首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
1 Although mountain pine beetle Dendroctonus ponderosae Hopkins are able to utilize most available Pinus spp. as hosts, successful colonization and reproduction in other hosts within the Pinaceae is rare.
2 We observed successful reproduction of mountain pine beetle and emergence of new generation adults from interior hybrid spruce Picea engelmannii × glauca and compared a number of parameters related to colonization and reproductive success in spruce with nearby lodgepole pine Pinus contorta infested by mountain pine beetle.
3 The results obtained indicate that reduced competition in spruce allowed mountain pine beetle parents that survived the colonization process to produce more offspring per pair than in more heavily-infested nearby pine.
4 We also conducted an experiment in which 20 spruce and 20 lodgepole pines were baited with the aggregation pheromone of mountain pine beetle. Nineteen pines (95%) and eight spruce (40%) were attacked by mountain pine beetle, with eight (40%) and three (15%) mass-attacked, respectively.
5 Successful attacks on nonhost trees during extreme epidemics may be one mechanism by which host shifts and subsequent speciation events have occurred in Dendroctonus spp. bark beetles.  相似文献   

2.
Abstract.  1. Colonisation of host trees by an endophytic herbivore, the spruce beetle, Dendroctonus rufipennis , is accompanied by invasion of its galleries by a number of fungal species. Four of these associated species were identified as Leptographium abietinum , Aspergillus fumigatus , Aspergillus nomius , and Trichoderma harzianum .
2.  Trichoderma and Aspergillus significantly reduced spruce beetle survival and reproduction in controlled assays.
3. A previously undescribed behaviour was observed, in which spruce beetle adults exuded oral secretions, especially within fungus-pervaded galleries.
4. These oral secretions inhibited the growth of fungi except A. nomius , and disrupted the morphology of the latter. Administration of these secretions indicated a dose-dependent inhibitory effect.
5. Oral secretions cultured on microbiological media yielded substantial bacterial growth.
6. Filter-sterilised secretions failed to inhibit fungal growth, evidence that the bacteria are responsible for the antifungal activity.
7. Nine bacterial isolates belonging to the Actinobacteria, Firmicutes, Gammaproteobacteria, and Betaproteobacteria taxa were obtained from the secretions.
8. Bacterial isolates showed species-specific inhibitory activity against the four fungi antagonistic to spruce beetle. The bacterium with the strongest fungal inhibition activity was the actinomycete Micrococcus luteus .
9. The production of bark beetle secretions containing bacteria that inhibit fungal growth is a novel finding. This suggests an additional level of complexity to ecological associations among bark beetles, conifers, and microorganisms, and an important adaptation for colonising subcortical tissue.  相似文献   

3.
4.
1. The pine engraver bark beetle Ips pini (Say) (Coleoptera: Scolytidae), aggregates primarily on dead or dying pine trees. In this study pine engravers were laboratory-reared on logs at a range of low densities to determine whether there was a fecundity advantage of breeding aggregations.
2. Mean reproductive success for both males and females declined exponentially with increasing density.
3. Female pine engravers had shorter egg galleries at higher densities, suggesting that they left high-density breeding sites earlier. This would reduce the number of eggs that failed to survive due to larval competition.
4. Some pine engravers colonized the logs voluntarily during the experiment. These volunteers settled independently of the original density.
5. The fungus Ophiostoma sp. was present on the logs and may be competing with the pine engravers for limited bark area.
6. Aggregation resulted in a considerable cost to pine engraver reproductive success even at low densities. Thus, it remains perplexing why pine engravers aggregate actively in nature.  相似文献   

5.
In the low nutrient environment of conifer bark, subcortical beetles often carry symbiotic fungi that concentrate nutrients in host tissues. Although bark beetles are known to benefit from these symbioses, whether this is because they survive better in nutrient-rich phloem is unknown. After manipulating phloem nutrition by fertilizing lodgepole pine trees (Pinus contorta Douglas var. latifolia), we found bolts from fertilized trees to contain more living individuals, and especially more pupae and teneral adults than bolts from unfertilized trees at our southern site. At our northern site, we found that a larger proportion of mountain pine beetle (Dendroctonus ponderosae Hopkins) larvae built pupal chambers in bolts from fertilized trees than in bolts from unfertilized trees. The symbiotic fungi of the mountain pine beetle also responded to fertilization. Two mutualistic fungi of bark beetles, Grosmannia clavigera (Rob.-Jeffr. & R. W. Davidson) Zipfel, Z. W. de Beer, & M. J. Wingf. and Leptographium longiclavatum Lee, S., J. J. Kim, & C. Breuil, doubled the nitrogen concentrations near the point of infection in the phloem of fertilized trees. These fungi were less capable of concentrating nitrogen in unfertilized trees. Thus, the fungal symbionts of mountain pine beetle enhance phloem nutrition and likely mediate the beneficial effects of fertilization on the survival and development of mountain pine beetle larvae.  相似文献   

