首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 740 毫秒
1.
Insulin-like growth factor (IGF) I and IGF binding proteins (IGFBPs) modulate metabolic activity and tissue repair and are influenced by nutritional status. IGF-I circulates in free, ternary [IGF-I + IGFBP-3 + acid labile subunit (ALS)], and binary (IGF-I + IGFBP) molecular complexes, and the relative proportions regulate IGF-I extravascular shifting and bioavailability. This study examined the hypothesis that sustained physical activity and sleep deprivation superimposed on a short-term energy deficit would alter the IGFBP concentrations and alter the proportions of IGF-I circulating in ternary vs. binary molecular complexes. Components of the IGF-I system (total and free IGF-I; IGFBP-1, -3, and ALS; nonternary IGF-I and IGFBP-3), biomarkers of metabolic and nutritional status (transferrin, ferritin, prealbumin, glucose, free fatty acids, glycerol, beta-hydroxybutyrate), and body composition were measured in 12 men (22 +/- 3 yr, 87 +/- 8 kg, 183 +/- 7 cm, 20 +/- 5% body fat) on days 1, 3, and 4 during a control and experimental (Exp) period. During Exp, subjects performed prolonged work (energy expenditure of approximately 4500 kcal/day) with caloric (1600 kcal/day) and sleep (6.2 h total) restriction. IGF-I and IGFBP-3 were measured by immunoassay before and after immunoaffinity depletion of ALS-based complexes (i.e., ternary complex removal). Exp produced losses in body mass (-3.0%), lowered total IGF-I (-24%), free IGF-I (-42%), IGFBP-3 (-6%), nonternary IGF-I (-27%), and IGFBP-3 (-16%), and increased IGFBP-1 (256%). No Exp effects were observed for ALS. No changes were observed in the proportion of IGF-I circulating in free ( approximately 1.2%), ternary ( approximately 87.4%), or nonternary ( approximately 11.4%) molecular complexes. During Exp, glucose concentrations were lower on day 3, but days 1 and 4 were statistically similar. In conclusion, during a short-term energy deficit in young, healthy men, 1). IGF-I system components differentially respond (both in direction and magnitude) to a given metabolic perturbation and 2). the relative proportion of IGF-I sequestered in ternary vs. nonternary molecular complexes appears to be well maintained.  相似文献   

2.
Constitutional thinness (CT) is characterized by a low and stable body mass index (BMI) without any hormonal abnormality. To understand the weight steadiness, energetic metabolism was evaluated. Seven CT, seven controls, and six anorexia nervosa (AN) young women were compared. CT and AN had a BMI <16.5 kg/m(2). Four criteria were evaluated: 1) energy balance including diet record, resting metabolic rate (RMR) (indirect calorimetry), total energy expenditure (TEE) (doubly labeled water), physical activity; 2) body composition (dual-energy X-ray absorptiometry); 3) biological markers (leptin, IGF-I, free T3); 4) psychological profile of eating behavior. The normality of free T3 (3.7 +/- 0.5 pmol/l), IGF-I (225 +/- 93 ng/ml), and leptin (8.3 +/- 3.4 ng/ml) confirmed the absence of undernutrition in CT. Their psychological profiles revealed a weight gain desire. TEE (kJ/day) in CT (8,382 +/- 988) was not found significantly different from that of controls (8,793 +/- 845) and AN (8,001 +/- 2,152). CT food intake (7,565 +/- 908 kJ/day) was found similar to that of controls (7,961 +/- 1,452 kJ/day) and higher than in AN (4,894 +/- 703 kJ/day), thus explaining the energy metabolism balance. Fat-free mass (FFM) (kg) was similar in CT and AN (32.5 +/- 2.9 vs. 34.1 +/- 1.9) and higher in controls (37.8 +/- 1.6). While RMR absolute values (kJ/day) were lower in CT (4,839 +/- 473) than in controls (5,576 +/- 209), RMR values adjusted for FFM were the highest in CT. TEE-to-FFM ratio was also higher in CT than in controls. Energetic metabolism balance maintains a stable low weight in CT. An increased energy expenditure-to-FFM ratio differentiates CT from controls and could account for the resistance to weight gain observed in CT.  相似文献   

