首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 744 毫秒
1.
近年来,随着纳米材料科学的蓬勃发展,金纳米粒由于具有独特的光学和物理性质以及毒性小、比表面积大、表面可功能化修饰、易与药物分子结合等特点,其作为载体在药物传递系统中的应用已引起广泛关注。综述金纳米粒的特性、合成方法、体内分布与毒性以及在不同药物传递系统中的应用研究。  相似文献   

2.
金纳米粒是一种新型纳米载体,具有独特的理化、光学和生物学性质,且具有低毒性、低免疫原性、生物相容性好、体表面积大、易制备、粒径和形态可控、表面易修饰等优点,在生物医学领域和药物传递系统中具有广阔的应用前景。综述金纳米粒在小分子药物和基因药物传递系统中的应用研究新进展。  相似文献   

3.
在新药研发过程中,约有40%的药物存在溶解性差的问题,限制了药物的开发与应用。纳米混悬剂是20世纪末发展起来的一种纳米药物传递系统,可增加难溶性药物的溶解度和溶出速率、改变药物的体内药物动力学特征、提高口服生物利用度、安全性和有效性。纳米混悬剂不但适用于水溶性差的药物,而且适用于水溶性、脂溶性均较差的药物,其制备方法主要包括"bottom up"和"top down"两种。本文从纳米混悬剂的特点、理论基础、专利技术及应用等方面对纳米混悬剂的研究进展进行了综述。纳米混悬剂对改善难溶性药物的溶出、吸收,提高难溶性药物的有效性、安全性等方面具有显著优势,且适合工业化生产,已有越来越多的产品问世。纳米混悬技术是未来药物传递系统的发展方向之一,将具有良好的应用前景。  相似文献   

4.
肿瘤是一种病理过程复杂的疾病。大多数肿瘤患者接受化疗和放疗,但这些治疗通常只对部分有效,并产生各种严重的副作用。因此,有必要开发新的治疗策略。联合治疗是目前肿瘤治疗的热点,联合用药引起的多种协同作用是提高抗肿瘤活性的关键。纳米药物递送系统的出现对临床治疗产生了深远的影响。药物的体内递送常不能达到令人满意的治疗效果,而纳米药物递送系统可以实现肿瘤靶向给药,在提高抗肿瘤效果的同时降低药物的毒副作用。本文介绍了多种基于化疗的联合治疗方法,重点阐述了纳米药物递送系统在基于化疗的联合治疗中的运用,并对该领域面临的挑战和未来发展方向进行了展望。  相似文献   

5.
化疗治疗是目前肿瘤治疗的主要手段之一,但大部分化疗药物具有水溶性低、肠道壁通透性差、易受到P-糖蛋白(P-gp)外排的性质,极大限制了其开发为口服制剂。基于纳米技术的药物递送系统在口服抗肿瘤药物的递送中具有独特的优势,表现出良好的应用前景。笔者将深入探讨纳米递送载体在药物口服递送中所面临的生理障碍以及克服生理屏障的方法,并对聚合物胶束、脂质体、纳米粒等纳米体载体在抗肿瘤药物口服递药系统的应用进行了详细的综述。  相似文献   

6.
为了达到更好的肿瘤治疗效果,研究者们针对肿瘤微环境设计出了双重和多重响应性智能纳米药物载体。其中基于酸敏感的双重响应性智能纳米药物载体的研究是最广泛、最常见的一种。在当前的研究中,该智能纳米药物载体已经初步实现了体内长循环、有效地抵达肿瘤细胞、在特定肿瘤微环境下控制药物释放等功效,增加了药物抗肿瘤疗效,有效地减少了药物对机体中正常组织的伤害。但是这类研究仍存在许多问题需要解决,如价格昂贵、载体结构复杂、体内药物传递机理不明确等,使其很难用于临床治疗。这里主要从酸-温度、酸-磁、酸-氧化还原、酸-酶、酸-光和酸-超声几个方面简单介绍了近几年的纳米载体研究进展,为进一步实现纳米药物临床应用奠定基础。  相似文献   

