首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Germination of spores of Bacillus cereus T and Bacillus subtilis 168 was inhibited by the trypsin inhibitors leupeptin and tosyllysine chloromethyl ketone (TLCK) and by the substrates tosylarginine methyl ester (TAME), benzoyl-L-arginine-p-nitroanilide (L-BAPNA) and D-BAPNA. Potencies of these inhibitory compounds were estimated by finding the concentration which inhibited 50% germination (ID50), as measured by events occurring early (loss of heat resistance), at an intermediate stage [dipicolinic acid (DPA) release], and late in germination (decrease in optical density). In B. cereus T, all the compounds inhibited early and late events with the same ID50. In B. subtilis, TAME inhibited early and late events at the same ID50, but all other inhibitors had a lower ID50 for late events than for early events. This suggests that a trypsin-like enzyme activity is involved at two sequential stages in the germination of B. subtilis spores, one occurring at or before the loss of heat resistance and one at or before the decrease in optical density. Different trypsin-like activities were detected in broken dormant spores and germinated spores of B. cereus T and in germinated spores of B. subtilis by means of three chromogenic substrates: benzoyl-L-phenylalanyl-L-valyl-L-arginine-p-nitroanilide (L-PheVA), L-BAPNA and D-BAPNA. Separation of extracts of germinated spores on non-denaturing polyacrylamide gels showed that in both species the substrates were hydrolysed by three distinct enzymes with different electrophoretic mobilities. The three enzymes had different Ki values for the above inhibitors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Trypsin-like enzymes were studied in dormant, activated, and germinated spores of Bacillus cereus T. Dormant spores contained two heat-labile enzyme activities. One was extractable with 2 M KCl and hydrolyzed azo-albumin. The second, a trypsinlike activity, was not extractable with 2 M KCl and hydrolyzed benzoyl-L-arginine-p-nitroanilide. Because of their heat instability, these two enzyme activities are probably not involved in the germination of heat-activated spores. Upon germination of heat-treated spores, a trypsinlike protease which was not detected in intact dormant spores was activated or exposed. This enzyme, when measured in intact germinated spores, hydrolyzed benzoyl-DL-arginine-p-nitroanilide but not azo-albumin and was inhibited in situ by sulfhydryl-blocking reagents such as p-chloromercuribenzoic acid and Hg2+. There was a correlation between the inhibition of germination and enzymatic activity by sulfhydryl-blocking reagents. The enzyme was also inhibited by leupeptin, tosyl-L-lysine chromoethyl ketone, and tosyl-L-arginine methyl ester. Good correlation existed between the inhibition of germination and enzymatic activity by these agents. Electron micrographs showed that in the presence of trypsin inhibitors, the spores did not lose their cortex. The protein extracts of the inhibited spores formed a somewhat different electrophoretic pattern in sodium dodecyl sulfate-polyacrylamide gel electrophoresis than the protein extracts of dormant or germinated spores.  相似文献   

3.
棉铃虫幼虫中肠主要蛋白酶活性的鉴定   总被引:28,自引:3,他引:25  
根据棉铃虫Helicoverpa armigera(Hubner)中肠酶液对蛋白酶专性底物在不同pH下的水解作用,棉铃虫中肠的3种丝氨酸蛋白酶得到鉴定。它们是:强碱性类胰蛋白酶,水 解a-N-苯甲酰-DL-精氨酸-p-硝基苯胺的最适pH在10.50以上;弱碱性类胰蛋白酶,水解p-甲苯磺酰-L-精氨酸甲酯的最适pH为8.50~9.00;类胰凝乳蛋白酶, 水解N一苯甲酰-L-酪氨酸乙酯的最适pH亦为8.50-9.00。中肠总蛋白酶活性用偶 氮酪蛋白测定,最适pH亦在10.50以上。Ca2+对昆虫蛋白酶无影响,Mg2+仅对弱碱性类胰蛋白酶有激活作用。对苯甲基磺酰氟和甲基磺酰-L-赖氨酸氯甲基酮对弱碱性类胰蛋白酶的抑制作用较强,而对强碱性类胰蛋白酶的抑制作用较弱。甲基磺酰-L苯丙氨酸氯甲基酮除能抑制类胰凝乳蛋白酶外,还能激活弱碱性类胰蛋白酶。对牛胰蛋白酶有强抑制作用的卵粘蛋白抑制剂对昆虫蛋白酶却无抑制作用。大豆胰蛋白酶抑制剂对该虫的3种丝氨酸蛋白酶均有强的抑制作用。  相似文献   