3.
The influence of initial training status on the response of circulating insulin-like growth factor (IGF) and its binding proteins (IGFBP) to prolonged physical training was studied in young men. It was hypothesized that highly standardized training would result in more extensive changes in the circulating IGF system in untrained subjects because of lower fitness level. Seven untrained (UT) and 12 well-trained (WT) individuals performed 11 wk of intense physical training (2-4 h daily). Fasting serum samples were analyzed for total and free IGF-I and -II, for IGFBP-1 to -4, as well as for IGFBP-3 proteolysis. Eleven weeks of physical training resulted in decreased levels of total IGF-I, free IGF-I, and IGFBP-4 in both the UT and WT groups. In the UT group, IGFBP-2 increased, IGFBP-3 decreased [from 4,255 +/- 410 (baseline) to 3,896 +/- 465 (SD) microg/l (week 4); P < 0.05], and IGFBP-3 proteolysis increased [from 28 +/- 8% (baseline) to 37 +/- 7% (week 4) and 39 +/- 12% (week 11); P < 0.05], whereas no significant changes were found in the WT group. In conclusion, intense physical training results in a marked influence on the IGF system and its binding proteins with generally more extensive changes seen in the untrained individuals. Also, prolonged physical training resulted in increased IGFBP-3 proteolysis in previously untrained individuals only, indicating that intense physical training affects trained and untrained individuals differently.  相似文献   

4.
OBJECTIVE: To investigate the role of the insulin-like growth factors (IGF) system during the differentiation of human pulp-derived fibroblasts (HPF). METHODS: Primary HPF were cultured for 24 days in DMEM medium with IGF-I or IGF-II (50 ng/ml each). Cell growth and morphology, alkaline phosphatase (ALP) activity, the concentration of free deoxypyridinoline (DPD), IGF-I, -II, IGFBP-2 and -3 were studied. The number of (125)I-IGF-I binding sites was estimated by Scatchard analysis. RESULTS: Light-microscopically visible nodules emerged during differentiation. Simultaneously, the ALP activity increased steadily between days 8 and 24, while the DPD concentration decreased by about 50%. The HPF produced high concentrations of IGF-II (2.00-1.30 microg/10(6) cells) but low IGF-I, IGFBP-2. IGFBP-2 was not changed, IGFBP-3 increased by 65% during differentiation. The number of IGF binding sites increased from 8,500 +/- 55 per cell (day 8) up to 22,000 +/- 570 (day 24). CONCLUSION: The increasing number of IGF-binding sites accompanied by alterations in the biochemical bone markers during the differentiation of HPF suggests an autocrine/paracrine role for the IGFs in the formation of dentinal hard tissue.  相似文献   

5.
The aim of the present study was to evaluate the mediating role played by obesity on the relationship of free insulin-like growth factor I (IGF-I) and IGF-binding protein-3 (IGFBP-3) with muscle strength and physical performance. Data were from baseline evaluation of the ilSIRENTE Study. Muscle strength was measured by hand grip strength. Physical performance was assessed using the walking speed and the 0-3 Short Physical Performance Battery (SPPB) score. Based on its median value, free IGF-I was categorized in the following two groups: low IGF-I (IGF-I <0.65 ng/ml; n = 174) and high IGF-I (IGF-I > or =0.65 ng/ml; n = 175). Similarly, IGFBP-3 was categorized in the following two groups: low IGFBP-3 (IGFBP-3 <4,319.9 ng/ml; n = 174) and high IGFBP-3 (IGFBP-3 > or =4,319.9 ng/ml; n = 175). Body mass index (BMI) was categorized as follows: <25 kg/m(2) (n = 160), 25-29.9 kg/m(2) (n = 133), > or =30 kg/m(2) (n = 56). Mean age of the 349 participants was 85.8 yr, and 234 (67%) were women. After adjusting for potential confounders, no significant association of IGF-I and IGFBP-3 with study outcomes was observed. After the study sample was stratified by BMI groups, compared with participants with low IGF-I level, those with high IGF-I level had a significantly better grip strength [35.2 +/- 1.6 vs. 29.2 +/- 2.0 (SE) kg, P = 0.03], walking speed (0.55 +/- 0.04 vs. 0.40 +/- 0.04 m/s, P = 0.01), and SPPB score (1.9 +/- 0.1 vs. 1.5 +/- 0.1 m/s, P = 0.01) but only in the group with BMI > or =30 kg/m(2) and not in other BMI groups. A statistically significant interaction between BMI and IGF-I level was observed on all study outcomes. By contrast, no association was observed between IGFBP-3 and study outcomes, independently of BMI. In conclusion, high IGF-I level is associated with better physical function in older persons with obesity, but not in nonobese subjects.  相似文献   