6.
Recent studies have revealed several examples of intimate associations between insects and Actinobacteria, including the Southern Pine Beetle Dendroctonus frontalis and the Spruce Beetle Dendroctonus rufipennis. Here, we surveyed Streptomyces Actinobacteria co-occurring with 10 species of Dendroctonus bark beetles across the United States, using both phylogenetic and community ecology approaches. From these 10 species, and 19 other scolytine beetles that occur in the same trees, we obtained 154 Streptomyces-like isolates and generated 16S sequences from 134 of those. Confirmed 16S sequences of Streptomyces were binned into 36 distinct strains using a threshold of 0.2% sequence divergence. The 16S rDNA phylogeny of all isolates does not correlate with the distribution of strains among beetle species, localities, or parts of the beetles or their galleries. However, we identified three Streptomyces strains occurring repeatedly on Dendroctonus beetles and in their galleries. Identity of these isolates was corroborated using a house-keeping gene sequence (efTu). These strains are not confined to a certain species of beetle, locality, or part of the beetle or their galleries. However, their role as residents in the woodboring insect niche is supported by the repeated association of their 16S and efTu from across the continent, and also having been reported in studies of other subcortical insects.  相似文献   

7.
We used the mountain pine beetle (Dendroctonus ponderosae Hopkins) and its two fungal associates, Grosmannia clavigera and Ophiostoma montium, to study potential nutritional benefits of fungi to bark beetles. We tested for potential effects of feeding on phloem colonized by fungi on beetle performance in field and laboratory studies. The fungi increased nitrogen levels in the phloem of attacked trees by 40%, indicating that it may be an important source of dietary nitrogen for mountain pine beetles. However, nitrogen levels of phloem inoculated with fungi in the laboratory were similar to uncolonized phloem, indicating that the fungi may redistribute nitrogen from the sapwood to the phloem rather than increase absolute levels of nitrogen. Beetles emerging from attacked trees carrying G. clavigera were larger than beetles carrying O. montium, which in turn were larger than beetles lacking fungi. Results of experimental laboratory studies varied, likely because of differences in the growth and sporulation of fungi under artificial conditions. Results indicate that the two fungi may offer complementary benefits to the mountain pine beetle because larvae preferentially fed on phloem colonized by both fungi together over phloem colonized by one fungus or uncolonized phloem. Teneral adults preemergence fed on spores in pupal chambers when they were produced and consumed little phloem before emerging. Teneral adults mined extensively in the phloem before emerging when spores were not produced in the pupal chamber. Our results provide evidence for a nutritional role of fungi in the diet of bark beetles and show that multiple associates may differentially affect beetle performance, which could have important implications for bark beetle population dynamics.  相似文献   

8.
Abstract:  The relative efficiency of cylindrical, linear and cross-barrier traps for trapping bark beetles was investigated based on a theoretical model. Using this model, the effective trap interception area of each trap type was calculated and trap efficiency was defined as the ratio of the effective interception area to the trap surface area. The relative efficiencies of the three trap types were calculated as the ratios of their respective effective interception areas. Based on this approach, assuming random directional movement of dispersing beetles, the order of efficiency of the three trap types, from highest to lowest, was linear, cross-barrier and cylindrical. The expected ratios of trap catches based on the relative efficiencies of the three trap types were fitted to data from trapping experiments with the mountain pine beetle ( Dendroctonus ponderosae Hopkins). In general, there was large variation in trap catches among traps of the same type but the ratios of mean catches per trap conformed to the expected ratios. The results indicate that the model of trap efficiency could be used for designing efficient traps. The methods presented are amenable for assessing the efficiency of other trap designs.  相似文献   