4.
M C Alliegro  H Schuel 《Biochemistry》1985,24(15):3926-3931
A serine protease from sea urchin eggs has been isolated by affinity chromatography on soybean trypsin inhibitor-agarose. Benzamidine hydrochloride was included to minimize autodegradation. We present data on the properties of the protease with respect to molecular weight and its interaction with trypsin inhibitors and substrates. The molecular weight of the enzyme is 47 000 by gel filtration under nonreducing conditions and 35 000 by electrophoresis in the presence of sodium dodecyl sulfate and dithiothreitol. The pH optimum and Km with N alpha-benzoyl-L-arginine ethyl ester (BAEE) are 8.0 and 75 microM, respectively. The specific activity is comparable to that of bovine pancreatic trypsin. Proteolytic activity was measured by beta-casein hydrolysis. The caseinolytic activity is completely inhibited by 1 mumol of soybean trypsin inhibitor (SBTI) per micromole of enzyme. BAEE esterase activity is inhibited competitively by SBTI (Ki = 1.6 nM), lima bean trypsin inhibitor (150 nM), chicken ovomucoid (100 nM), and leupeptin (130 nM). Bowman-Birk inhibitor, benzamidine hydrochloride, and antipain are also inhibitors of the purified enzyme. Inhibition by phenylmethanesulfonyl fluoride and N alpha-p-tosyl-L-lysine chloromethyl ketone indicates the presence of serine and histidine residues in the active center, respectively. The chymotrypsin inhibitor L-1-(tosylamido)-2-phenylethyl chloromethyl ketone is ineffective. The protease is susceptible to autodegradation which can result in the appearance of a minor 23-kilodalton component. The egg protease appears to be similar in many respects to trypsins and trypsin-like enzymes isolated from a wide variety of sources, including sea urchin and mammalian sperm.  相似文献   

5.
A proteolytic activity present in spores of Bacillus megaterium has previously been implicated in the initiation of hydrolysis of the A, B, and C proteins which are degraded during spore germination. Four mutants of B. megaterium containing 20 to 30% of the normal level of spore proteolytic activity have been isolated. Partial purification of the protease from wild-type spores by a reviewed procedure resulted in the resolution of spore protease activity on the A, B, and C proteins into two peaks--a major one (protease II) and a minor one (protease I). The protease mutants tested lacked active protease II. All of the mutants exhibited a decreased rate of degradation of the A, B, and C proteins during spore germination at 30 degrees C, but degradation of the proteins did occur. Degradation of the A, B, and C proteins during germination of the mutant spores was decreased neither by blockade of ATP production nor by germination at 44 degrees C. Initiation of spore germination was normal in all four mutants, and all four mutants went through outgrowth, grew, and sporulated normally in rich medium. Similarly, outgrowth of spores of two of the four mutants was normal in minimal medium at 30 degrees C. In the two mutants studied, the kinetics of loss of spore heat resistance and spore UV light resistance during germination were identical to those of wild-type spores. This indicates that the A, B, and C proteins alone are not sufficient to account for the heat or UV light resistance of the dormant spore.  相似文献   