6.
The aim of this study was to determine wether continuous heavy physical activities as well as lack of food and sleep during military training (three weeks of conditioning followed by a five-day combat course) alter serum concentrations of IGF-I and/or its binding proteins, evaluating the relationship to metabolic changes. Before and after training, we measured serum levels of both total and free IGF-I, IGFBP-1 and IGFBP-3 as well as plasma levels of branched-chain amino acids (valine, leucine and isoleucine) and glucose from 26 cadets (21 +/- 2 yr). Total and free IGF-I levels were decreased after training from 228 +/- 12 to 160 +/- 7 ng/ml and from 0.80 +/- 0.08 to 0.52 +/- 0.06 ng/ml, p < 0.001 respectively) as well as IGFBP-3 (p < 0.001), while IGFBP-1 levels were increased (p < 0.001). BCAA levels were decreased from 245.4 +/- 7.5 to 215.9 +/- 5.1 micromol/l, p < 0.001, while those of glucose remained unchanged. There were correlations between changes in total IGF-I and IGFBP-3 (p < 0.05) and between free IGF-I and IGFBP-1 (p < 0.01). Several correlations appeared between changes in all the components of the IGF-I axis and branched-chain amino acids. We concluded that responses of the IGF-I system during an intense training could represent an adaptative response to the encountered energy deficiency, resulting a diversion of substrate from growth to acute metabolic needs.  相似文献   

7.
In subjects who maintain a constant body mass, the increased energy expenditure induced by exercise must be compensated by a similar increase in energy intake. Since leptin has been shown to decrease food intake in animals, it can be expected that physical exercise would increase energy intake by lowering plasma leptin concentrations. This effect may be secondary either to exercise-induced negative energy balance or to other effects of exercise. To delineate the effects of moderate physical activity on plasma leptin concentrations, 11 healthy lean subjects (4 men, 7 women) were studied on three occasions over 3 days; in study 1 they consumed an isoenergetic diet (1.3 times resting energy expenditure) over 3 days with no physical activity; in study 2 the subjects received the same diet as in study 1, but they exercised twice daily during the 3 days (cycling at 60 W for 30 min); in study 3 the subjects exercised twice daily during the 3 days, and their energy intake was increased by 18% to cover the extra energy expenditure induced by the physical activity. Fasting plasma leptin concentration (measured on the morning of day 4) was unaltered by exercise [8.64 (SEM 2.22) 7.17 (SEM 1.66), 7.33 (SEM 1.72) 1 microg x l(-1) in studies 1, 2 and 3, respectively]. It was concluded that a moderate physical activity performed over a 3-day period does not alter plasma leptin concentrations, even when energy balance is slightly negative. This argues against a direct effect of physical exercise on plasma leptin concentrations, when body composition is unaltered.  相似文献   

8.
The aim of this study was to determine whether consumption of a diet containing 8.5 g carbohydrate (CHO) x kg(-1) x day(-1) (high CHO; HCHO) compared with 5.4 g CHO x kg(-1) x day(-1) (control; Con) during a period of intensified training (IT) would result in better maintenance of physical performance and mood state. In a randomized cross-over design, seven trained runners [maximal O(2) uptake (Vo(2 max)) 64.7 +/- 2.6 ml x kg(-1) x min(-1)] performed two 11-day trials consuming either the Con or the HCHO diet. The last week of both trials consisted of IT. Performance was measured with a preloaded 8-km all-out run on the treadmill and 16-km all-out runs outdoors. Substrate utilization was measured using indirect calorimetry and continuous [U-(13)C]glucose infusion during 30 min of running at 58 and 77% Vo(2 max). Time to complete 8 km was negatively affected by the IT: time significantly increased by 61 +/- 23 and 155 +/- 38 s in the HCHO and Con trials, respectively. The 16-km times were significantly increased (by 8.2 +/- 2.1%) during the Con trial only. The Daily Analysis of Life Demands of Athletes questionnaire showed significant deterioration in mood states in both trials, whereas deterioration in global mood scores, as assessed with the Profile of Mood States, was more pronounced in the Con trial. Scores for fatigue were significantly higher in the Con compared with the HCHO trial. CHO oxidation decreased significantly from 1.7 +/- 0.2 to 1.2 +/- 0.2 g/min over the course of the Con trial, which was completely accounted for by a decrease in muscle glycogen oxidation. These findings indicate that an increase in dietary CHO content from 5.4 to 8.5 g CHO x kg(-1)x day(-1) (41 vs. 65% total energy intake, respectively) allowed better maintenance of physical performance and mood state over the course of training, thereby reducing the symptoms of overreaching.  相似文献   