9.
High-value trees, such as those located in residential, recreational, or administrative sites, are particularly susceptible to bark beetle (Coleoptera: Curculionidae: Scolytinae) attack as a result of increased amounts of stress associated with drought, soil compaction, mechanical injury, or vandalism. Tree losses in these unique environments generally have a substantial impact. The value of these individual trees, cost of removal, and loss of esthetics may justify protection until the main thrust of a bark beetle infestation subsides. This situation emphasizes the need for ensuring that effective insecticides are available for individual tree protection. In this study, we assess the efficacy of bifenthrin (Onyx) and carbaryl (Sevin SL) for protecting: ponderosa pine, Pinus ponderosa Dougl. ex. Laws., from western pine beetle, Dendroctonus brevicomis LeConte, in California; mountain pine beetle, Dendroctonus ponderosae Hopkins in South Dakota; and Ips spp. in Arizona; lodgepole pine, Pinus contorta Dougl. ex Loud., from D. ponderosae in Montana; pinyon, Pinus edulis Engelm. in Colorado and Pinus monophylla Torr. and Frem. in Nevada from pinyon ips, Ips confusus (LeConte); and Engelmann spruce, Picea engelmannii Parry ex. Engelm. from spruce beetle, Dendroctonus rufipennis (Kirby) in Utah. Few trees were attacked by Ips spp. in Arizona and that study was discontinued. Sevin SL (2.0%) was effective for protecting P. ponderosa, P. contorta, and P. monophylla for two field seasons. Estimates of efficacy could not be made during the second field season in P. edulis and P. engelmannii due to insufficient mortality in untreated, baited control trees. Two field seasons of efficacy was demonstrated in P. ponderosa/D. brevicomis and P. monophylla for 0.06% Onyx. We conclude that Onyx is an effective individual tree protection tool, but repeated annual applications may be required in some systems if multiyear control is desired.  相似文献   

10.
Climate change and the outbreak ranges of two North American bark beetles   总被引:2,自引:0,他引:2  
Abstract
  • 1 One expected effect of global climate change on insect populations is a shift in geographical distributions toward higher latitudes and higher elevations. Southern pine beetle Dendroctonus frontalis and mountain pine beetle Dendroctonus ponderosae undergo regional outbreaks that result in large‐scale disturbances to pine forests in the south‐eastern and western United States, respectively.
  • 2 Our objective was to investigate potential range shifts under climate change of outbreak areas for both bark beetle species and the areas of occurrence of the forest types susceptible to them.
  • 3 To project range changes, we used discriminant function models that incorporated climatic variables. Models to project bark beetle ranges employed changed forest distributions as well as changes in climatic variables.
  • 4 Projected outbreak areas for southern pine beetle increased with higher temperatures and generally shifted northward, as did the distributions of the southern pine forests.
  • 5 Projected outbreak areas for mountain pine beetle decreased with increasing temperature and shifted toward higher elevation. That trend was mirrored in the projected distributions of pine forests in the region of the western U.S. encompassed by the study.
  • 6 Projected outbreak areas for the two bark beetle species and the area of occurrence of western pine forests increased with more precipitation and decreased with less precipitation, whereas the area of occurrence of southern pine forests decreased slightly with increasing precipitation.
  • 7 Predicted shifts of outbreak ranges for both bark beetle species followed general expectations for the effects of global climate change and reflected the underlying long‐term distributional shifts of their host forests.
  相似文献   

11.
Abstract 1 Synthetic blends of bole and foliage volatiles of four sympatric species of conifers were released from pheromone‐baited multiple‐funnel traps to determine if three species of tree‐killing bark beetles (Coleoptera: Scolytidae): (i) exhibited primary attraction to volatiles of their hosts and (ii) discriminated among volatiles of four sympatric species of host and nonhost conifers. 2 Bole and foliage volatiles from Douglas‐fir, Pseudotsuga menziesii (Mirb.) Franco, increased the attraction of coastal and interior Douglas‐fir beetles, Dendroctonus pseudotsugae Hopkins, to pheromone‐baited traps. Primary attraction to bole volatiles was observed in interior D. pseudotsugae. Beetles were significantly less attracted to the pheromone bait when it was combined with volatiles of lodgepole pine, Pinus contorta var. latifolia Engelm. or interior fir, Abies lasiocarpa × bifolia. 3 The monoterpene myrcene synergized attraction of mountain pine beetles, Dendroctonus ponderosae Hopkins, to their aggregation pheromones, but there was no evidence of primary attraction to host volatiles or discrimination among volatiles from the four conifers. 4 There was significant primary attraction of the spruce beetle, Dendroctonus rufipennis Kirby, to bole and foliage volatiles of interior spruce, Picea engelmannii × glauca, but beetles did not discriminate among volatiles of four sympatric conifers when they were combined with pheromone baits. 5 Our results indicate that host volatiles act as kairomones to aid pioneer Douglas‐fir beetles and spruce beetles in host location by primary attraction, and that their role as synergists to aggregation pheromones is significant. For the mountain pine beetle, we conclude that random landing and close range acceptance or rejection of potential hosts would occur in the absence of aggregation pheromones emanating from a tree under attack.  相似文献   

