首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The differential impact of Zetzellia mali on the phytoseiids Metaseiulus occidentalis and Typhlodromus pyri was studied in the laboratory and by analysis of population from orchard plots that contained either phytoseiid, similar numbers of prey mites and high or low densities of Z. mali. Five hypotheses were evaluated to explain why Z. mali had more impact on M. occidentalis in the field than on T. pyri. Given equal opportunity, Z. mali adult females did not consume more M. occidentalis eggs than T. pyri eggs nor did adult females of either phytoseiid inflict greater mortality on Z. mali eggs or larvae through attack or consumption. There was no difference in the within-tree association of Z. mali adult females with eggs of either phytoseiid species nor were there differences in the way prey mites (all life stages) were spatially partitioned between adult female Z. mali as compared with adults and deutonymphs (combined) of either phytoseiid. The foraging area of adult female Z. mali and the oviposition locations of the two phytoseiids from both field and laboratory data were compared using spatial statistics. Metaseiulus occidentalis laid significantly more eggs in the primary foraging area of adult female Z. mali than T. pyri. This was the only factor identified which may explain the greater impact of Z. mali on M. occidentalis. The impact of these interspecific effects on the persistence of predatory mite guilds and biological control are discussed.  相似文献   

2.
Intraspecific competition in immature Amblyseius fallacis, Amblyseius andersoni, Typhlodromus occidentalis and Typhlodromus pyri was examined in the laboratory using small cages at five different predator densities (two, four, eight, 16 and 32) in the absence and presence of prey 100 eggs of two-spotted spider mite, Tetranychus urticae (Koch), at 25 ± 1°C, 80% RH and 16L:8D photoperiod. In the absence of spider mite prey, some individuals of immature phytoseiids showed increased development and surival with increasing predator densities up to certain limits, but none survived to the adult stage, except for a single male each of A. andersoni and A. fallacis who completed development by cannibalizing on conspecifics at a density of 32 predators per cage. In the absence of spider mite prey, the mean immature survival time was independent of the initial predator density, but the variance of survival time increased with predator density. In the presence of prey, the proportion of immatures surviving to adulthood generally decreased with initial predator density and dropped sharply to almost none at the predator density of 32 for A. fallacis, eight for A. andersoni, 16 for T. occidentalis and four for T. pyri. The number of prey consumed per predator during the first day generally decreased with predator density in all four species, as prey available per predator decreased and the competition for food increased with predator density. Our data indicate that scramble competition is operating in these four species. Although cannibalism was occasionally observed, especially after the exhaustion of prey and in the generalist predators such as A. andersoni, the immatures of these phytoseiids were less influenced by the interference of conspecifics than by the increasing difficulty of finding food at high predator densities. The implications of this study for understanding phytoseiid population dynamics and their use in biological control are discussed.  相似文献   

3.
The prey selection of the phytoseiid miteTyphlodromus pyri Scheuten was studied by using polyacrylamide gel electrophoresis to analyse the diet of field-collected predators. The predators were obtained from an orchard where the phytophagous prey mitesPanonychus ulmi (Koch) andAculus schlechtendali (Nalepa) were present in various density ratios.Esterases of both prey species were identified in the predators, but on all sampling datesP. ulmi esterases were discovered much more frequently than those ofA. schlechtendali. The data show thatT. pyri hardly fed onA. schlechtendali over a range of prey density ratios. It is therefore concluded thatT. pyri prefersP. ulmi toA. schlechtendali.  相似文献   