9.
We combined tracer and arteriovenous (a-v) balance techniques to evaluate the effects of exercise and endurance training on leg triacylglyceride turnover as assessed by glycerol exchange. Measurements on an exercising leg were taken to be a surrogate for working skeletal muscle. Eight men completed 9 wk of endurance training [5 days/wk, 1 h/day, 75% peak oxygen consumption (Vo(2peak))], with leg glycerol turnover determined during two pretraining trials [45 and 65% Vo(2peak) (45% Pre and 65% Pre, respectively)] and two posttraining trials [65% of pretraining Vo(2peak) (ABT) and 65% of posttraining Vo(2peak) (RLT)] using [(2)H(5)]glycerol infusion, femoral a-v sampling, and measurement of leg blood flow. Endurance training increased Vo(2peak) by 15% (45.2 +/- 1.2 to 52.0 +/- 1.8 mlxkg(-1)xmin(-1), P < 0.05). At rest, there was tracer-measured leg glycerol uptake (41 +/- 8 and 52 +/- 15 micromol/min for pre- and posttraining, respectively) even in the presence of small, but significant, net leg glycerol release (-68 +/- 19 and -50 +/- 13 micromol/min, respectively; P < 0.05 vs. zero). Furthermore, while there was no significant net leg glycerol exchange during any of the exercise bouts, there was substantial tracer-measured leg glycerol turnover during exercise (i.e., simultaneous leg muscle uptake and leg release) (uptake, release: 45% Pre, 194 +/- 41, 214 +/- 33; 65% Pre, 217 +/- 79, 201 +/- 84; ABT, 275 +/- 76, 312 +/- 87; RLT, 282 +/- 83, 424 +/- 75 micromol/min; all P < 0.05 vs. corresponding rest). Leg glycerol turnover was unaffected by exercise intensity or endurance training. In summary, simultaneous leg glycerol uptake and release (indicative of leg triacylglyceride turnover) occurs despite small or negligible net leg glycerol exchange, and furthermore, leg glycerol turnover can be substantially augmented during exercise.  相似文献   

10.
Glucagon-like peptide-2 (GLP-2) is a nutrient-dependent, intestinotrophic hormone derived from posttranslational processing of proglucagon in the distal bowel. GLP-2 is thought to act through indirect mediators, such as IGF-I. We investigated whether intestinal expression of GLP-2 and IGF-I system components are increased with the mucosal growth induced by enteral nutrient (EN) and/or a low dose of GLP-2 in parenterally fed rats. Rats were randomized to four treatment groups using a 2 x 2 design and maintained with parenteral nutrition (PN) for 7 days: PN alone, EN, GLP-2, and EN+GLP-2; n = 7-9. The two main treatment effects are +/-GLP-2 (100 microg.kg body wt(-1).day(-1)) and +/-EN (43% of energy needs, days 4-6). Combination treatment with EN+GLP-2 induced synergistic intestinal growth in ileum, resulting in greater mucosal cellularity, sucrase segmental activity, and gain of body weight (ENxGLP-2, P < 0.04). In addition, EN+GLP-2 induced a significant 28% increase in plasma concentration of bioactive GLP-2, a significant 102% increase in ileal proglucagon mRNA with no change in ileal dipeptidyl peptidase-IV (DPP-IV) specific activity, and significantly reduced plasma DPP-IV activity compared with GLP-2. This indicates that EN potentiates the intestinotrophic action of GLP-2. Proliferation of enterocytes due to GLP-2 infusion was associated with greater expression of ileal proglucagon, GLP-2 receptor, IGF-I, IGF binding protein-3 mRNAs, and greater IGF-I peptide concentration in ileum (P < 0.032). Ileal IGF-I mRNA was positively correlated with expression of proglucagon, GLP-2R, and IGFBP-5 mRNAs (R2 = 0.43-0.56, P < 0.0001). Our findings support the hypothesis that IGF-I is one of the downstream mediators of GLP-2 action in a physiological model of intestinal growth.  相似文献   