12.
The mountain pine beetle Dendroctonus ponderosae Hopkins is a major native pest of Pinus Linnaeus (Pinaceae) in western North America. Host colonization by the mountain pine beetle is associated with an obligatory dispersal phase, during which beetles fly in search of a suitable host. Mountain pine beetles use stored energy from feeding in the natal habitat to power flight before host colonization and brood production. Lipids fuel mountain pine beetle flight, although it is not known whether other energy sources are also used during flight. In the present study, we compare the level of energy substrates, proteins, carbohydrates and lipids of individual mountain pine beetles flown on flight mills with unflown control beetles. We use a colorimetric method to measure the entire metabolite content of each individual beetle. The present study reveals that mountain pine beetles are composed of more protein and lipid than carbohydrate. Both female and male mountain pine beetles use lipids and carbohydrates as energy sources during flight. There is variation between sexes, however, in the energy substrates used for flight. Male mountain pine beetles use protein, in addition to lipids and carbohydrates, to fuel flight, whereas protein content is not different between flown and control females.  相似文献   

13.
14.
Field-collected Dendroctonus frontalis were reared in a controlled environment. Male-female beetle pairs retrieved from galleries 1, 2, or 5 wk after introduction into pine bolts were examined for nematode parasites. Data were obtained for each pair on gallery length, egg niche construction, egg viability, and progeny survival. In a separate study, beetle pairs were reared under laboratory conditions for 10 wk. The number of emerged adult progeny of each pair was recorded. Contortylenchus brevicomi, a nematode parasite, was found in 25% of all beetles that established galleries. After 2 and 3 wk, female beetles infected with the nematode had produced fewer eggs and shorter galleries than did uninfected females. Uninfected females mated with nematode-infected males showed similar trends, although the differences in the 2- and 3-wk tests were not significant. Progeny survival or egg viability was not affected by nematode parasitism of either parent beetle. Unikaryon minutum, a microsporidian parasite found in 65% of all colonizing beetles, had no effect on measured variables. The lower fecundity of beetles parasitized by C. brevicomi continued throughout the insect''s reproductive cycle. After 10 wk, nematode-infected beetle pairs produced fewer emerged adult progeny than did uninfected pairs.  相似文献   

15.
Bark/phloem disk sandwiches (100 cm2) were colonized with one to six mating pairs of the southern pine beetle, Dendroctonus frontalis Zimm., to observe gallery construction and evaluate if avoidance behavior occurs between beetles. Frequencies of turn aways, touches, and crosses (three characteristics used to describe conspecific interaction) all increased significantly with beetle density. A threshold of three mating pairs within the 100- cm2 phloem area was the density at which avoidance behavior became evident. At a threshold of five mating pairs the number of gallery crossings was significantly greater than at lower densities. Single and paired female beetles introduced into artificial galleries crossed empty neighboring galleries significantly more often than when neighboring galleries were occupied with other D. frontalis. The data suggest that D. frontalis females can regulate gallery spacing within the host through their ability to detect nearby beetles and their galleries. Possible spacing mechanisms are discussed.  相似文献   

16.
Multi-trophic interactions between prokaryotes, unicellular eukaryotes, and ecologically intertwined metazoans are presumably common in nature, yet rarely described. The mountain pine beetle, Dendroctonus ponderosae, is associated with two filamentous fungi, Grosmannia clavigera and Ophiostoma montium. Other microbes, including yeasts and bacteria, are also present in the phloem, but it is not known whether they interact with the symbiotic fungi or the host beetle. To test whether such interactions occur, we performed a suite of in vitro assays. Overall, relative yield of O. montium grown with microbes isolated from larval galleries was significantly greater than when the fungus was grown alone. Conversely, the yield of G. clavigera grown with these same microbes was less than or equal to when it was grown alone, suggesting that O. montium, and at least some microbes in larval galleries, have a mutualistic or commensal relationship, while G. clavigera and those same microbes have an antagonistic relationship. A bacterium isolated from phloem not colonized by beetles was found to inhibit growth of both G. clavigera and O. montium and appears to be an antagonist to both fungi. Our results suggest that bacteria and yeasts likely influence the distribution of mycangial fungi in the host tree, which, in turn, may affect the fitness of D. ponderosae.  相似文献   

17.
We isolated 16 polymorphic microsatellite loci in the mountain pine beetle (Dendroctonus ponderosae Hopkins) and developed conditions for amplifying these markers in four multiplex reactions. Three to 14 alleles were detected per locus across two sampled populations. Observed and expected heterozygosities ranged from 0.000 to 0.902 and from 0.100 to 0.830, respectively. Three loci deviated from Hardy-Weinberg equilibrium in one sampled population. One of these loci may be sex linked. These markers will be useful in the study of population structure in this important pest species.  相似文献   