6.
Raman spectroscopy and differential interference contrast (DIC) microscopy were used to monitor the kinetics of nutrient and nonnutrient germination of multiple individual untreated and wet-heat-treated spores of Bacillus cereus and Bacillus megaterium, as well as of several isogenic Bacillus subtilis strains. Major conclusions from this work were as follows. (i) More than 90% of these spores were nonculturable but retained their 1:1 chelate of Ca2+ and dipicolinic acid (CaDPA) when incubated in water at 80 to 95°C for 5 to 30 min. (ii) Wet-heat treatment significantly increased the time, T(lag), at which spores began release of the great majority of their CaDPA during the germination of B. subtilis spores with different nutrient germinants and also increased the variability of T(lag) values. (iii) The time period, ΔT(release), between T(lag) and the time, T(release), at which a spore germinating with nutrients completed the release of the great majority of its CaDPA, was also increased in wet-heat-treated spores. (iv) Wet-heat-treated spores germinating with nutrients had higher values of I(release), the intensity of a spore's DIC image at T(release), than did untreated spores and had much longer time periods, ΔT(lys), for the reduction in I(release) intensities to the basal value due to hydrolysis of the spore's peptidoglycan cortex, probably due at least in part to damage to the cortex-lytic enzyme CwlJ. (v) Increases in T(lag) and ΔT(release) were also observed when wet-heat-treated B. subtilis spores were germinated with the nonnutrient dodecylamine, while the change in I(release) was less significant. (vi) The effects of wet-heat treatment on nutrient germination of B. cereus and B. megaterium spores were generally similar to those on B. subtilis spores. These results indicate that (i) some proteins important in spore germination are damaged by wet-heat treatment, (ii) the cortex-lytic enzyme CwlJ is one germination protein damaged by wet heat, and (iii) the CaDPA release process itself seems likely to be the target of wet-heat damage which has the greatest effect on spore germination.  相似文献   

7.
The mechanism by which potassium sorbate inhibits Bacillus cereus T and Clostridium botulinum 62A spore germination was investigated. Spores of B. cereus T were germinated at 35 degrees C in 0.08 M sodium-potassium phosphate buffers (pH 5.7 and 6.7) containing various germinants (L-alanine, L-alpha-NH2-n-butyric acid, and inosine) and potassium sorbate. Spores of C. botulinum 62A were germinated in the same buffers but with 10 mM L-lactic acid, 20 mM sodium bicarbonate, L-alanine or L-cysteine, and potassium sorbate. Spore germination was monitored by optical density measurements at 600 nm and phase-contrast microscopy. Inhibition of B. cereus T spore germination was observed when 3,900 micrograms of potassium sorbate per ml was added at various time intervals during the first 2 min of spore exposure to the pH 5.7 germination medium. C. botulinum 62A spore germination was inhibited when 5,200 micrograms of potassium sorbate per ml was added during the first 30 min of spore exposure to the pH 5.7 medium. Potassium sorbate inhibition of germination was reversible for both B. cereus T and C. botulinum 62A spores. Potassium sorbate inhibition of B. cereus T spore germination induced by L-alanine and L-alpha-NH2-n-butyric acid was shown to be competitive in nature. Potassium sorbate was also a competitive inhibitor of L-alanine- and L-cysteine-induced germination of C. botulinum 62A spores.  相似文献   

8.
Germination of Single Bacterial Spores   总被引:4,自引:1,他引:3       下载免费PDF全文
Changes in refractility and optical density occurring in individual spores of Bacillus cereus T and B. megaterium QM B1551 during germination were investigated by use of a Zeiss microscope photometer. The curves revealed that the germination process in single spores had two distinct phases; an initial rapid phase was followed by a second slower phase. Under the experimental condition employed, the first phase of germination of B. cereus spores lasted for approximately 75 +/- 15 sec, whereas the second phase lasted for 3 to 4.5 min. In B. megaterium spores, the first phase was observed to last for approximately 2 min and the second phase for more than 7 min. The duration of the second phase was dependent on conditions employed for germination. The kinetics of the first phase were strikingly similar under all conditions of physiological germination. Time-lapse phase-contrast microscopy of germinating spores also revealed the biphasic nature of germination. It was postulated that the first phase represents changes induced by an initial partial hydration of the spore and release into the medium of dipicolinic acid, whereas the second phase reflects degradation of the cortex and hydration of the core.  相似文献   

