interaction of several substrates and ligands with E. coli PEP carboxykinase has been studied in the phosphopyridoxyl (P-pyridoxyl)-enzyme adduct. The derivatized enzyme retained the substrate-binding characteristics of the native protein, allowing the determination of several protein-ligand dissociation constants, as well as the role of Mg2+ and Mn2+ in substrate binding. The binding affinity of PEP to the enzyme-Mn2+ complex was -8.9 kcal.mol-1, which is 3.2 kcal.mol-1 more favorable than in the complex with Mg2+. For the substrate nucleotide-metal complexes, similar binding affinities (-6.0 to -6.2 kcal.mol-1) were found for either metal ion. The fluorescence decay of the P-pyridoxyl group fitted to two lifetimes of 5.15 ns (34%) and 1.2 ns. These lifetimes were markedly altered in the derivatized enzyme-PEP-Mn complexes, and smaller changes were obtained in the presence of other substrates. Molecular models of the P-pyridoxyl-E. coli PEP carboxykinase showed different degrees of solvent-exposed surfaces for the P-pyridoxyl group in the open (substrate-free) and closed (substrate-bound) forms, which are consistent with acrylamide quenching experiments, and suggest that the fluorescence changes reflect the domain movements of the protein in solution.  相似文献   

12.
Phosphoenolpyruvate (PEP) carboxykinases harbor two divalent metal-binding sites. One cation interacts with the enzyme (metal binding site 1) to elicit activation, while a second cation (metal binding site 2) interacts with the nucleotide to serve as the metal nucleotide substrate. Mutants of Anaerobiospirillum succiniciproducens PEP carboxykinase have been constructed where Thr249 and Asp262, two residues of metal binding site 2 of the enzyme, were altered. Binding of the 3'(2')-O-(N-methylantraniloyl) derivative of ADP provides a test of the structural integrity of these mutants. The conservative mutation (Asp262Glu) retains a significant proportion of the wild type enzymatic activity. Meanwhile, removal of the OH group of Thr249 in the Thr249Ala mutant causes a decrease in V(max) by a factor of 1.1 x 10(4). Molecular modeling of wild type and mutant enzymes suggests that the lower catalytic efficiency of the Thr249Ala enzyme could be explained by a movement of the lateral chain of Lys248, a critical catalytic residue, away from the reaction center.  相似文献   

13.
Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase [ATP:oxaloacetate carboxy-lyase (transphosphorylating), EC 4.1.1.49] is completely inactivated by the 2',3'-dialdehyde derivative of ATP (oATP) in the presence of Mn2+. The dependence of the pseudo-first-order rate constant on reagent concentration indicates the formation of a reversible complex with the enzyme (Kd = 60 +/- 17 microM) prior to covalent modification. The maximum inactivation rate constant at pH 7.5 and 30 degrees C is 0.200 +/- 0.045 min-1. ATP or ADP plus phosphoenolpyruvate effectively protect the enzyme against inactivation. oATP is a competitive inhibitor toward ADP, suggesting that oATP interacts with the enzyme at the substrate binding site. The partially inactivated enzyme shows an unaltered Km but a decreased V as compared with native phosphoenolpyruvate carboxykinase. Analysis of the inactivation rate at different H+ concentrations allowed estimation of a pKa of 8.1 for the reactive amino acid residue in the enzyme. Complete inactivation of the carboxykinase can be correlated with the incorporation of about one mole of [8-14C]oATP per mole of enzyme subunit. The results indicate that oATP can be used as an affinity label for yeast phosphoenolpyruvate carboxykinase.  相似文献   

14.
Anaerobiospirillum succiniciproducens His225Gln, Asp262Asn, Asp263Asn, and Thr249Asn phosphoenolpyruvate carboxykinases were analyzed for their oxaloacetate decarboxylase, and pyruvate kinase–like activities. The His225Gln and Asp263Asn enzymes showed increased K m values for Mn2+ and PEP compared with the native enzyme, suggesting a role of His225 and Asp263 in Mn2+ and PEP binding. No mayor alterations in K m values for oxaloacetate were detected for the varied enzymes. Alterations of His225, Asp262, Asp263, or Thr249, however, did not affect the V max of the secondary activities as much as they affected the V max for the main reaction. The results presented in this communication suggest different rate-limiting steps for the primary reaction and the secondary activities.  相似文献   