11.
Circulating IGF-I is correlated with fitness, but results of prospective exercise training studies have been inconsistent, showing both increases and decreases in IGF-I. We hypothesized that energy balance, often not accounted for, is a regulating variable such that training plus an energy intake deficit would cause a reduction in IGF-I, whereas training plus energy intake excess would lead to an increased IGF-I. To test this, 19 young, healthy men completed a 7-day strenuous exercise program in which they were randomly assigned to either a positive energy balance [overfed (OF), n = 10] or negative energy balance [underfed (UF), n = 9] group. IGF-I (free and total), insulin, and IGF-binding protein-1 were measured before, during, and 1 wk after the training. Weight decreased in the UF subjects and increased in the OF subjects. Free and total IGF-I decreased substantially in the UF group (P < 0.0005 for both), but, in the OF group, IGF-I remained unchanged. The UF group also demonstrated an increase in IGF-binding protein-1 (P < 0.027), whereas glucose levels decreased (P < 0.0005). In contrast, insulin was reduced in both the OF and UF exercise-training groups (P < 0.044). Finally, within 7 days of the cessation of the diet and training regimen, IGF-I and IGF-binding protein-1 in the UF group returned to preintervention levels. We conclude that energy balance during periods of exercise training influences circulating IGF-I and related growth mediators. Exercise-associated mechanisms may inhibit increases in IGF-I early in the course of a training protocol, even in overfed subjects.  相似文献   

12.
The hypothesis that high-altitude weight loss can be prevented by increasing energy intake to meet energy requirement was tested in seven men, 23.7 +/- 4.3 (SD) yr, taken to 4,300 m for 21 days. Energy intake required to maintain body weight at sea level was found to be 3,118 +/- 300 kcal/day, as confirmed by nitrogen balance. Basal metabolic rate (BMR), determined by indirect calorimetry, increased 27% on day 2 at altitude and then decreased and reached a plateau at 17% above the sea level BMR by day 10. Energy expended during strenuous activities was 37% lower at altitude than at sea level. Fecal excretion of energy, nitrogen, total fiber, and total volatile fatty acids was not significantly affected by altitude. Energy intake at altitude was adjusted after 1 wk, on the basis of the increased BMR, to 3,452 +/- 452 kcal/day. Mean nitrogen balance at altitude was negative (-0.25 +/- 0.71 g/day) before energy intake was adjusted but rose significantly thereafter (0.20 +/- 0.71 and 0.44 +/- 0.66 g/day during weeks 2 and 3). Mean body weight decreased 2.1 +/- 1.0 kg over the 3 wk of the study, but the rate of weight loss was significantly diminished after the increase in energy intake (201 +/- 75 vs. 72 +/- 48 g/day). Individual regression lines drawn through 7-day segments of body weight showed that in four of seven subjects the slopes of body weight were not significantly different from zero after the 2nd wk. Thus weight loss ceased in four of seven men in whom increased BMR at altitude was compensated with increased energy intake.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
In blood, circulating IGFs are bound to six high-affinity IGFBPs, which modulate IGF delivery to target cells. Serum IGFs and IGFBP-3, the main carrier of IGFs, are upregulated by GH. The functional role of serum IGFBP-3-bound IGFs is not well understood, but they constitute the main reservoir of IGFs in the circulation. We have used an equation derived from the law of mass action to estimate serum IGFBP-3-bound IGF-I and IGFBP-3-bound IGF-II, as well as serum free IGF-I and free IGF-II, in 129 control children and adolescents (48 girls and 81 boys) and in 13 patients with GHD. Levels of serum total IGF-I, total IGF-II, IGFBP-1, IGFBP-2 and IGFBP-3 were determined experimentally, while those of IGFBP-4, IGFBP-5 and IGFPB-6, as well as the 12 affinity constants of association of the two IGFs with the six IGFBPs, were taken from published values. A correction for in vivo proteolysis of serum IGFBP-3 was also considered. In controls, serum total IGF-I, total IGF-II, IGFBP-3, IGFBP-3-bound IGF-I, IGFBP-3-bound IGF-II and free IGF-I increased linearly with age, from less than 1 to 15 years, in the two sexes. The concentrations of serum free IGF-I and free IGF-II were approximately two orders of magnitude below published values, as well as below the affinity constant of association of IGF-I with the type-1 IGF receptor. Therefore, it is unlikely that these levels can interact with the receptor. In the 13 patients with GHD, mean (+/- SD) SDS of serum IGFBP-3-bound IGF-I was -2.89 +/- 0.97. It was significantly lower than serum total IGF-I, free IGF-I or IGFBP-3 SDSs (-2.35 +/- 0.83, -1.12 +/- 0.78 and -2.55 +/- 1.07, respectively, p = 0.0001). The mean SDS of serum total IGF-II, IGFBP-3-bound IGF-II and free IGF-II were -1.25 +/- 0.68, -2.03 +/- 0.87 and 0.59 +/- 1.10, respectively, in GHD. In control subjects, 89.8 +/- 4.47% of serum total IGF-I and 77.3 +/- 9.4% of serum total IGF-II were bound to serum IGFBP-3. In patients with GHD, the mean serum IGFBP-3-bound IGF-I and IGFBP-3-bound IGF-II were 8.63 +/- 8. 53 and 19.1 +/- 14.7% below the respective means of control subjects (p < 0.02). In conclusion, in GHD there was a relative change in the distribution of serum IGFs among IGFBPs, due to the combined effects of the decrease in both total IGF-I and IGFBP-3. As a result, serum IGFBP-3-bound IGF-I and IGFBP-3 bound IGF-II, the main reservoirs of serum IGFs, were severely affected. This suggests that the decrease in serum IGFPB-3-bound IGF-I and IGFBP-3-bound IGF-II might have a negative effect for growth promotion and other biological effects of IGF-I and IGF-II. Finally, the estimation of serum IGFBP-3-bound IGF-I, or the percentage of total IGF-I and IGF-II bound to IGFBP-3, might be useful markers in the diagnosis of GHD.  相似文献   