18.
Abstract.  1. There has been a long-standing pre-occupation with how phytophagous insects use olfactory cues to discriminate hosts from non-hosts. Foragers, however, should use whatever cues are accurate and easily assessed, including visual cues.
2. It was hypothesised that three bark beetles, the mountain pine beetle (MPB), Dendroctonus ponderosae Hopkins, the Douglas-fir beetle (DFB), D. pseudotsugae Hopkins, and the western balsam bark beetle (WBBB), Dryocoetes confusus Swaine, integrate visual and olfactory information to avoid non-host angiosperms (e.g. paper birch, trembling aspen), that differ in visual and semiochemical profile from their respective host conifers (lodgepole pine, Douglas-fir, interior fir), and tested this hypothesis in a series of field trapping experiments.
3. All three species avoided attractant-baited, white (non-host simulating) multiple-funnel traps, and preferred attractant-baited black (host-simulating) traps. In experiments combining white, non-host traps with non-host angiosperm volatiles, bark beetles were repelled by these stimuli in an additive or redundant manner, confirming that these species could integrate visual and olfactory information to avoid non-host angiosperms while flying.
4. When antiaggregation pheromones were released from white traps, the DFB and MPB were repelled in an additive-redundant manner, suggesting that beetles can integrate diverse and potentially anomalous stimuli.
5. The MPB demonstrated the most consistent visual preferences, suggesting that it may be more of a 'visual specialist' than the DFB or WBBB, for which visual responses may be more contingent on olfactory inputs.  相似文献   

19.
M. L. Reid  T. Robb 《Oecologia》1999,120(4):555-562
Bark beetles (Coleoptera: Scolytidae) are commonly associated with live host trees that are stressed, a relationship that has been attributed to lower host defenses or greater nutritional quality of these trees. However, most bark beetle species commonly inhabit freshly dead trees where induced host defenses are absent. In this study, we investigate the role of tree vigor at the time of death for pine engraver bark beetles, Ips pini (Say), breeding in freshly dead jack pine, Pinus banksiana Lamb. As indices of tree vigor, we considered tree size, phloem thickness, and several measures of recent growth rate (last year's growth increment, mean annual increment and basal area increment in the past 5 and 10 years, and periodic growth ratio). We examined the relationship between these indices in three stands, aged 60, 77, and 126 years, and found that phloem thickness, previously shown to have a strong positive effect on bark beetle reproduction, was only weakly associated with tree growth rate and inconsistently related to tree size among the three stands. To examine the effects of tree vigor on pine engraver reproduction, we felled 20 trees of various sizes from the 77-year-old stand, and experimentally established breeding males and females in 25-cm-long sections. Offspring were collected and characteristics of breeding galleries were measured. Using stepwise regression, we consistently found that indices associated with tree growth rate best explained beetle reproductive performance, as they were positively related to parental male and female establishment on logs, female reproductive success, length of egg galleries, proportion of eggs resulting in emerged offspring, and negatively related to the length of the post-egg gallery. Surprisingly, phloem thickness had no unique effect on pine engraver reproduction, except for a weak negative effect on the establishment success of parental females. The strong effect of tree vigor observed in this study suggests that substantial mortality of vigorous trees, such as caused by windthrow, can contribute to significant increases in bark beetle populations that could trigger outbreaks in living trees. Received: 3 February 1999 / Accepted: 27 April 1999  相似文献   

20.
The efficacy of verbenone as a stand-level protectant against mountain pine beetle, Dendroctonus ponderosae Hopkins, attacks was tested in lodgepole and whitebark pine stands at five geographically separated sites, including three consecutive years at one site. Forty and 20 high-dose pouches, with a verbenone emission rate up to 50 mg/d per pouch, were spaced in a grid pattern throughout 0.40-ha plots, replicated up to six times at each site. Although the verbenone treatment did not prevent beetles from dispersing through treated stands, attacking large-diameter trees most frequently, the overall number of trees attacked was, on average, reduced significantly compared with nontreated stands. In a few blocks each year, verbenone-treated plots had more attacked trees than controls. These blocks tended to have a large emerging beetle population, exceeding 140 previously attacked trees within the hectare including and surrounding the treated area. Additional research is needed on the behavioral role of verbenone in mountain pine beetle population dynamics and quantification of the infestation level above which treatment efficacy tends to be reduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号