4.
Using a Y-tube olfactometer, a study has been made of the response of females of the predatory miteTyphlodromus pyri Scheuten (Acarina: Phytoseiidae) to volatile kairomones of three prey species: the European red spider mite (Panonychus ulmi (Koch)), the two-spotted spider mite (Tetranychus urticae Koch) and the apple rust mite (Aculus schlechtendali (Nalepa)).Predators that had been reared onT. urticae responded only to the volatile kairomone ofP. ulmi. In contrast, when reared onVicia faba L. pollen, they responded to the kairomones of all three prey species. Pollen-reared predators, offered a choice between kairomones of two different prey species, prefer theP. ulmi kairomone to those ofA. schlechtendali orT. urticae.The difference in response between predators reared onV. faba pollen andT. urticae seems to be caused by the low carotenoid content ofV. faba pollen. Predators that had been reared onV. faba pollen mixed with crystalline -carotene behaved in a way similar to conspecific that had been reared on the carotenoid-rich prey miteT. urticae. Obviously, pollen-rearedT. pyri females are in need of carotenoids, which can be obtained from, e.g.,P. ulmi, T. urticae orA. schlechtendali. This may explain why pollen-reared predators respond to more prey species thanT. urticae-reared predators.WhyT. pyri females need carotenoids has not been established. The only known function of carotenoids in mites is involvement in diapause induction. However, as pollen-rearedT. pyri enter reproductive diapause under short-day conditions, they either extract sufficient amounts of carotenoids fromV. faba pollen, or do not need carotenoids for diapause induction.Apart from the effect of dietary requirements on prey selection, food deprivation also affects the predator's response to kairomones. All the data mentioned above have been obtained for predators that had been starved for 20 h. Predators that had been reared onT. urticae and starved for 48 h before the experiment did respond to the volatile kairomone ofT. urticae in contrast to predators from the same culture that had been starved for 20 h. Thus foraging decisions byT. pyri are affected by both starvation time and specific hunger for carotenoids.  相似文献   

5.
Survival, developmental time, activity, feeding rates, and other biological aspects of immatures of Amblyseius fallacis, Amblyseius andersoni, Typhlodromus occidentalis and Typhlodromus pyri were examined in the laboratory in small arenas (2×2 cm) with different egg densities (0, 5, 10, 20 per 12 h) of the twospotted spider mite, Tetranychus urticae (Koch), at 25±1°C, ≈80% RH, and 16L: 8D photoperiod. Egg survival was high (86–100%) in all four species. Larval survival was similarly high except for T. occidentalis which all died in the absence of food. Survival rates of protonymphs and deutonymphs were also high except that up to 50% of A. andersoni died at 5 prey eggs per 1/2 day. Developmental time did not vary significantly with prey density and was similar for males and females in the oligophagous predators (A. fallacis and T. occidentalis), but was longer at lower prey densities and in females than males in the polyphagous predators (A. andersoni and T. pyri). In general, the time allocated to three active instars (=stases) decreased in the order: A. andersoni (81%), T. pyri (78%), A. fallacis (69%), and T. occidentalis (64%). The polyphagous predator species had a shorter larval stage and much longer deutonymphal stage than the oligophagous species. The proportion of time allocated to the protonymphal stage was the least variable among the four species. The interspecific differences in walking activities also appeared greater in larval and deutonymphal stages than in the protonymphal stage. The larvae of the two oligophagous predators (A. fallacis and T. occidentalis, walking activity averaging 36–49%) were more active than the two polyphagous predators (A. andersoni and T. pyri), which spent 80% or more time resting. In deutonymphs, walking activity increased in the order: T. occidentalis (14%), A. andersoni (27%), A. fallacis (43%) and T. pyri (59%). Larvae were more active during the first half of their life than the latter half. In general, most life history traits of immature A. andersoni, T. pyri, A. fallacis, and T. occidentalis are not associated with their phylogenetic relatedness or size, but with the feeding specialization of the predator species. Larval feeding patterns in Phytoseiidae are reviewed and a hypothesis about the evolution of larval feeding behavior in Phytoseiidae is proposed.  相似文献   

6.
Prey preference of three phytoseiid species,Typhlodromus pyri Scheuten,Amblyseius potentillae (Garman) andA. finlandicus (Oudemans) which occur in Dutch orchards, was analysed with respect to two economically important phytophagous mites, the European red spider mitePanonychus ulmi (Koch), and the apple rust miteAculus schlechtendali (Nalepa). Two types of laboratory experiments were carried out: (1) olfactometer tests to study the response when volatile kairomones of both prey species were offered simultaneously; and (2) predation tests in mixtures of the two prey species and comparison with calculated predation rates, using a model provided with parameters estimated from experiments with each prey species alone. In addition, the diet of field-collected predators was analysed using electrophoresis. For each predator species the results of the different tests were consistent, in thatT. pyri andA. potentillae preferredP. ulmi overA. schlechtendali, whereasA. finlandicus preferredA. schlechtendali overP. ulmi.  相似文献   