15.
ATP-dependent phosphoenolpyruvate (PEP) carboxykinases are found in plants and microorganisms, and catalyse the reversible formation of PEP, ADP, and CO(2) from oxaloacetate plus ATP. These enzymes vary in quaternary structure although there is significant sequence identity among the proteins isolated from different sources. To help understand the influence of quaternary structure in protein stability, the urea-induced unfolding of free- and substrate-bound tetrameric Saccharomyces cerevisiae PEP carboxykinase is described and compared with the unfolding characteristics of the monomeric Escherichia coli enzyme [Eur. J. Biochem. 255 (1998) 439]. The urea-induced denaturation of S. cerevisiae PEP carboxykinase was studied by monitoring the enzyme activity, intrinsic protein fluorescence, circular dichroism (CD) spectra, and 1-anilino-8-naphthalenesulfonate (ANS) binding. The unfolding profiles were multi-steps, and formation of hydrophobic structures were detected. The data indicate that unfolding and dissociation of the enzyme tetramer are simultaneous events. Ligand binding, most notably PEP in the presence of MnCl(2), conferred a marked protection against urea-induced denaturation. A similar protection effect was found when N-iodoacetyl-N'-(5-sulfo-1-napthyl)ethylene diamine (1,5-I-AEDANS) was covalently bound at Cys(365), within the active site region. Refolding experiments indicated that total recovery of tertiary structure was only obtained from samples previously unfolded to less than 30%. In the presence of substrates, complete refolding was achieved from samples originally denatured up to 50%. The unfolding behaviour of S. cerevisiae PEP carboxykinase was found to be similar to that of E. coli PEP carboxykinase, however all steps take place at lower urea concentrations. These findings show that, at least for monomeric and tetrameric ATP-dependent PEP carboxykinases, quaternary structure does not contribute to protein conformational stability.  相似文献   

16.
Phosphoenolpyruvate carboxykinase from bullfrog liver mitochondria has been purified to electrophoretical and immunological homogeneity by an improved method using hydrophobic chromatography on Sepharose-hexane-GMP and affinity chromatography on phosphocellulose. The molecular weight was determined to be 70,000 by SDS-gel electrophoresis, 65,000 by Sephadex G-100 gel filtration and 72,000 by glycerol gradient centrifugation. The isoelectric point was determined to be 6.2, differing from that of the cytosol enzyme. The rabbit IgG fraction against the mitochondrial PEP carboxykinase precipitated not only the mitochondrial but also the cytosol enzyme. The dissociation constant of the nucleotide-enzyme complex was determined to be 3 microM for GTP, 8.5 microM for GDP, and 171 microM for GMP. The affinity of GTP for the enzyme was reduced in the presence of phosphoenolpyruvate or Mn2+, whereas that of GDP was not changed. GMP inhibited the enzyme competitively with GDP for the phosphoenolpyruvate carboxylation and competitively with GTP for the exchange reaction between [14C]HCO3- and oxaloacetate. The purified enzyme was found to have a cysteine residue which reacted with iodoacetamide to form inactive enzyme. Guanine nucleotides or IDP and Mn2+ at a lower concentration prevented the inactivation by iodoacetamide of the enzyme in a competitive manner. Binding of guanine nucleotide to the enzyme and the relation of the sulfhydryl group to the nucleotide binding are discussed.  相似文献   

17.
Cytosol PEP carboxykinase has been purified to electrophoretic homogeneity from bullfrog liver homogenate. The enzyme is a single polypeptide chain with a molecular weight of approximately 72,000-75,000. The purified enzyme catalyzed oxaloacetate decarboxylation (nucleoside triphosphate-supported), phosphoenolpyruvate carboxylation, and an exchange reaction between oxaloacetate and [14C]HCO3-in the presence of ITP or CTP. Manganese is absolutely required for the enzyme-catalyzed phosphoenolpyruvate carboxylation, whereas it can be replaced by Mg2+ for the oxaloacetate decarboxylation and the exchange reaction. The optimal pH of each reaction is dependent on the divalent metal ion used. The dependence of the enzyme activity on Mn2+ is markedly different in the phosphoenolpyuvate carboxylation and the oxaloacetate decarboxylation reactions.  相似文献   

