首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spontaneously hypertensive rats (SHR) and normotensive control, Wistar/Kyoto (WKY) rats through two generations were fed a semipurified diet supplemented either with safflower oil (rich in linoleate) or with perilla oil (rich in alpha-linolenate). The cerebral lipid contents and phospholipid compositions did not differ between the two dietary groups of SHR rats. There were also no differences in the unsaturated/saturated ratios of individual phospholipids or the proportions of plasma-logens. However, the proportions of (n-3) and (n-6) fatty acids were significantly different. Decreases in the proportions of docosahexaenoate [22:6 (n-3)] in phosphatidylethanolamine and phosphatidylserine in the safflower oil group were compensated for with increases in the proportions of docosatetraenoic [22:4 (n-6)] and docosapentaenoic [22:5 (n-6)] acids as compared with the perilla oil group. These differences in phospholipid acyl chains were much smaller than the difference in the proportions of linoleate and alpha-linolenate of the diets. In a brightness-discrimination learning test, the total number of responses to the positive and negative stimuli were less in the groups fed perilla oil. However, the alpha-linolenate-deficient group took longer to decrease the frequency of R- responses and therefore longer to learn the discrimination. Consequently, the correct response ratios were higher in the perilla oil groups than in the safflower oil groups. Thus, the dietary alpha-linolenate/linoleate balance influenced the (n-3)/(n-6) balance of polyenoic fatty acids differently among brain phospholipids.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Rats were fed semi-purified diets supplemented either with safflower seed oil rich in linoleate (18:2n-6) or with perilla seed oil rich in alpha-linolenate (18:3n-3) through two generations. In the major phospholipids of polymorphonuclear leukocytes (PMNs), the proportions of n-6 polyunsaturated fatty acids (18:2, 20:4, 22:4 and 22:5) were higher but those of n-3 acids (20:5, 22:5 and 22:6) were lower in the safflower group than in the perilla group. When stimulated with a calcium ionophore, the PMNs from the safflower group produced 27% more leukotriene (LT)B4 than those from the perilla group. The formation of LTB5 which has biological activities less than 1/10 those of LTB4, was negligible in the safflower group but was 40 ng/10(7) PMN cells in the perilla group. The amount of the total LTB formed in the perilla group tended to be more than in the safflower group. The formation of SRS-A (slow-reacting substances of anaphylaxis) by PMNs was determined by measuring the spasmogenic activities of LTs on guinea pig ileum. SRS-A activity was 59% higher in the safflower group than in the perilla group. In contrast, histamine release from rat peritoneal mast cells was not significantly different between the two groups. Thus, the increasing the alpha-linolenate/linoleate ratio of diets results in the decreased formation of LTs derived from 20:4n-6 in PMNs. This may be beneficial in lowering the severity of allergic and inflammatory responses caused by LTs, and thereby shifting the pathological symptoms to normal self-defense mechanism.  相似文献   

3.
Following the suckling period, stroke-prone spontaneously hypertensive rats (SHR-SP) were fed semi-purified diets supplemented either with safflower seed oil (rich in linoleic acid) or with perilla seed oil (rich in alpha-linolenic acid). The mean survival time of male SHR-SP fed the perilla diet was longer than that fed the safflower diet by 17% (p less than 0.001) while the difference was 15% in female SHR-SP (p less than 0.05). The mean survival times of female SHR-SP were more than 40% longer than those of male SHR-SP in both dietary groups. Post-mortem examinations of brains revealed apoplexy-related symptoms as the major cause of the death in both dietary groups. The systolic blood pressure was lower by ca. 10% (21 mmHg) in the perilla group than in both the safflower group and conventional diet group. The eicosapentaenoate (20:5 n-3)/arachidonate (20:4 n-6) ratio of platelet phospholipids in spontaneously hypertensive rat (SHR), a measure of platelet aggregability, was much higher in the perilla group than in the safflower group. Thus, increasing the dietary alpha-linolenate/linoleate ratio resulted in an increased mean survival time of SHR-SP rats, possibly by lowering blood pressure and platelet aggregability.  相似文献   