9.
AIMS: To determine the mechanism of action of inhibitors of the germination of spores of Bacillus species, and where these inhibitors act in the germination process. METHODS AND RESULTS: Spores of various Bacillus species are significant agents of food spoilage and food-borne disease, and inhibition of spore germination is a potential means of reducing such problems. Germination of the following spores was studied: (i) wild-type B. subtilis spores; (ii) B. subtilis spores with a nutrient receptor variant allowing recognition of a novel germinant; (iii) B. subtilis spores with elevated levels of either the variant nutrient receptor or its wild-type allele; (iv) B. subtilis spores lacking all nutrient receptors and (v) wild-type B. megaterium spores. Spores were germinated with a variety of nutrient germinants, Ca2+-dipicolinic acid (DPA) and dodecylamine for B. subtilis spores, and KBr for B. megaterium spores. Compounds tested as inhibitors of germination included alkyl alcohols, a phenol derivative, a fatty acid, ion channel blockers, enzyme inhibitors and several other compounds. Assays used to assess rates of spore germination monitored: (i) the fall in optical density at 600 nm of spore suspensions; (ii) the release of the dormant spore's large depot of DPA; (iii) hydrolysis of the dormant spore's peptidoglycan cortex and (iv) generation of CFU from spores that lacked all nutrient receptors. The results with B. subtilis spores allowed the assignment of inhibitory compounds into two general groups: (i) those that inhibited the action of, or response to, one nutrient receptor and (ii) those that blocked the action of, or response to, several or all of the nutrient receptors. Some of the compounds in groups 1 and 2 also blocked action of at least one cortex lytic enzyme, however, this does not appear to be the primary site of their action in inhibiting spore germination. The inhibitors had rather different effects on germination of B. subtilis spores with nutrients or non-nutrients, consistent with previous work indicating that germination of B. subtilis spores by non-nutrients does not involve the spore's nutrient receptors. In particular, none of the compounds tested inhibited spore germination with dodecylamine, and only three compounds inhibited Ca2+-DPA germination. In contrast, all compounds had very similar effects on the germination of B. megaterium spores with either glucose or KBr. The effects of the inhibitors tested on spores of both Bacillus species were largely reversible. CONCLUSIONS: This work indicates that inhibitors of B. subtilis spore germination fall into two classes: (i) compounds (most alkyl alcohols, N-ethylmaleimide, nifedipine, phenols, potassium sorbate) that inhibit the action of, or response to, primarily one nutrient receptor and (ii) compounds [amiloride, HgCl2, octanoic acid, octanol, phenylmethylsulphonylfluoride (PMSF), quinine, tetracaine, tosyl-l-arginine methyl ester, trifluoperazine] that inhibit the action of, or response to, several nutrient receptors. Action of these inhibitors, is reversible. The similar effects of inhibitors on B. megaterium spore germination by glucose or KBr indicate that inorganic salts likely trigger germination by activating one or more nutrient receptors. The lack of effect of all inhibitors on dodecylamine germination suggests that this compound stimulates germination by creating channels in the spore's inner membrane allowing DPA release. SIGNIFICANCE AND IMPACT OF THE STUDY: This work provides new insight into the steps in spore germination that are inhibited by various chemicals, and the mechanism of action of these inhibitors. The work also provides new insights into the process of spore germination itself.  相似文献   