7.
We addressed the question of persistence of predator and prey in a biological control system by examining temporal patterns ofPanonychus ulmi (Koch) and its predator,Typhlodromus pyri Scheuten at two geographic locations and at two spatial scales. At the scale of an orchard, bothP. ulmi andT. pyri were persistent over the time frame of 6 years. At the scale of an individual tree,T. pyri appeared to be more persistent than its prey,P. ulmi. We used a simulation model of single populations ofP. ulmi andT. pyri to determine which of several aspects of the biology of the two species could contribute to such a pattern. Spatial incongruity between predator and prey was essential for persistence of both species. The generalist food habit ofT. pyri probably contributes to the persistence ofT. pyri on individual trees, and may cause occasional extinction ofP. ulmi at this spatial scale. The presence of alternate food is likely an essential element for successful biological control in this system. Cannibalism byT. pyri results in higher prey densities, that is, it is detrimental to the biological control ofP. ulmi, but has no effect on the relative persistence of the two species.  相似文献   

8.
In choice test experiments on strawberry leaf disc arenas the phytoseiid mites Neoseiulus californicus and N. cucumeris were more effective than Typhlodromus pyri as predators of the phytophagous mites Tetranychus urticae and Phytonemus pallidus. There were no preferences shown for either prey by any of these predators. In multiple predator leaf disc experiments both Phytoseiulus persimilis and N. cucumeris significantly reduced numbers of T. urticae eggs and active stages; this effect was seen when the two species were present alone or in combination with other predator species. Neoseiulus californicus was less effective at reducing T. urticae numbers, and T. pyri was not effective; no interaction between predator species was detected in these experiments. When T. urticae alone was present as prey on potted plants, P. persimilis and N. californicus were the only phytoseiids to significantly reduce T. urticae numbers. These two predator species provided effective control of T. urticae when P. pallidus was also present; however, none of the predators reduced numbers of P. pallidus. There were no significant negative interactions when different species of predators were present together on these potted plants. In field experiments, releases of both P. persimilis and N. cucumeris significantly reduced T. urticae numbers. However, there was a significant interaction between these predator species, leading to poorer control of T. urticae when both species were released together. These results show the importance of conducting predator/prey feeding tests at different spatial scales.  相似文献   

9.
Metaseiulus occidentalis (Nesbitt) andTyphlodromus pyri Scheuten have complementary features/ traits that enable them to control effectively plant-feeding mites on apple. Populations of both predators gave as good or better biological control of the apple rust mite (Aculus schlechtendali Nalepa), European red mite (Panonychus ulmi Koch) and two-spotted spider mite (Tetranychus urticae (Koch)) than single-predator populations. With mixed predators,M. occidentalis provided better control of spider mites the first season after release, butT. pyri gave better control in the second season. Several factors affected the ability of predators to provide biological control: When prey were dense,M. occidentalis rapidly increased during the warm mid-summer, whileT. pyri provided greater predation when it was cool at the start or end of the growing season. When few prey were present, searching byM. occidentalis was more confined on individual apple leaves, but it migrated between leaves and trees more often. Pollen feeding, cannibalism and interspecific predation were more common byT. pyri. In fall, oviposition byM. occidentalis stopped sooner and in the following spring,T. pyri reproduced beforeM. occidentalis. Research needs and management of mixed-predator populations are discussed.  相似文献   