4.
We examined the effect of dietary alpha-linolenate (18:3n-3)/linoleate (18:2n-6) balance on lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF) production in mouse macrophages. Resident and casein-induced peritoneal macrophages from mice fed a high alpha-linolenate diet produced a higher amount of TNF than in the high linoleate diet group. However, TNF production was not affected by the dietary alpha-linolenate/linoleate balance when thioglycollate- and complete Freund's adjuvant-induced macrophages were stimulated with LPS. Serum TNF levels of mice intraperitoneally injected with LPS was also higher in the high alpha-linolenate group than in the high linoleate group. These diets affected the n-3/n-6 ratios of 20 and 22 carbon highly unsaturated fatty acids in macrophage lipids. Thus, the dietary enrichment with alpha-linolenate was found to enhance TNF production of macrophages isolated under limited conditions.  相似文献   

5.
General behavioral patterns of rats or mice fed 5 wt% safflower oil (75% linoleate [n-6] and less than 0.1% alpha-linolenate [n-3]) for two generations were significantly different from those of animals fed 5 wt% perilla oil (15% n-6 and 55% n-3). Also, brightness-discrimination learning ability and retinal function were higher in the perilla group than in the group fed 5 wt% soybean oil (53% n-6 and 4.7% n-3) or safflower oil, indicating that the requirement of n-3 for the maximum responses of the nervous system is above 0.6 en% when there is 6.8 en% linoleate n-6. Perilla oil has been found to be beneficial for the suppression of carcinogenesis, allergic hyperreactivity, thrombotic tendency, apoplexy, hypertension, and aging in animals, as compared with soybean oil and safflower oil. These results are against a lipid peroxide theory of aging, carcinogenesis, and chronic diseases. Animal experiments and epidemiological studies lead to a recommendation that the intake of n-6 should be decreased to as low as 2-4 en% and that of n-3 be increased to levels higher than linoleate n-6 for the prevention of chronic diseases prevailing in the industrialized countries.  相似文献   

6.
We have noted that n-3 fatty acid-rich oils, such as fish oil, perilla oil and flaxseed oil as well as ethyl docosahexaenoate (DHA) prolonged the survival time of stroke-prone spontaneously hypertensive rats (SHRSP) rats by approximately 10% as compared with linoleate (n-6)-rich safflower oil. Rapeseed oil with a relatively low n-6/n-3 ratio unusually shortened the survival time by approximately 40%, suggesting the presence of minor components unfavorable to SHRSP rats. This study examined the effects of dietary oils and DHA on renal injury and gene expression related to renal injury in SHRSP rats. Rats fed rapeseed oil- and safflower oil-supplemented diets developed more severe proteinuria than those fed soybean oil-supplemented diet used as a control, but there were no significant differences in blood pressure. In contrast, the DHA-supplemented diet inhibited the development of proteinuria and suppressed hypertension. The mRNA levels for renal TGF-beta, fibronectin and renin were higher in the rapeseed oil and safflower oil groups after 9 weeks of feeding of the experimental diet than in the soybean oil and DHA groups. The fatty acid composition of kidney phospholipids was markedly affected by these diets. These results indicate that the renal injury observed in the groups fed safflower oil with a high n-6/n-3 ratio and rapeseed oil with presumed minor components is accompanied by increased expression of the TGF-beta, renin and fibronectin genes, and that dietary DHA suppresses renal injury and gene expression as compared with soybean oil.  相似文献   

7.
Donryu strain rats through two generations were fed semi-purified diets supplemented with safflower seed oil (rich in linoleic acid) or with perilla seed oil (rich in alpha-linolenic acid), or a conventional laboratory chow (normal control diet). Brightness-discrimination learning ability was determined to be the highest in the perilla oil-fed group, followed by the normal group, and then by the safflower group, extending our earlier observation in a different strain of rat that alpha-linolenic acid is a factor in maintaining high learning ability (Yamamoto, N., M. Saitoh, A. Moriuchi, M. Nomura, and H. Okuyama. 1987. J. Lipid Res. 28: 144-151). After the brightness-discrimination learning test was administered, extinction of learning was measured. The time required for extinction was significantly longer in the safflower group than in either the perilla group or the normal diet group. Thus, the dietary alpha-linolenate/linoleate balance affected both the learning and the extinction of learning. The glycolipids of the cerebrum, cerebellum, and olfactory lobe were analyzed. Although the fatty acid compositions of the sulfatide and gangliosides were significantly different in the three parts of the brain, relatively little difference was observed in the fatty acids of glycolipids between the safflower group and the perilla group, suggesting that gross changes in brain glycolipids are not responsible for the differences in learning abilities between these dietary groups.  相似文献   