7.
Janus纳米粒子(Janus nanoparticle,JNP)用于描述由两个不同侧面组合而成的一种异质结构的实体材料。Janus纳米粒子每个侧面在化学性质和/或极性上都有所差异,可将不同材料的特征和功能结合在一起,这是同类均质的材料难以实现的。近年来,Janus纳米粒子的制备方法已取得了重大突破,但其应用的发展方向仍然是一个充满挑战的领域,其中在抗肿瘤药物输送系统领域的研究较为突出。主要介绍了在药物输送系统中Janus纳米粒子的制备方法及应用,并提出了研究前景和可能面临的挑战。  相似文献   

8.
红细胞伪装纳米颗粒是一种以红细胞或红细胞膜纳米囊泡为载体在体内递送药物、酶、多肽和抗原等物质的系统,具有生物相容性好、循环周期长、靶向性强等优势。本文从红细胞载体的种类、发展历程、递送策略应用以及其局限性和未来的挑战等方面进行了详细阐述,并展望了其未来的发展方向。  相似文献   

9.
随着核酸纳米技术的飞速发展,核酸自组装纳米载体已成为药物递送领域的研究热点。针对核酸自组装纳米载体在药物递送中的应用进展进行了系统综述,讨论了不同的核酸自组装策略,阐述了多种靶向递送和药物控制释放方法,同时,总结了核酸自组装纳米递送载体在蛋白质药物、核酸药物、小分子药物和纳米药物递送中的应用,并针对该领域的挑战和未来发展趋势进行了总结和展望,以期为药物递送领域和新型药物系统研究提供参考。  相似文献   

10.
目的:探究新型表面活性剂分子Pa-Brij78在药物传递方面的应用。方法:利用Brij78合成Pa-Brij78,通过薄膜水化法得到3 m M包载姜黄素的Pa-Brij78胶束水溶液,并通过共沉淀法用磷酸钙将胶束矿化的流程建立磷酸钙胶束复合纳米颗粒药物传递系统;利用Pa-Brij78作为稳定剂,与紫杉醇按不同的紫杉醇/表面活性剂质量比例溶于氯仿后用氮气吹干,真空干燥2-4 h,薄膜物水化30 min后超声20 min的流程建立纳米晶体Pa-PNC。运用粒度仪和扫面电子显微镜对两种纳米系统进行表征。结果:磷酸钙胶束复合纳米颗粒粒径小于200 nm,纳米颗粒外貌都是球形且表面粗糙对姜黄素的载药率达17%,包封率大于90%,构建得到的不同比例的纳米晶体Pa-PNC,其粒径也都小于200 nm,Pa-PNC纳米晶体是棒状的,且Pa-PNC的载药率达50%。结论:本课题组合成的新型表面活性剂分子Pa-Brij78能够构建得到两种药物传递系统,在药物传递系统方面具有一定的应用潜力。  相似文献   

11.
Non-viral gene delivery systems   总被引:13,自引:0,他引:13  
Non-viral gene delivery systems have the potential to create viable pharmaceuticals from nucleic acids. These DNA delivery systems contain lipids and/or cationic polymers. In order for these systems to be developed into commercial products, several barriers must be overcome. These include obstacles in manufacturing, formulation and stability. In vivo, problems of extracellular non-specific interactions and intracellular trafficking to the nucleus are also encountered. Recent progress has been made in overcoming these issues.  相似文献   

12.
Special oligonucleotides for targeted gene correction have attracted increasing attention recently, one of which is the chimeric RNA.DNA oligonucleotide (RDO) system. RDOs for targeted gene correction were first designed in 1996, and are typically 68 nucleotides in length including continuous RNA and DNA sequences (RNA is 2'-O-methyl-modified). They have a 25 bp double stranded region homologous to the targeted gene, two hairpin ends of T loop and a 5 bp GC clamp, that give the molecule much greater stability [Fig. 1]. One mismatch site in the middle of the double-stranded region is designed for targeted gene therapy. RDOs have been used recently for targeted gene correction of point mutations both in vitro and in vivo, but many problems must be solved before clinical application. One of the solutions is to optimize the delivery vectors for RDOs. To date, few RDO delivery systems have been used. Therefore, new vectors should be tried for RDO transfer, such as the use of nanoparticles. Additionally, different kinds of modifications should be applied to RDO carrier systems to increase the total correction efficiency in vivo. Only with the development of delivery systems can RDOs be used for gene therapy, and successfully applied to functional genomics.  相似文献   