10.
The successful use of predators in classical biocontrol programmes needs several background laboratory investigations, one of which is the evaluation of predator behavioural responses to changes in the density of their prey. The impact effect of the density of two prey species [Myzus persicae Sulzer and Aphis craccivora Koch (Hemiptera: Aphididae)] on the predation rates of third-instar Chrysoperla carnea Stephens (Chrysopidae: Neuroptera) and fourth-instar Coccinella septempunctata L. and Hippodamia variegata Goeze (Coccinellidae: Coleoptera) larvae was studied. Although prey species, predator species, prey density, and their interactions all had significant effects on the numbers of aphids consumed, the type of functional response did not vary, remaining a type II response in all treatments. However, the type II parameters differed among predator species on the same prey species, and for each predator species on the two prey species. Chrysoperla. carnea on M. persicae and H. variegata on A. craccivora were more voracious than other predators. In the context of functional response and biological control, the release of these predators, that show inverse density-dependent mortality, has to be started in early season to build up their population on low aphid densities and attack later high aphid populations.  相似文献   

11.
Behavioral responses by three acarine predators, Phytoseiulus persimilis, Typhlodromus occidentalis, and Amblyseius andersoni (Acari: Phytoseiidae), to different egg and webbing densities of the spider mite Tetranychus urticae (Acari: Tetranychidae) on rose leaflets were studied in the laboratory. Prey patches were delineated by T. urticae webbing and associated kairomones, which elicit turning back responses in predators near the patch edge. Only the presence of webbing affected predator behavior; increased webbing density did not increase patch time. Patch time increased with increased T. urticae egg density in the oligophagous P. persimilis, but was density independent in the polyphagous species T. occidentalis and A. andersoni. Patch time in all three species was more strongly correlated with the number of prey encounters and attacks than with the actual prey number present in the patch. Patch time was determined by (a) the turning back response near the patch edge; this response decayed through time and eventually led to the abandonment of the patch, and (b) encounters with, and attacks upon, prey eggs; these prolonged patch time by both an increment of time spent in handling or rejecting prey and an increment of time spent searching between two successive prey encounters or attacks. Although searching efficiency was independent of prey density in all three species, the predation rate by P. persimilis decreased with prey density because its searching activity (i.e. proportion of total patch time spent in searching) decreased with prey density. Predation rates by T. occidentalis and A. andersoni decreased with prey density because their searching activity and success ratio both decreased with prey density. The data were tested against models of predator foraging responses to prey density. The effects of the degree of polyphagy on predator foraging behavior were also discussed.  相似文献   

12.
Predator–predator, predator–prey, and prey–prey associations among nine species of mites were studied in a plot of 100 Red Delicious apple (Malus pumila Miller) trees from 1990 to 1997. In 1990, seven-year-old trees were inoculated with Panonychus ulmi (Koch), Tetranychus urticae Koch (Acari: Tetranychidae) or both, and sprayed with azinphosmethyl (alone or plus endosulfan), or nothing. The species Zetzellia mali (Ewing) (Acari: Stigmaeidae), Amblyseius andersoni Chant (Acari: Phytoseiidae), Eotetranychus sp., Bryobia rubrioculus (Scheuten) (Acari: Tetranychidae), and Aculus schlechtendali Nalepa (Acari: Eriophyidae) were already present or immigrated into plots, and Galendromus occidentalis (Nesbitt) and Typhlodromus pyri Scheuten (Acari: Phytoseiidae) were introduced. Yule's V association index was used to measure positive, neutral, or negative interspecific associations for each species pair, because of its robustness with spatially autocorrelated data. We found that pesticide and release treatments did not greatly affect the association results, but there were strong seasonal differences. Predator–predator associations were the strongest and most consistent, showing negative associations in the early and mid seasons, and neutral ones in late season. Negative associations of T. pyri with other predators were the strongest, which is consistent with evidence that this mite can detect other predators on a leaf. Predator–prey seasonal associations were mixed, with some positive and others negative, with most significant associations occurring in the mid season. One prey–prey interaction was positive, again in mid season, most likely because of similar habitat preferences.  相似文献   