14.
Exercise leads to simultaneous increases in mediators signaling apparently antagonistic functional responses such as growth factors and inflammatory mediators. The aim of the present study was to demonstrate the physiological effect of IL-6 on circulating components of the growth hormone (GH)-insulin-like growth factor-I (IGF-I) axis. Twelve men (ages 26 +/- 2 yr) were divided into two groups (n = 6 in each group), receiving either albumin or recombinant human (rh) IL-6 infusion. IL-6 was infused via an antecubital vein, and a contralateral antecubital vein was used for blood sampling. The IL-6 dose was chosen to reach plasma levels of IL-6 characteristic of intense exercise (5 microg/h, for 3 h, resulting in plasma levels of 100 pg/ml). Blood samples for GH, GH binding protein, IGF-I, and IGF binding protein (IGFBP)-1 and -3 were collected at baseline, 30 min, and 1, 2, 3, 4, 5, and 8 h after the beginning of the rhIL-6 infusion. IL-6 levels increased only in the rhIL-6-infused group (P < 0.0005) and returned to baseline after the infusion was stopped. IL-6 infusion led to a significant increase in GH, peaking 1 h after the beginning of infusion (P < 0.001). A decrease in total IGF-I levels was noted only in the rhIL-6-infused group (P < 0.027). An initial decrease in IGFBP-1 levels was noted in both groups during infusion (P < 0.03). Following the initial decrease, there was a significant increase in IGFBP-1 levels only in the IL-6-infused participants, peaking at 2 after the infusion cessation (P < 0.001). IL-6 infusion had no effect on GH binding protein, IGFBP-3, and acid-labile subunit levels. rhIL-6 levels similar to the levels found after strenuous exercise induced a typical exercise-associated GH-->IGF-I axis response (increase GH, decreased IGF-I, and elevated IGFBP-1). The results suggest that IL-6 plays a role in the GH-->IGF-I response to intense exercise.  相似文献   