13.
Over the past dozen years, the majority of clinical gene therapy trials for inherited genetic diseases and cancer therapy have been performed using murine onco-retrovirus as the gene delivery vector. The earliest systems used were relatively inefficient in both the rates of transduction and expression of the transgene. Formidable obstacles inherent in the cell biology and/or the immunology of the target cell systems limited the efficacy of gene therapy for many target diseases. Development of novel retrovirus gene transfer systems that are in progress have begun to overcome these obstacles. Evidence of this progress is the recent successful functional correction of the immune T and B lymphocyte deficiency in patients with X-linked severe combined immunodeficiency (X-SCID) and adenosine deaminase (ADA)-deficient SCID following onco-retrovirus vector ex vivo transduction of autologous marrow stem cells [Science 296 (2002) 2410; Science 288 (2000) 669; N. Engl. J. Med. 346 (2002) 1185]. These achievements of prolonged clinical benefit from gene therapy were tempered by the finding of insertional mutageneses in two of the treated X-SCID patients [N. Engl. J. Med. 348 (2003) 255].  相似文献   

14.
A major challenge in synthetic gene delivery is to quantitatively predict the optimal design of polymer-based gene carriers (polyplexes). Here, we report a consistent, integrated, and fundamentally grounded computational methodology to address this challenge. This is achieved by accurately representing the spatio-temporal dynamics of intracellular structures and by describing the interactions between gene carriers and cellular components at a discrete, nanoscale level. This enables the applications of systems tools such as optimization and sensitivity analysis to search for the best combination of systems parameters. We validate the approach using DNA delivery by polyethylenimine as an example. We show that the cell topology (e.g., size, circularity, and dimensionality) strongly influences the spatiotemporal distribution of gene carriers, and consequently, their optimal intracellular pathways. The model shows that there exists an upper limit on polyplexes' intracellular delivery efficiency due to their inability to protect DNA until nuclear entry. The model predicts that even for optimally designed polyethylenimine vectors, only approximately 1% of total DNA is delivered to the nucleus. Based on comparison with gene delivery by viruses, the model suggests possible strategies to significantly improve transfection efficiencies of synthetic gene vectors.  相似文献   

15.
Mao  Jie  Liu  Shujun  Ai  Min  Wang  Zhuo  Wang  Duowei  Li  Xianjing  Hu  Kaiyong  Gao  Xinghua  Yang  Yong 《Journal of hematology & oncology》2022,15(1):1-40
Poor targeting of therapeutics leading to severe adverse effects on normal tissues is considered one of the obstacles in cancer therapy. To help overcome this, nanoscale drug delivery systems have provided an alternative avenue for improving the therapeutic potential of various agents and bioactive molecules through the enhanced permeability and retention (EPR) effect. Nanosystems with cancer-targeted ligands can achieve effective delivery to the tumor cells utilizing cell surface-specific receptors, the tumor vasculature and antigens with high accuracy and affinity. Additionally, stimuli-responsive nanoplatforms have also been considered as a promising and effective targeting strategy against tumors, as these nanoplatforms maintain their stealth feature under normal conditions, but upon homing in on cancerous lesions or their microenvironment, are responsive and release their cargoes. In this review, we comprehensively summarize the field of active targeting drug delivery systems and a number of stimuli-responsive release studies in the context of emerging nanoplatform development, and also discuss how this knowledge can contribute to further improvements in clinical practice.  相似文献   

16.
The present study demonstrates pDNA complexes of recombinant silk proteins containing poly(L-lysine) and tumor-homing peptides (THPs), which are globular and approximately 150-250 nm in diameter, show significant enhancement of target specificity to tumor cells by additions of F3 and CGKRK THPs. We report herein the preparation and study of novel nanoscale silk-based ionic complexes containing pDNA able to home specifically to tumor cells. Particular focus was on how the THP, F3 (KDEPQRRSARLSAKPAPPKPEPKPKKAPAKK), and CGKRK, enhanced transfection specificity to tumor cells. Genetically engineered silk proteins containing both poly(L-lysine) domains to interact with pDNA and the THP to bind to specific tumor cells for target-specific pDNA delivery were prepared using Escherichia coli, followed by in vitro and in vivo transfection experiments into MDA-MB-435 melanoma cells and highly metastatic human breast tumor MDA-MB-231 cells. Non-tumorigenic MCF-10A breast epithelial cells were used as a control cell line for in vitro tumor-specific delivery studies. These results demonstrate that combination of the bioengineered silk delivery systems and THP can serve as a versatile and useful new platform for nonviral gene delivery.  相似文献   