8.
The interaction of dietary fats and proteins on lipid parameters of rats was studied using safflower oil (linoleic acid-rich), borage oil (gamma-linolenic acid-rich) or perilla oil (alpha-linolenic acid-rich) in combination with casein or soybean protein. The experiment was focused on the fatty acid composition of immune cells and the leukotriene B4 production by peritoneal exudate cells. Serum total cholesterol, triglyceride, and phospholipid levels were low in perilla oil-fed or soybean protein-fed rats. Fatty acid compositions of serum and liver phospholipids reflected those of dietary fats. However, feeding borage oil resulted in a marked increase in the proportion of dihomo-gamma-linolenic acid in phospholipids of peritoneal exudate cells, spleen lymphocytes, and mesenteric lymph node lymphocytes in relation to those of liver and serum. It is suggested that activities of metabolic n-6 polyunsaturated fatty acids are different between immune and other tissues. In addition, the magnitude of the reduction of the proportion of linoleic acid of perilla oil in immune cells was considerably more moderate than serum and liver, indicating a different degree of interference of alpha-linolenic acid with linoleic acid metabolism. Leukotriene release from peritoneal exudate cells was in the order of safflower oil > borage oil > perilla oil groups as reflecting the proportion of arachidonic acid, and tended to be lower in soybean protein-fed groups. These suggest an anti-inflammatory property of gamma-linolenic acid as well as alpha-linolenic acid tended to be strengthened when they were combined with soybean protein than with casein.  相似文献   

9.
Rats fed a semipurified diet supplemented with 3% (w/w) safflower oil [Saf, n-3 fatty acid deficient, high linoleic acid (18:2n-6)] through two generations exhibit decreased correct response ratios in a brightness-discrimination learning test compared with rats fed 3% perilla oil [Per, high alpha-linolenic acid (18:3n-3)]. This is associated with a decreased DHA (22:6n-3)-to-arachidonic acid (20:4n-6) ratio in brain lipids. In the first set of experiments, dietary oil was shifted from Saf to a mixture of 2.4% safflower oil plus 0.6% DHA after weaning (Saf-DHA), but all parameters measured in the learning test were essentially unchanged. Brain 22:6n-3 content of the Saf-DHA group reached that of the Per group but the levels of 20:4n-6 and docosatetraenoic acid (22:4n-6) did not decrease to those of the Per group at the start of the test. In the second set of experiments, dietary oil was shifted to a mixture of 0.6% safflower oil plus 1.2% oleic acid (OA) plus 1.2% DHA (Saf-OA-DHA group) with 18:2n-6 content comparable to that of the Per group. The Saf-OA-DHA group exhibited a learning performance similar to that of the Per group; brain 22:6n-3, 20:4n-6, and 22:4n-6 contents were also comparable to those of the Per group. These results indicate that the altered learning behavior associated with a long-term n-3 fatty acid deficiency is reversed by supplementing 22:6n-3 after weaning, when the levels of competing n-6 fatty acids in the diet and brain lipids are limited.  相似文献   