10.
Rat vaginal epithelial cells have trypsin-like activity as shown by the formation of a colored product when the cells are incubated with alpha-N-methyl alpha-N-toxyl-L-lysine beta-naphthol ester and hexazotized pararosanilin. This enzyme activity in vaginal smears is maximal at proestrus, i.e., the day in the 5-day estrus cycle when plasma estrogen is maximal. Only the rounded nucleated epithelial cells present at late diestrus, proestrus and early estrus demonstrate the trypsin-like enzyme activity. These are the cells that stain blue in the Papanicolaou method. Preincubation of cell suspensions with the serine protease inhibitor, p-nitrophenyl p-guanidino benzoate, prevented the enzyme staining reaction, further demonstrating the trypsin-like nature of the cellular enzyme. The advantages of this enzyme staining technique over the fibrin plate method for the demonstration of trypsin-like enzymes in cells are increased resolution and ability to show trypsin inhibitor effects.  相似文献   

11.
The influence of sporulation temperature (20, 30 and 37 °C) on the heat resistance and initiation of germination and inactivation by high pressure on Bacillus cereus ATCC 14579 spores was investigated. Spores sporulated at 37 °C were the most heat-resistant. However, spores sporulated at 20 °C were more resistant to the initiation of germination and inactivation by high pressure. Spores were more sensitive to pressure at higher treatment temperatures. At 25 °C, there was an optimum pressure (250 MPa) for the initiation of germination for the three suspensions; at higher temperatures an increase of pressure up to 690 MPa caused progressively more germination. Resistance to the germinability and inactivation by high pressure of the spore population was distributed heterogeneously. Semilogarithmic curves of the ungerminated and survival fraction of B. cereus spores were concave. The resistant fraction of the spore population was lower at higher treatment temperatures. At 60 °C after 30 s of treatment at 690 MPa almost 5 log cycles of the population of B. cereus sporulated at 20 °C was germinated, and more than 7 log cycles of the population of B. cereus sporulated at 30 and 37 °C. The same treatment inactivated 4, 6 and 7 log cycles of the population of B. cereus sporulated at 20, 30 and 37 °C, respectively.  相似文献   

12.
The likelihood that uric acid was the only compound capable of triggering germination of Bacillus fastidiosus spores was reinforced by the finding that ureidoglycollic acid, urea, NH4Cl, 2,8-dihydroxypurine and a combination of L-alanine and O-carbamoyl-D-serine were ineffective as germinants. Uric acid-triggered germination of B. fastidiosus was prevented by a range of inhibitors that also inhibited uricase activity in dormant spore extracts. O2 uptake during germination started immediately after addition of uric acid, possibly as a consequence of the oxidation of uric acid by the enzyme uricase. Germination showed a dependence on uric acid concentration, with a relatively high Km (4-5 mM). During the first 10 min of germination of heat-activated spores there was no detectable change in the number of spore-cortex reducing groups, indicating that selective cortex hydrolysis is not involved in the trigger mechanism of germination of B. fastidiosus. On the basis of the results, a model is proposed in which re-initiation of uricase activity is the mechanism by which B. fastidiosus spores are triggered to emerge from the dormant state.  相似文献   