17.
Silencing gene expression through a process known as RNA interference (RNAi) has been known in the plant world for many years. In recent years, knowledge of the prevalence of RNAi and the mechanism of gene silencing through RNAi has started to unfold. It is now believed that RNAi serves in part as an innate response against invading viral pathogens and, indeed, counter silencing mechanisms aimed at neutralizing RNAi have been found in various viral pathogens. During the past few years, it has been demonstrated that RNAi, induced by specifically designed double-stranded RNA (dsRNA) molecules, can silence gene expression of human viral pathogens both in acute and chronic viral infections. Furthermore, it is now apparent that in in vitro and in some in vivo models, the prospects for this technology in developing therapeutic applications are robust. However, many key questions and obstacles in the translation of RNAi into a potential therapeutic platform still remain, including the specificity and longevity of the silencing effect, and, most importantly, the delivery of the dsRNA that induces the system. It is expected that for the specific examples in which the delivery issue could be circumvented or resolved, RNAi may hold promise for the development of gene-specific therapeutics.  相似文献   

18.
RNA and RNP as new molecular parts in synthetic biology   总被引:1,自引:0,他引:1  
Synthetic biology has a promising outlook in biotechnology and for understanding the self-organizing principle of biological molecules in life. However, synthetic biologists have been looking for new molecular "parts" that function as modular units required in designing and constructing new "devices" and "systems" for regulating cell function because the number of such parts is strictly limited at present. In this review, we focus on RNA/ribonucleoprotein (RNP) architectures that hold promise as new "parts" for synthetic biology. They are constructed with molecular design and an experimental evolution technique. So far, designed self-folding RNAs, RNA (RNP) enzymes, and nanoscale RNA architectures have been successfully constructed by utilizing Watson-Crick base-pairs together with specific RNA-RNA or RNA-protein binding motifs of known defined 3D structures. Riboregulators for regulating targeted gene expression have also been designed and produced in vitro as well as in vivo. Lately, RNA and ribonucleoprotein complexes have been strongly attracting the attention of molecular biologists because a variety of noncoding RNAs discovered in nature perform spatiotemporal gene expressions. Thus we hope that newly accumulating knowledge on naturally occurring RNAs and RNP complexes will provide a variety of new parts, devices and systems for synthetic biology.  相似文献   

19.
Therapeutic angiogenesis and myogenesis restore perfusion of ischemic myocardium and improve left ventricular contractility. These therapeutic modalities must be considered as complementary rather than competing to exploit their advantages for optimal beneficial effects. The resistant nature of cardiomyocytes to gene transfection can be overcome by ex vivo delivery of therapeutic genes to the heart using genetically modified stem cells. This review article gives an overview of different vectors and delivery systems in general used for therapeutic gene delivery to the heart and provides a critical appreciation of the ex vivo gene delivery approach using genetically modified stem cells to achieve angiomyogenesis for the treatment of infarcted heart.  相似文献   

20.
Summary In this chapter, we describe an approach using a peptide nucleic acid (PNA) clamp to directly and irreversibly modify plasmid DNA, without affecting either its supercoiled conformation or its ability to be efficiently transcribed. This strategy enables investigators to 'functionalize' their gene of interest by direct coupling of ligands (fluorophores, peptide, proteins, sugars or oligonucleotides) to plasmid DNA. This approach provides versatile tools to study the mechanisms of gene delivery and to circumvent some of the main obstacles of synthetic gene delivery systems, such as specific targeting and efficient delivery. The proof-of-principal of PNA-dependent gene chemistry (PDGC) was demonstrated with a fluorescently labeled PNA that allowed generation of a highly fluorescent preparation of plasmid DNA that was functionally and conformationally intact. Fluorescent-PNA/DNA was used to identify critical parameters involved in naked DNA and non-viral gene delivery technology. The greatest potential of PDGC lies in the ability to attach specific ligands (e.g., peptides, proteins) to the plasmid DNA in order to overcome cellular barriers of non-viral gene delivery systems. In this regard, specific examples of ligands coupled to DNA are described and their effect on increasing the efficacy of gene therapy is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号