10.
The effect of dietary oleate levels (18, 39, 57 and 74% of total fatty acids) on various lipid parameters was studied in rats given cholesterol-enriched diets containing fat with a constant P/S (3.1–3.2) and n-6/n-3 (5.4–6.2) ratio. High-oleic safflower oil was used as a source of oleic acid, and was replaced stepwise with a mixture of cotton seed and perilla seed oils. After three weeks of feeding, there were no significant differences in the concentrations of serum and liver cholesterol, although they tended to increase with an increasing dietary oleate level. A hypotriglyceridemic trend was observed toward an increasing proportion of oleic acid. The linoleate desaturation index, (dihomo-γ-linolenic acid + arachidonic acid)/linoleic acid, in tissue phosphatidylcholine tended to increase with an increasing proportion of oleate, whereas the production of prostacyclin by the aorta and thromboxane A2 by platelets was independent of the dietary oleate level. These results indicate that dietary oleate did not significantly modify the effect of polyunsaturated fatty acids on various lipid parameters under dietary conditions at which the P/S and n-6/n-3 ratios of the dietary fat were kept at an appropriate level to prevent ischemic heart disease.  相似文献   

11.
Increasing evidence suggests that fetal and neonatal nutrition impacts later health. Aims of the present study were to determine the effect of maternal dietary fat composition on intestinal phospholipid fatty acids and responsiveness to experimental colitis in suckling rat pups. Female rats were fed isocaloric diets varying only in fat composition throughout gestation and lactation. The oils used were high (8%) in n-3 [canola oil (18:3n-3)], n-6 (72%) [safflower oil (18:2n-6)], or n-9 (78%) [high oleic acid safflower oil (18:1n-9)] fatty acids, n = 6/group. Colitis was induced on postnatal day 15 by intrarectal 2,4-dinitrobenzene sulfonic acid (DNBS) administration with vehicle (50% ethanol) and procedure (0.9% saline) controls. Jejunal and colonic phospholipids and milk fatty acids were determined. The distal colon was assessed for macroscopic damage, histology, and MPO activity. The 18:2n-6 maternal diet increased n-6 fatty acids, whereas the 18:3n-3 diet increased n-3 fatty acids in milk and pup jejunal and colonic phospholipids. Maternal diet, milk, and pup intestinal n-6-to-n-3 fatty acid ratios increased significantly in order: high 18:3n-3 < high 18:1n-9 < high 18:2n-6. DNBS administration in pups in the high 18:2n-6 group led to severe colitis with higher colonic damage scores and MPO activity than in the 18:1n-9 and 18:3n-3 groups. High maternal dietary 18:3n-3 intake was associated with colonic damage scores and MPO activity, which were not significantly different from ethanol controls. We demonstrate that maternal dietary fat influences the composition of intestinal lipids and responsiveness to experimental colitis in nursing offspring.  相似文献   

12.
The activities of hepatic fatty acid oxidation enzymes in rats fed linseed and perilla oils rich in alpha-linolenic acid (alpha-18:3) were compared with those in the animals fed safflower oil rich in linoleic acid (18:2) and saturated fats (coconut or palm oil). Mitochondrial and peroxisomal palmitoyl-CoA (16:0-CoA) oxidation rates in the liver homogenates were significantly higher in rats fed linseed and perilla oils than in those fed saturated fats and safflower oil. The fatty oxidation rates increased as dietary levels of alpha-18:3 increased. Dietary alpha-18:3 also increased the activity of fatty acid oxidation enzymes except for 3-hydroxyacyl-CoA dehydrogenase. Unexpectedly, dietary alpha-18:3 caused great reduction in the activity of 3-hydroxyacyl-CoA dehydrogenase measured with short- and medium-chain substrates but not with long-chain substrate. Dietary alpha-18:3 significantly increased the mRNA levels of hepatic fatty acid oxidation enzymes including carnitine palmitoyltransferase I and II, mitochondrial trifunctional protein, acyl-CoA oxidase, peroxisomal bifunctional protein, mitochondrial and peroxisomal 3-ketoacyl-CoA thiolases, 2, 4-dienoyl-CoA reductase and delta3, delta2-enoyl-CoA isomerase. Fish oil rich in very long-chain n-3 fatty acids caused similar changes in hepatic fatty acid oxidation. Regarding the substrate specificity of beta-oxidation pathway, mitochondrial and peroxisomal beta-oxidation rate of alpha-18:3-CoA, relative to 16:0- and 18:2-CoAs, was higher irrespective of the substrate/albumin ratios in the assay mixture or dietary fat sources. The substrate specificity of carnitine palmitoyltransferase I appeared to be responsible for the differential mitochondrial oxidation rates of these acyl-CoA substrates. Dietary fats rich in alpha-18:3-CoA relative to safflower oil did not affect the hepatic activity of fatty acid synthase and glucose 6-phosphate dehydrogenase. It was suggested that both substrate specificities and alterations in the activities of the enzymes in beta-oxidation pathway play a significant role in the regulation of the serum lipid concentrations in rats fed alpha-18:3.  相似文献   