13.
AIMS: To determine the mechanism of the hydrolysis of 4-methylumbelliferyl-beta-D-glucopyranoside (beta-MUG) by germinating and outgrowing spores of Bacillus species. METHODS AND RESULTS: Spores of B. atrophaeus (formerly B. subtilis var. niger, Fritze and Pukall 2001) are used as biological indicators of the efficacy of ethylene oxide sterilization by measurement of beta-MUG hydrolysis during spore germination and outgrowth. It was previously shown that beta-MUG is hydrolysed to 4-methylumbelliferone (MU) during the germination and outgrowth of B. atrophaeus spores (Chandrapati and Woodson 2003), and this was also the case with spores of B. subtilis 168. Germination of spores of either B. atrophaeus or B. subtilis with chloramphenicol reduced beta-MUG hydrolysis by almost 99%, indicating that proteins needed for rapid beta-MUG hydrolysis are synthesized during spore outgrowth. However, the residual beta-MUG hydrolysis during spore germination with chloramphenicol indicated that dormant spores contain low levels of proteins needed for beta-MUG uptake and hydrolysis. With B. subtilis 168 spores that lacked several general proteins of the phosphotransferase system (PTS) for sugar uptake, beta-MUG hydrolysis during spore germination and outgrowth was decreased >99.9%. This indicated that beta-MUG is taken up by the PTS, resulting in the intracellular accumulation of the phosphorylated form of beta-MUG, beta-MUG-6-phosphate (beta-MUG-P). This was further demonstrated by the lack of detectable glucosidase activity on beta-MUG in dormant, germinated and outgrowing spore extracts, while phosphoglucosidase active on beta-MUG-P was readily detected. Dormant B. subtilis 168 spores had low levels of at least four phosphoglucosidases active on beta-MUG-P: BglA, BglH, BglC (originally called YckE) and BglD (originally called YdhP). These enzymes were also detected in spores germinating and outgrowing with beta-MUG, but levels of BglH were the highest, as this enzyme's synthesis was induced ca 100-fold during spore outgrowth in the presence of beta-MUG. Deletion of the genes coding for BglA, BglH, BglC and BglD reduced beta-MUG hydrolysis by germinating and outgrowing spores of B. subtilis 168 at least 99.7%. Assay of glucosidases active on beta-MUG or beta-MUG-P in extracts of dormant and outgrowing spores of B. atrophaeus revealed no enzyme active on beta-MUG and one enzyme that comprised > or =90% of the phosphoglucosidase active on beta-MUG-P. Partial purification and amino-terminal sequence analysis of this phosphoglucosidase identified this enzyme as BglH. CONCLUSIONS: Generation of MU from beta-MUG by germinating and outgrowing spores of B. atrophaeus and B. subtilis is mediated by the PTS-driven uptake and phosphorylation of beta-MUG, followed by phosphoglucosidase action on the intracellular beta-MUG-P. The major phosphoglucosidase catalyzing MU generation from beta-MUG-P in spores of both species is probably BglH. SIGNIFICANCE AND IMPACT OF THE STUDY: This work provides new insight into the mechanism of uptake and hydrolysis of beta-MUG by germinating and outgrowing spores of Bacillus species, in particular B. atrophaeus. The research reported here provides a biological basis for a Rapid Readout Biological Indicator that is used to monitor the efficacy of ethylene oxide sterilization.  相似文献   

14.
We describe the characterization and purification of a trypsin-like serine protease isolated from cloned long-term culture cytolytic T cell line (CTLL AK). High amounts of proteolytic activity were isolated from extracts of CTLL AK after either nitrogen cavitation or detergent lysis. Trypsin-like protease was detected by using either the ester compound N alpha-benzyloxycarbonyl-L-lysine thiobenzyl ester or a panel of low molecular amide substrates. The latter compounds were preferentially cleaved at the carboxyl termini of lysine and arginine residues. The enzyme activity was completely inhibited by two serine esterase inhibitors, diisopropylfluorophosphate and phenylmethanesulfonyl fluoride, and by aprotinin and meta-aminobenzamidine, which are known to block trypsin-like proteases. The pH optimum for CTLL AK-derived protease activity is 8 to 9. Analysis of the enzyme by gel filtration revealed that the cell-bound proteolytic activity was associated with a complex that could not be dissociated by treatment with Triton X-100. The CTLL AK-derived protease activity was found to reside in two proteins with relative molecular masses (Mr) of 32,000 and 40,000 daltons as determined by affinity labeling with [3H]diisopropylfluorophosphate and sodium dodecyl sulfate gel electrophoresis. High levels of enzyme activity were found in a panel of H-Y-specific cloned T cell lines with either cytolytic/suppressor (CTLL) or helper potential (THL), indicating a lack of correlation between trypsin-like protease activity and a particular T cell function. High enzyme activity was also detected in tumorigenic variants of CTLL. Furthermore, it was excluded that the trypsin-like activity detected was attributable to plasminogen activator activity. In contrast to cloned T effector cells and their in vitro or in vivo derived variants, considerably less activity was found in normal nonactivated or activated lymphocyte populations. The possible role of the trypsin-like serine protease in the function of T effector cells is discussed.  相似文献   