13.
Laboratory experiments were conducted to determine the potential impact of the phytoseiid Euseius finlandicus, the mirid Blepharidopterus angulatus and the anthocorid Orius majusculus on the Typhlodromus pyri/Panonychus ulmi predator/prey relationship on apple. Euseius finlandicus consumed more immature spider mites than did T. pyri. When both phytoseiids were present and spider mite prey was abundant, there was no evidence of a negative interaction between the predators. In experiments where each predatory mite was confined with large numbers of the other predator, interspecific predation was exhibited by adults of each species on immatures of the other, but more so by E. finlandicus. In the predatory insect/phytoseiid experiments, when confined with spider mites and large numbers of T. pyri, both B. angulatus and O. majusculus consumed some T. pyri, but spider mites were the preferred prey. In experiments with B. angulatus, O. majusculus and T. pyri feeding on P. ulmi, there was no evidence of negative interactions between the predatory insects and T. pyri.  相似文献   

14.
The ecological impact of introduced biological control agents on native species of arthropods is a matter of considerable debate. This study investigated the ability of the non-native predatory mite Neoseiulus californicus to feed on the native Typhlodromus pyri and vice versa, as both species now co-occur in UK orchards. Typhlodromips montdorensis is a candidate for introduction into the UK as a glasshouse biological control agent. The ability of T. montdorensis to feed on the widely used N. californicus was investigated to identify possible intraguild predation, which might influence the effectiveness of either or both species as predators of Tetranychus urticae. Both N. californicus and T. pyri consumed larval stages of each other, but in choice experiments both showed a preference for T. urticae. Both N. californicus and T. montdorensis also fed on each other, but whereas N. californicus again showed a preference for T. urticae, T. montdorensis fed equally on T. urticae and N. californicus. Interactions between N. californicus and T. pyri and N. californicus and T. montdorensis are discussed in relation to their effectiveness as biological control agents in the glasshouse and the natural control of spider mite in the field.  相似文献   

15.
Summary Prey-selection behaviour of the phytoseiid mite Typhlodromus pyri Scheuten was analysed with a Markovtype model of feeding-state dynamics and feeding-state dependent searching behaviour (Sabelis 1981, 1986, 1989; Metz and Van Batenburg 1985a, b). All behavioural characteristics of the predator which are independent of the feeding state were represented by one parameter. The remaining feeding-state dependent characteristics were represented by a function of the feeding state, with one parameter. The best parameter values to describe a predator-prey interaction were determined by fitting the model to the predation rates in monocultures. Under the assumption that the parameter values are not dependent on the composition of prey species supply, the diet of the predators in mixed cultures was predicted from parameters estimated in monoculture experiments.Two prey types, apple rust mite (Aculus schlechtendali (Nalepa)) adults and European red spider mite (Panonychus ulmi (Koch)) larvae were studied. A large discrepancy was observed between calculated and experimentally determined predation rates of T. pyri in mixed cultures: the predators actually killed 3–7 times more P. ulmi larvae than was predicted by the model.The large difference between observed and predicted predation rates in mixed cultures cannot be explained by changes in the behaviour of the prey species as a result of being together. Therefore, it seems likely that the prey selection behaviour of the predator was different when prey species were presented together than when presented singly. Apparently the predatory mite T. pyri prefers P. ulmi to S. schlechtendali.  相似文献   

16.
Optimal foraging theory predicts that predators prefer those prey species that are most rewarding in terms of reproductive success, which is dependent on prey quality and prey availability. To investigate which selection pressures may have moulded prey preference in an acarine system consisting of two prey species and three predator species, we tested whether prey preference of the predators is matched by the associated reproductive success.The predators involved areAmblyseius finlandicus (Oudemans),Am. potentillae (Garman) andTyphlodromus pyri Scheuten. The prey species are the apple rust mite (Aculus schlechtendali (Nalepa)) and the fruit-tree red spider mite (Panonychus ulmi (Koch)).Reproductive success was assessed in terms of intrinsic rate of increase and for one predator also in terms of diapause induction. All three predator species reached highest reproductive success on the same prey species: apple rust mite. This was most pronounced for the predatorAm. finlandicus, because its larval stage suffered severe mortality when feeding onP. ulmi.An independent study on prey preference of the three predator species (Dicke et al., 1988) revealed thatAm. finlandicus prefersAc. schlechtendali toP. ulmi, whereas the other two predator species have the reverse preference.Thus, on the basis of current data, prey preference ofAm. finlandicus can be understood in terms of reproductive success. However, this is not so for prey preference ofT. pyri andAm. potentillae. Investigations needed for a better understanding of prey preference of the last-named two predator species are discussed.  相似文献   