13.
The effect of altering cardiac concentrations of precursors and inhibitors of prostaglandin synthesis by varying fat intake was determined in rats injected with the cardiotoxic drug isoproterenol, following pretreatment with aspirin or potassium phosphate buffer solution. Prior to injection, four groups of rats were fed either a low-fat diet (3.7 energy percent coconut oil 3.7 energy percent safflower oil) or a high-fat diet (3.7 energy percent safflower oil-36.4 energy percent coconut oil mixture or 40.1 energy percent safflower oil.) Mortality as well as fatty acid composition of cardiac lipids changed in response to altered kinds and amounts of fats. Mortality and cardiac C20:4/C22:6 ratio were lowered by feeding 3.7 energy percent coconut oil, and increased by feeding 40.1 energy percent safflower oil. Aspirin reduced mortality in rats fed 40.1 energy percent safflower oil, but not in rats fed other diets. Results suggest that dietary manipulations which increase tissue content of polyunsaturated fatty acids of the n-6 type relative to those of the n-3 type may increase sensitivity to isoproterenol, and that effectiveness of aspirin in reducing isoproterenol-induced mortality depends upon the n-6/n-3 ratio of cardiac fatty acids.  相似文献   

14.
Rats fed a safflower oil (alpha-linolenic acid (ALNA)-deficient) diet over the course of two generations had significantly decreased docosahexaenoic acid (22:6n-3) and increased docosapentaenoic acid (22:5n-6) contents in the major retinal phospholipids such as phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylserine (PS) when compared with those fed a perilla oil (ALNA-sufficient) diet, but the compositions of phosphatidylinositol acyl chains were relatively unaffected. The contents of individual phospholipids in the retina were essentially the same for the two dietary groups. The activities of the rate-limiting enzymes in the de novo synthesis of PC and PE, CTP:phosphocholine cytidylyltransferase (CT), and CTP:phosphoethanolamine cytidylyltransferase (ET), respectively, were measured in the retinas excised at 5:00, 9:00, 13:00, and 17:00 h from rats adapted to a 24-h cycle with lights on from 7:00 to 19:00 h. Both enzymes exhibited significant diurnal rhythms with the lowest activities at 5:00 h and gradually increasing activities following exposure of the rats to light; the maximum activities were at 13:00 h for CT and 17:00 h for ET. The diurnal rhythms were not significantly affected by the above-mentioned diets. However, both enzyme activities at each collection time point were significantly lower in the safflower oil group than in the perilla oil group. These results suggest that retinal phospholipid turnover associated with shedding, phagocytosis, and resynthesis of the rod outer segments is limited by ALNA deficiency.  相似文献   