15.
J Gulati  S Scordilis  A Babu 《FEBS letters》1988,236(2):441-444
The presence of protein kinase C (PKC), a key enzyme in signal transduction, has not been investigated in fungal cells. The phorbol ester TPA, an activator of PKC, may be used as an indicator of the presence and role of PKC in Phycomyces blakesleeanus spores. Activation of spore germination by acetate was prevented by 6 nM TPA. The TPA analog 4 alpha PDD, an ineffective activator of PKC, did not affect spore germination. 3 mM dbcAMP, on the other hand, reversed the inhibition of germination caused by TPA. TPA-stimulated protein kinase activity was detected in spores. The possible relationship between PKC and the increased levels of cAMP that accompany the induction of spore germination is discussed.  相似文献   

16.
Temperature-sensitive sporulation mutants of Bacillus cereus were screened for intracellular protease activity that was more heat labile than that of the parental strain. One mutant grew as well as the wild type at 30 and 37 degrees C but sporulated poorly at 37 degrees C in an enriched or minimal medium. These spores germinated very slowly in response to alanine plus adenosine or calcium dipicolinate. During germination, spores produced by the mutant rapidly became heat sensitive, but released dipicolonic acid and mucopeptide fragments more slowly than the wild type and decreased only partially in density while remaining phase white (semirefractile). In freeze-etch electron micrographs, the mature spores were deficient in the outer cross-patched coat layer. During germination, the spore coat changes associated with wild-type germination occurred very slowly in this mutant. Although the original mutant was also a pyrimidine auxotroph, reversion to prototrophy did not alter any of the phenotypic properties discussed. Selection of revertants that germinated rapidly or sporulated well at 37 degrees C, however, resulted in restoratin of all wild-type properties (exclusive of the pyrimidine requirement) including heat-stable protease activity. The reversion frequency was consistent with an initial point mutation, indicating that a protease alteration resulted in production of spores defective in a very early stage of germination.  相似文献   

17.
A stereospecific enzyme activity capable of cleaving the amide bond of the synthetic substrate N-benzoyl-D-arginine-p-nitroanilide (D-BAPA) has been found in all aerobic and anaerobic members of the family Bacillaceae tested by us. Cells of nonsporeforming gram-positive or gram-negative bacteria contain a hydrolase activity stereospecific to N-benzoyl-L-arginine-p-nitroanilide. The D-BAPA-hydrolyzing enzymes (D-BAPAases) of mid-logarithmic-phase cells of Bacillus subtilis 168 and B. cereus T were compared. These enzymes had the same molecular weight of approximately 66,000 in gel filtration and the same electrophoretic mobility after electrophoresis on polyacrylamide gels. The D-BAPAases of B. subtilis 168 and B. cereus T differed in the effect of inhibitors on enzymatic activity. While both hydrolases were inhibited by tosyl-L-lysine chloromethyl ketone and tosyl-L-arginine-methyl ester as well as leupeptin, only the D-BAPAase of B. cereus T was inhibited by p-chloromercuribenzene sulfonic acid. The D-BAPAases of B. subtilis and B. cereus T had a Michaelis constant for D-BAPA of 2.9 x 10(-5) M and 1.4 x 10(-4) M, respectively. D-BAPAase is an intracellular enzyme localized in the protoplast (80 to 90% in soluble form in the cytoplasm). The ability to cleave D-BAPA is suggested as an additional chemotaxonomic characteristic of sporeforming bacteria of the genera Bacillus and Clostridium.  相似文献   