15.
INTRODUCTION: The liver is the main source of serum insulin-like growth factors (IGFs) and IGF-binding proteins (IGFBPs) and the concentration of these proteins might reflect liver function. METHODS: In a retrospective longitudinal study we examined serum levels of total and free IGF-I, IGF-II, IGFBP-1, IGFBP-2, IGFBP-3 and IGFBP-6 in 21 adult patients with end-stage liver disease before and after orthotopic liver transplantation (LTX) by sensitive and specific RIAs. In each patient, the mean value of at least three measurements before and after LTX was calculated. RESULTS: Before LTX, serum levels of total and free IGF-I, IGF-II, IGFBP-3 were low and showed a rapid and significant increase in almost all patients after successful LTX (total IGF-I: 30 +/- 7 vs. 256 +/- 30 ng/ml, p < 0.001; free IGF-I: 1.3 +/- 0.3 vs. 3.5 +/- 0.6 ng/ml, p < 0.01; IGF-II: 177 +/- 28 vs. 618 +/- 30 ng/ml, p < 0.001; IGFBP-3: 1,230 +/- 136 vs. 3,665 +/- 264 ng/ml, p < 0.001). In contrast, IGFBP-1 was found to be high immediately before LTX, and declined to normal levels after LTX (210 +/- 40 vs. 90 +/- 15 ng/ml, p < 0.01), while IGFBP-2 did not show any significant changes (1,154 +/- 296 vs. 1,303 +/- 192 ng/ ml). Positive correlations were found between IGF-I, IGF-II or IGFBP-3, and serum pseudocholinesterase (R = 0.50, 0.72 and 0.61 respectively, p < 0.001). Negative correlations were found between IGF-I, IGF-II or IGFBP-3, and prothrombin time (R = 0.50, 0.59 and 0.51 respectively, p < 0.001). CONCLUSION: Patients with severe liver disease show decreased levels of total and free IGF-I, IGF-II and IGFBP-3, and increased levels of IGFBP-1. These abnormalities are promptly normalized after successful LTX. Thus, serum levels of IGF-I, IGF-II and IGFBP-3 might be useful parameters for the assessment of liver function.  相似文献   

16.
The effects of prolonged caloric restriction (CR) on protein kinetics in lean subjects has not been investigated previously. The purpose of this study was to test the hypotheses that 21 days of CR in lean subjects would 1) result in significant losses of lean mass despite a suppression in leucine turnover and oxidation and 2) negatively impact exercise performance. Nine young, normal-weight men [23 +/- 5 y, 78.6 +/- 5.7 kg, peak oxygen consumption (Vo2 peak) 45.2 +/- 7.3 ml.kg(-1).min(-1), mean +/- SD] were underfed by 40% of the calories required to maintain body weight for 21 days and lost 3.8 +/- 0.3 kg body wt and 2.0 +/- 0.4 kg lean mass. Protein intake was kept at 1.2 g.kg(-1).day(-1). Leucine kinetics were measured using alpha-ketoisocaproic acid reciprocal pool model in the postabsorptive state during rest and 50 min of exercise (EX) at 50% of Vo2 peak). Body composition, basal metabolic rate (BMR), and exercise performance were measured throughout the intervention. At rest, leucine flux (approximately 131 micromol.kg(-1).h(-1)) and oxidation (R(ox); approximately 19 micromol.kg(-1).h(-1)) did not differ pre- and post-CR. During EX, leucine flux (129 +/- 6 vs. 121 +/- 6) and R(ox) (54 +/- 6 vs. 46 +/- 8) were lower after CR than they were pre-CR. Nitrogen balance was negative throughout the intervention ( approximately 3.0 g N/day), and BMR declined from 1,898 +/- 262 to 1,670 +/- 203 kcal/day. Aerobic performance (Vo2 peak, endurance cycling) was not impacted by CR, but arm flexion endurance decreased by 20%. In conclusion, 3 wk of caloric restriction reduced leucine flux and R(ox) during exercise in normal-weight young men. However, despite negative nitrogen balance and loss of lean mass, whole body exercise performance was well maintained in response to CR.  相似文献   

17.
BACKGROUND/AIMS: To investigate changes in free insulin-like growth factor I (IGF-I) and IGF-binding protein 1 (IGFBP-1) complexed IGF-I during human pregnancy. METHODS: Overnight fasting serum was obtained in a longitudinal design from 11 women with non-complicated pregnancy at gestation weeks 6-10, 16-20, 24-28 and 35-38 and, for comparison, 5 weeks post-partum. All samples were analyzed for total and free IGF-I and IGF-II, IGFBP-3 and IGFBP-3 proteolysis, total and non-phosphorylated (np-) IGFBP-1, and IGFBP-1 complexed IGF-I. RESULTS: Total IGF-I was increased in late pregnancy (week 35-38) (p < 0.001), whereas free IGF-I was significantly increased by 77% already at week 6-10 (p = 0.004) and by 140% (p = 0.002) at week 34-38, when compared to post-partum levels. At weeks 16-20 and 24-28, levels of free IGF-I were not significantly different from post-partum levels. Significant IGFBP-3 proteolysis was detectable from week 6-10 and throughout pregnancy (p < 0.05). Total and np-IGFBP-1 were significantly increased from 16-20 weeks of pregnancy (both p < 0.05) and IGFBP-1 complexed IGF-I was increased 2-fold from week 16-20 and throughout pregnancy (p < 0.05). However, the saturation of IGFBP-1 remained constant at 27-29% during the study. CONCLUSION: We found evidence of increased free IGF-I and increased IGF-I in binary complexes during pregnancy, possibly caused by IGFBP-3 proteolysis and decreased ternary complex formation.  相似文献   