15.
The activity and mRNA level of hepatic enzymes in fatty acid oxidation and synthesis were compared in rats fed diets containing either 15% saturated fat (palm oil), safflower oil rich in linoleic acid, perilla oil rich in α-linolenic acid or fish oil rich in eicosapentaenoic (EPA) and docosahexaenoic acids (DHA) for 15 days. The mitochondrial fatty acid oxidation rate was 50% higher in rats fed perilla and fish oils than in the other groups. Perilla and fish oils compared to palm and safflower oils approximately doubled and more than tripled, respectively, peroxisomal fatty acid oxidation rate. Compared to palm and safflower oil, both perilla and fish oils caused a 50% increase in carnitine palmitoyltransferase I activity. Dietary fats rich in n-3 fatty acids also increased the activity of other fatty acid oxidation enzymes except for 3-hydroxyacyl-CoA dehydrogenase. The extent of the increase was greater with fish oil than with perilla oil. Interestingly, both perilla and fish oils decreased the activity of 3-hydroxyacyl-CoA dehydrogenase measured using short- and medium-chain substrates. Compared to palm and safflower oils, perilla and fish oils increased the mRNA level of many mitochondrial and peroxisomal enzymes. Increases were generally greater with fish oil than with perilla oil. Fatty acid synthase, glucose-6-phosphate dehydrogenase, and pyruvate kinase activity and mRNA level were higher in rats fed palm oil than in the other groups. Among rats fed polyunsaturated fats, activities and mRNA levels of these enzymes were lower in rats fed fish oil than in the animals fed perilla and safflower oils. The values were comparable between the latter two groups. Safflower and fish oils but not perilla oil, compared to palm oil, also decreased malic enzyme activity and mRNA level. Examination of the fatty acid composition of hepatic phospholipid indicated that dietary α-linolenic acid is effectively desaturated and elongated to form EPA and DHA. Dietary perilla oil and fish oil therefore exert similar physiological activity in modulating hepatic fatty acid oxidation, but these dietary fats considerably differ in affecting fatty acid synthesis.  相似文献   

16.
Work by other investigators has shown that an increase in dietary content of monounsaturated fatty acids can result in a decreased plasma low density lipoprotein (LDL) cholesterol concentration. This observation, combined with the epidemiologic evidence that monounsaturated fat-rich diets are associated with decreased rates of death from coronary heart disease, suggests that inclusion of increased amounts of mono-unsaturated fat in the diet may be beneficial. The present study was carried out in a primate model, the African green monkey, to evaluate the effects of dietary monounsaturated fat on plasma lipoprotein cholesterol endpoints. Two study periods were carried out in which the fatty acid compositions of the experimental diets were varied. All diets contained 35% of calories as fat. In the first experimental period, a mixture of fats was used to set the dietary fatty acid composition to be approximately 50-60% of the desired fatty acid, either saturated, monounsaturated, or polyunsaturated (n-6). In the second experimental period, pure fats were used (palm oil, oleic acid-rich safflower oil, and linoleic acid-rich safflower oil) to maximize the difference in fatty acid composition. The effects of the more exaggerated dietary fatty acid differences of period 2 were similar to those that have been reported in humans. For the group fed the diet enriched in monounsaturated fat compared to saturated fat, whole plasma and LDL cholesterol concentrations were significantly lower while high density lipoprotein (HDL) cholesterol concentrations were not affected. For the group fed the diet enriched in polyunsaturated fat compared to saturated fat, both LDL and HDL cholesterol concentrations were significantly lower than in the group fed saturated fat. LDL cholesterol concentrations were comparable in the monounsaturated and polyunsaturated fat groups and the percentage of cholesterol in LDL was lowest in the monounsaturated fat fed group. Trends were similar for the mixed fat diets, although no statistically significant differences in plasma lipoprotein endpoints could be attributed to monounsaturated fatty acids in this dietary comparison. Since effects on plasma lipoproteins similar to those seen in humans were identified in this primate model, relevant mechanisms for the effects of dietary fatty acids on lipoprotein endpoints related to coronary artery atherosclerosis, per se, can subsequently be examined.  相似文献   

17.
Anti-thrombotic effects of omega-3 (n-3) fatty acids are believed to be due to their ability to reduce arachidonic acid levels. Therefore, weanling rats were fed n-3 acids in the form of linseed oil (18:3n-3) or fish oil (containing 20:5n-3 and 22:6n-3) in diets containing high levels of either saturated fatty acids (hydrogenated beef tallow) or high levels of linoleic acid (safflower oil) for 4 weeks. The effect of diet on the rate-limiting enzyme of arachidonic acid biosynthesis (delta 6-desaturase) and on the lipid composition of hepatic microsomal membrane was determined. Both linseed oil- or fish oil-containing diets inhibited conversion of linoleic acid to gamma-linolenic acid. Inhibition was greater with fish oil than with linseed oil, only when fed with saturated fat. delta 6-Desaturase activity was not affected when n-3 fatty acids were fed with high levels of n-6 fatty acids. Arachidonic acid content of serum lipids and hepatic microsomal phospholipids was lower when n-3 fatty acids were fed in combination with beef tallow but not when fed with safflower oil. Similarly, n-3 fatty acids (18:3n-3, 20:5n-3, 22:5n-3, and 22:6n-3) accumulated to a greater extent when n-3 fatty acids were fed with beef tallow than with safflower oil. These observations indicate that the efficacy of n-3 fatty acids in reducing arachidonic acid level is dependent on the linoleic acid to saturated fatty acid ratio of the diet consumed.  相似文献   