17.
We examined the effect of prey (Tetranychus urticae) egg density on leaving rate of the predatory mite, Phytoseiulus persimilis, from leaf disks using predators with different feeding experiences and levels of external volatile cues related to their prey. Predators stayed longer on disks with prey eggs than on those without prey eggs. However, at each prey egg density predators stayed longer in the absence of prey-related volatiles from an external source. Starved predators stayed longer in a prey patch than those that had not experienced starvation. At each prey density, starved P. persimilis consumed a greater proportion of prey eggs than satiated predators. The total prey consumption of starved predators appears to be related to their longer residence time on source disks compared to satiated predators and also the per capita consumption rate was greater for starved predators compared to satiated predators.  相似文献   

18.
The effect of residues of esfenvalerate on oviposition of the resistant strain of the predatory mite Typhlodromus pyri and its main prey, European red mite Panonychus ulmi and two-spotted spider mite Tetranychus urticae, were investigated. T. pyri showed a significant linear reduction in oviposition after 24h in the presence of increasing levels of esfenvalerate residue applied at the field rate. Furthermore, when given a choice, T. pyri preferred to lay eggs on residue-free surfaces. Of the two prey species, only P. ulmi showed significant avoidance of increasing levels of residues of the field rate concentration of esfenvalerate, as measured by runoff mortality, however both P. ulmi and T. urticae, when given a choice, showed a preference for esfenvalerate-free surfaces. As with the predatory mite T. pyri, both prey species showed a significant linear reduction of oviposition with increasing esfenvalerate residues and a preference to lay eggs on esfenvalerate-free surfaces. Esfenvalerate residues as high as 15X field rate were not repellent to pyrethroid-resistant T. pyri. The possible effects of these sublethal effects on predator-prey dynamics and implications for integrated mite control programmes in apple orchards are discussed.  相似文献   

19.
We investigated the effects of foraging experiences on the residence time of Neoseiulus womersleyi in a currently inhabited prey (Tetranychus urticae) patch. Satiated predators that had experienced starvation stayed longer in a current patch than those that had not experienced starvation. Satiated predators that had experienced a prey-rich patch showed approximately the same residence time in the current patch irrespective of the number of prey therein. By contrast, satiated predators that had experienced a prey-poor patch stayed longer in a current patch of high prey density than in one of low prey density. N. womersleyi appears to determine residence time in the current patch based on foraging experiences together with the quantity of prey in the current patch.  相似文献   

20.
Experimental tests of the hypothesis that natural selection favors predators that search and select prey species that are more profitable are reported. The predator studies was the stigmaeid mite,Zetzellia mali (Ewing). It was observed thatAculus schlechtendali (Nalepa) andPanonychus ulmi (Koch) were more profitable prey thanTetranychus urticae Koch. However,Z. mali attacks prey independently of their nutritional value. Behavioral observations and experiments documented thatZ. mali does not detect kairomones of the prey species. Therefore, prey location is due only to random encounters. Apparently,Z. mali does not search and select prey that are more profitable. The correlation coefficients ofZ. mali, A. schlechtendali, andP. ulmi were investigated in an apple tree. Results revealed that the association depends on season and type of prey.Zetzellia mali andA. schlechtendali were positively associated in the spring (r=0.3,P<0.05) and fall (r=0.36,P<0.01).Zetzellia mali andP. ulmi were not statistically associated. The term associational response is proposed as an ecological process that quantifies the association of predator and prey. The associational-response data suggest thatZ. mali, in the natural ecosystem, responds more to the density ofA. schlechtendali than to the density ofP. ulmi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号