18.
Oxaloacetate decarboxylase (OXAD), the enzyme that catalyzes the decarboxylation of oxaloacetate to pyruvic acid and carbon dioxide, was purified 245-fold to homogeneity from Pseudomonas stutzeri. The three-step purification procedure comprised anion-exchange chromatography, metal-chelate affinity chromatography, and biomimetic-dye affinity chromatography. Estimates of molecular mass from sodium dodecyl sulfate-polyacrylamide gel electrophoresis and native high-performance gel-filtration liquid chromatography were, respectively, 63 and 64 kDa, suggesting a monomeric protein. OXAD required for maximum activity divalent metal cations such as Mn2+ and Mg2+ but not monovalent cations. The enzyme is not inhibited by avidin, but is competitively inhibited by adenosine 5'-diphosphate, acetic acid, phosphoenolpyruvate, malic acid, and oxalic acid. Initial velocity, product inhibition, and dead-end inhibition studies suggested a rapid-equilibrium ordered kinetic mechanism with Mn2+ being added to the enzyme first followed by oxaloacetate, and carbon dioxide is released first followed by pyruvate. Inhibition data as well as pH-dependence profiles and kinetic parameters are reported and discussed in terms of the mechanism operating for oxaloacetate decarboxylation.  相似文献   

19.
Malic enzyme (S)-malate: NADP+ oxidoreductase (oxaloacetate-decarboxylating, EC 1.1.1.40) purified from the thermoacidophilic archaebacterium Sulfolobus solfataricus, strain MT-4, catalyzed the metal-dependent decarboxylation of oxaloacetate at optimum pH 7.6 at a rate comparable to the decarboxylation of L-malate. The oxaloacetate decarboxylase activity was stimulated about 50% by NADP but only in the presence of MgCl2, and was strongly inhibited by L-malate and NADPH which abolished the NADP activation. In the presence of MnCl2 and in the absence of NADP, the Michaelis constant and Vm for oxaloacetate were 1.7 mM and 2.3 mumol.min-1.mg-1, respectively. When MgCl2 replaced MnCl2, the kinetic parameters for oxaloacetate remained substantially unvaried, whereas the Km and Vm values for L-malate have been found to vary depending on the metal ion. The enzyme carried out the reverse reaction (malate synthesis) at about 70% of the forward reaction, at pH 7.2 and in the presence of relatively high concentrations of bicarbonate and pyruvate. Sulfhydryl residues (three cysteine residues per subunit) have been shown to be essential for the enzymatic activity of the Sulfolobus solfataricus malic enzyme. 5,5'-Dithiobis(2-nitrobenzoic acid), p-hydroxymercuribenzoate and N-ethylmaleimide caused the inactivation of the oxidative decarboxylase activity, but at different rates. The inactivation of the overall activity by p-hydroxymercuribenzoate was partially prevented by NADP singly or in combination with both L-malate and MnCl2, and strongly enhanced by the carboxylic acid substrates; NADP + malate + MnCl2 afforded total protection. The inactivation of the oxaloacetate decarboxylase activity by p-hydroxymercuribenzoate treatment was found to occur at a slower rate than that of the oxidative decarboxylase activity.  相似文献   

20.
On the basis of enzyme activities detected in extracts of Selenomonas ruminantium HD4 grown in glucose-limited continuous culture, at a slow (0.11 h-1) and a fast (0.52 h-1) dilution rate, a pathway of glucose catabolism to lactate, acetate, succinate, and propionate was constructed. Glucose was catabolized to phosphoenol pyruvate (PEP) via the Emden-Meyerhoff-Parnas pathway. PEP was converted to either pyruvate (via pyruvate kinase) or oxalacetate (via PEP carboxykinase). Pyruvate was reduced to L-lactate via a NAD-dependent lactate dehydrogenase or oxidatively decarboxylated to acetyl coenzyme A (acetyl-CoA) and CO2 by pyruvate:ferredoxin oxidoreductase. Acetyl-CoA was apparently converted in a single enzymatic step to acetate and CoA, with concomitant formation of 1 molecule of ATP; since acetyl-phosphate was not an intermediate, the enzyme catalyzing this reaction was identified as acetate thiokinase. Oxalacetate was converted to succinate via the activities of malate dehydrogenase, fumarase and a membrane-bound fumarate reductase. Succinate was then excreted or decarboxylated to propionate via a membrane-bound methylmalonyl-CoA decarboxylase. Pyruvate kinase was inhibited by Pi and activated by fructose 1,6-bisphosphate. PEP carboxykinase activity was found to be 0.054 mumol min-1 mg of protein-1 at a dilution rate of 0.11 h-1 but could not be detected in extracts of cells grown at a dilution rate of 0.52 h-1. Several potential sites for energy conservation exist in S. ruminantium HD4, including pyruvate kinase, acetate thiokinase, PEP carboxykinase, fumarate reductase, and methylmalonyl-CoA decarboxylase. Possession of these five sites for energy conservation may explain the high yields reported here (56 to 78 mg of cells [dry weight] mol of glucose-1) for S. ruminantium HD4 grown in glucose-limited continuous culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号