18.
Although muscle satellite cells were identified almost 40 years ago, little is known about the induction of their proliferation and differentiation in response to physiological/pathological stimuli or to growth factors/cytokines. In order to investigate the role of the insulin-like growth factor (IGF)/IGF binding protein (IGFBP) system in adult human myoblast differentiation we have developed a primary human skeletal muscle cell model. We show that under low serum media (LSM) differentiating conditions, the cells secrete IGF binding proteins-2, -3, -4 and -5. Intact IGFBP-5 was detected at days 1 and 2 but by day 7 in LSM it was removed by proteolysis. IGFBP-4 levels were also decreased at day 7 in the presence of IGF-I, potentially by proteolysis. In contrast, we observed that IGFBP-3 initially decreased on transfer of cells into LSM but then increased with myotube formation. Treatment with 20 ng/ml tumour necrosis factor-alpha (TNFalpha), which inhibits myoblast differentiation, blocked IGFBP-3 production and secretion whereas 30 ng/ml IGF-I, which stimulates myoblast differentiation, increased IGFBP-3 secretion. The TNFalpha-induced decrease in IGFBP-3 production and inhibition of differentiation could not be rescued by addition of IGF-I. LongR(3)IGF-I, which does not bind to the IGFBPs, had a similar effect on differentiation and IGFBP-3 secretion as IGF-I, both with and without TNFalpha, confirming that increased IGFBP-3 is not purely due to increased stability conferred by binding to IGF-I. Furthermore reduction of IGFBP-3 secretion using antisense oligonucleotides led to an inhibition of differentiation. Taken together these data indicate that IGFBP-3 supports myoblast differentiation.  相似文献   

19.
Plasma and red cell volumes, body density, and water balance were measured in 19 men (32-42 yr) confined to bed rest (BR). One group (n = 5) had no exercise training (NOE), another near-maximal variable-intensity isotonic exercise for 60 min/day (ITE; n = 7), and the third near-maximal intermittent isokinetic exercise for 60 min/day (IKE; n = 7). Caloric intake was 2,678-2,840 kcal/day; mean body weight (n = 19) decreased by 0.58 +/- 0.35 (SE) kg during BR due to a negative fluid balance (diuresis) on day 1. Mean energy costs for the NOE, and IKE, and ITE regimens were 83 (3.6 +/- 0.2 ml O2.min-1.kg-1), 214 (8.9 +/- 0.5 ml.min-1.kg-1), and 446 kcal/h (18.8 +/- 1.6 ml.min-1.kg-1), respectively. Body densities within groups and mean urine volumes (1,752-1,846 ml/day) between groups were unchanged during BR. Resting changes in plasma volume (ml/kg) after BR were -1.5 +/- 2.3% (NS) in ITE, -14.7 +/- 2.8% (P less than 0.05) in NOE, and -16.8 +/- 2.9% (P less than 0.05) in IKE, and mean water balances during BR were +295, -106, and +169 ml/24 h, respectively. Changes in red cell volume followed changes in plasma volume. The significant chronic decreases in plasma volume in the IKE and NOE groups and its maintenance in the ITE group could not be accounted for by water balance or by responses of the plasma osmotic, protein, vasopressin, or aldosterone concentrations or plasma renin activity. There was close coupling between resting plasma volume and plasma protein and osmotic content.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Changes in the activity of serum gamma-glutamyl transpeptidase (gamma-GTP) and the percentage of the gamma-GTP fraction in healthy young men given a high carbohydrate diet (480-636 g/day, 80% of the total energy) for 21 days were examined. Serum total gamma-GTP activity showed no significant change in four healthy young volunteers who received high carbohydrate diet for 21 days. However, the percentage of the gamma-GTP (1) fraction increased significantly (P less than 0.01) from the basal level of 55.6 +/- 4.0% to 67.6 +/- 0.9% on day 10, and then decreased to 58.4 +/- 1.4% on day 21. When the experimental diet was replaced by usual diet, the percentage of the gamma-GTP (1) fraction returned to the same level as before the experiment. It is concluded from the results that the nutrient intake affects the percentage of gamma-GTP (1), but not the total serum gamma-GTP activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号