18.
The effect of diets containing different types of common natural oils on physical properties of red cells was investigated by using rabbits. The rabbits were fed for 18 months on a standard diet in which 8% of its energy content was provided by safflower oil and 32% energy by either more safflower oil or fish oil, linseed oil, olive oil or palm oil. Erythrocyte deformability was significantly decreased by the fish oil diet compared with each of the other diets. Osmotic fragility was significantly less (66 mM) for red cells from rabbits fed on the linseed oil diet, and significantly greater (71 mM) for red cells from rabbits on the fish oil diet, than for red cells from rabbits on the other three diets which did not differ significantly from each other (68 mM). With rabbits on the standard diet, the resistance of their erythrocytes to osmotic haemolysis was increased by chlorpromazine at concentrations below and decreased by concentrations above 30 microM. The dietary oils caused significant changes in the effects of chlorpromazine on osmotic fragility. The concentration at which the effect of chlorpromazine reversed from antihaemolytic to prohaemolytic was decreased by the safflower and linseed oil diets and increased by the fish oil diet, compared with the olive and palm oil diets. Analysis of the fatty acid compositions of the dietary oils on the one hand and of the red cell phospholipids on the other established, specifically, that in the presence of 30 microM chlorpromazine the percentage haemolysis was directly proportional to the linoleate content of the red cell phospholipids.  相似文献   

19.
Abstract: Rats fed either a safflower oil (α-linolenate-deficient) or a perilla oil (α-linolenate-sufficient) diet through two generations (F1) showed significant differences in the brightness-discrimination learning task. In this task, correct responses were lever-pressing responses, which were reinforced with dietary pellets, and incorrect responses were those with no reinforcement. The inferior learning performance in the safflower oil group was caused mainly by the inferior ability to rectify the incorrect responses through the learning sessions. In the safflower oil group after the learning task, the average densities of synaptic vesicles in the terminals of the hippocampus CA1 region were decreased by nearly 30% as compared with those in the perilla oil group, and it is notable that this difference was not detected without the learning task. These results suggest that dietary oil-induced morphological changes in synapses in the hippocampus of rats are related to the differential learning performance and that the turnover rate of synaptic vesicles in the hippocampus may be an important factor affecting learning performance.  相似文献   

20.
Avula CP  Fernandes G 《Life sciences》1999,65(22):2373-2383
The present study was undertaken to investigate the effect of n-9, n-6, and n-3 dietary fatty acid ethyl esters on basal (uninduced) and Fe2+/ascorbate (induced) lipid peroxidation (LPO) in salivary gland (SG) of mice. Feeding n-3 ethyl ester polyunsaturated fatty acids (PUFA) increased the uninduced and induced LPO in SG homogenates. In contrast, feeding olive oil ethyl esters (n-9) significantly lowered the induced and uninduced LPO in SG tissue. Salivary gland susceptibility to LPO increased in the order of: olive oil < corn oil < safflower oil < n-3 ethyl esters. Olive oil esters in the diet increased primarily the 18:1 levels in SG tissue. Whereas feeding n-3 PUFA notably increased the superoxide dismutase (SOD) and catalase activities in SG homogenates, no significant changes were seen between n-9 and n-6 PUFA-fed mice. Lower levels of Vitamin E (Vit E) in the tissues of n-3 PUFA-fed mice indicate that the higher the dietary lipid unsaturation, the higher the requirement for Vit E in the diet. Our results indicate that, similar to other organs, salivary gland susceptibility to uninduced or induced oxidation depends on the source of dietary PUFA. In conclusion, feeding olive oil increases the resistance of SGs to induced and uninduced LPO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号