18.
Trypsin-like protease from soybean seeds. Purification and some properties   总被引:2,自引:0,他引:2  
An enzyme was purified from soybean seeds mainly by repeated ion-exchange chromatography using benzoyl-L-arginine p-nitroanilide (BAPA) as a substrate. The purified enzyme was homogeneous as judged by disc gel electrophoresis. The molecular weight was estimated as 59,000 by gel filtration. The enzyme was most active toward BAPA between pH 8 and 10. The enzyme was inactive toward protein substrates but hydrolyzed synthetic substrates and oligopeptides exclusively at the carboxyl side of L-arginine and L-lysine. Kinetic studies using synthetic substrates showed that, on the basis of Vmax/Km, the enzyme preferentially hydrolyzed amide substrates over ester substrates. Benzoyl-L-arginine 4-methylcoumaryl-7-amide (Bz-Arg-MCA) was the best substrate. The enzyme was strongly inhibited by diisopropylfluorophosphate (DFP), tosyl-L-lysine chloromethyl ketone (Tos-Lys-CH2Cl), leupeptin, and antipain. p-Chloromercuribenzoate (PCMB) was only partially inhibitory. Various protein inhibitors of trypsin such as soybean trypsin inhibitor were ineffective. From the primary specificity and susceptibility to chemicals, the enzyme can be said to be a trypsin-like serine protease. Although the physiological role of the enzyme is unclear, it seems likely that it is involved in limited hydrolysis of certain physiological peptides during processing.  相似文献   

19.
An analysis of metabolism by measurement of respiratory quotient values indicates that reduced substances, such as lipids and/or amino acids, are the primary respiratory substrates of dormant Dictyostelium discoideum spores. The spores appear to consume both reduced substances and carbohydrates during the swelling stage of germination. The respiration of emerged myxamoebae is again dominated by the consumption of reduced substances. The pool of trehalose remains largely intact during heat-induced activation and also during postactivation lag. The initiation of spore swelling is accompanied by a decrease in the trehalose pool; the majority of trehalose is consumed before late spore swelling. Upon placing heat-activated spores under restrictive environmental conditions, swelling and trehalose hydrolysis are both prevented. Release from these conditions results in rapid swelling and hydrolysis of trehalose. Trehalase, the enzyme responsible for trehalose breakdown, is present in dormant spores at basal levels. This preformed enzyme is responsible for the hydrolysis of trehalose even though there is a significant increase in trehalase activity with the emergence of myxamoebae. RNA and protein synthesis inhibitors do not prevent trehalose hydrolysis or spore swelling. It is concluded that oxidation of reduced substances occurs in dormant, activated, and swollen spores, as well as in emerged myxamoebae of D. discoideum. Carbohydrate utilization dominates over the oxidation of reduced substances only during the swelling stage of germination.  相似文献   

20.
A colony screening procedure was devised to detect Bacillus subtilis mutants containing temperature-sensitive trypsin-like intracellular protease activity. The enzyme was characterized as a non-sulfhydryl serine protease on the basis of inhibitor studies. It was also inhibited by D- or L-histidine but not by any other amino acid tested. The long-term survival at 45 degrees C of these mutants in a minimal salts medium was decreased, with rapid lysis occurring within 24 h. A D-histidine function in long-term survival and inhibition accounted for the presence of additional protease mutants among survivors of histidine auxotrophs selected for their ability to utilize D-histidine. In addition to being lysed when incubated at 45 degrees C under nongrowth conditions, all of the protease mutants had a decreased rate of protein turnover and produced spores deficient in a major low-molecular-weight spore coat polypeptide. The morphology of the undercoat layers was altered, but there was no effect on spore heat resistance or on germination. The missing spore coat polypeptide appeared to be processed from a larger precursor by cleavage to produce N-terminal histidine. A defect in this protease could account for the lack of processing and thus the absence of this polypeptide in spore coats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号