首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cyanobacterium Synechocystis sp. PCC 6803 carries out oxygenic photosynthesis analogous to higher plants. Its photosystem I contains seven different polypeptide subunits. The cartridge mutagenesis technique was used to inactivate the psaD gene which encodes subunit II of photosystem I. A mutant strain lacking subunit II was generated by transforming wild type cells with cloned DNA in which psaD gene was interrupted by a gene conferring kanamycin resistance. The photoautotrophic growth of mutant strain is much slower than that of wild type cells. The membranes prepared from mutant cells lack subunit II of photosystem I. Studies on the purified photosystem I reaction center revealed that the complex lacking subunit II is assembled and is functional in P700 photooxidation but at much reduced rate. Therefore, subunit II of photosystem I is required for efficient function of photosystem I.  相似文献   

2.
Sll1252 was identified as a novel protein in photosystem II complexes from Synechocystis sp. PCC 6803. To investigate the function of Sll1252, the corresponding gene, sll1252, was deleted in Synechocystis 6803. Despite the homology of Sll1252 to YlmH, which functions in the cell division machinery in Streptococcus, the growth rate and cell morphology of the mutant were not affected in normal growth medium. Instead, it seems that cells lacking this polypeptide have increased sensitivity to Cl(-) depletion. The growth and oxygen evolving activity of the mutant cells was highly suppressed compared with those of wild-type cells when Cl(-) and/or Ca(2+) was depleted from the medium. Recovery of photosystem II from photoinhibition was suppressed in the mutant. Despite the defects in photosystem II, in the light, the acceptor side of photosystem II was more reduced and the donor side of photosystem I was more oxidized compared with wild-type cells, suggesting that functional impairments were also present in cytochrome b(6)/f complexes. The amounts of cytochrome c(550) and cytochrome f were smaller in the mutant in the Ca(2+)- and Cl(-)-depleted medium. Furthermore, the amount of IsiA protein was increased in the mutant, especially in the Cl(-)-depleted medium, indicating that the mutant cells perceive environmental stress to be greater than it is. The amount of accompanying cytochrome c(550) in purified photosystem II complexes was also smaller in the mutant. Overall, the Sll1252 protein appears to be closely related to redox sensing of the plastoquinone pool to balance the photosynthetic electron flow and the ability to cope with global environmental stresses.  相似文献   

3.
Li Z  Andrews H  Eaton-Rye JJ  Burnap RL 《Biochemistry》2004,43(44):14161-14170
The H(2)O oxidizing domain of the cyanobacterial photosystem II (PSII) complex contains a low potential, c-type cytochrome termed c(550) that is essential for the in vivo stability of the PSII complex. A mutant lacking cytochrome c(550) (DeltapsbV) in Synechocystis sp. PCC6803 has been further analyzed together with a construct in which the distal axial heme iron ligand, histidine 92, has been substituted with a methionine (C550-H92M). Heme staining of SDS-PAGE showed that the C550-H92M mutation did not disturb the accumulation and heme-binding properties of the cytochrome. In DeltapsbV cells, the number of charge separating PSII centers was estimated to be 56% of the wild type, but of the existing centers, 33% lacked photooxidizable Mn ions. C550-H92M did not discernibly affect the intrinsic PSII electron-transfer kinetics compared to the wild type nor did it exhibit a significant fraction of centers lacking photooxidizable Mn; however, the number of charge separating PSII centers in mutant cells was 69% of the wild type. C550-H92M lost photoautotrophic growth ability in the absence of Ca(2+), but its growth was not affected by depletion of Cl(-), which differs from DeltapsbV. Taken together, the results suggest that in the absence of cytochrome c(550) electron transfer on the donor side is retarded perhaps at the level of Y(z) to P680(+) transfer, the heme ligand. His92 is not absolutely required for assembly of functional PSII centers; however, replacement by methionine prevents normal accumulation of PSII centers in the thylakoid membranes and alters the Ca(2+) requirement of PSII. The results are discussed in terms of current understanding of the Ca(2+) site of PSII.  相似文献   

4.
ycf33 encodes a small protein with a molecular mass of 7.5 kDa and is found from cyanobacteria to higher plants. A ycf33 deletion mutant was constructed in Synechocystis sp. PCC6803 and characterized. The mutant showed a higher phycobilisome/chlorophyll ratio than the wild type and a higher photosystem II/photosystem I fluorescence ratio measured at 77 K. Under photoautotrophic conditions, the growth rates were not much different from those of the wild type. Cyclic electron transport activities around photosystem I were not much different between the wild type and the mutant. However, the effects of diphenyleneiodonium, an inhibitor of flavoprotein, on cyclic electron transport in the mutant were different from those in the wild type; it was severely inhibited in the wild type but not much in the mutant. Together with the effects of nitrite, which accepts electrons from ferredoxin via nitrite reductase and those of HgCl2, it was suggested that the pathway of cyclic electron transport is altered in the mutant.  相似文献   

5.
We cloned and sequenced the psbK gene, coding for a small photosystem II component (PSII-K), from the transformable cyanobacterium, Synechocystis sp. PCC 6803, and determined the N-terminal sequence of mature PSII-K. The psbK gene product is processed by cleaving off eight amino acid residues from the N terminus. A mutant lacking psbK was constructed; this mutant grew photoautotrophically, but its growth rate was reduced. The number of photosystem II reaction centers on a chlorophyll basis was decreased by less than a factor of 2 in the psbK-deletion mutant. In Synechocystis sp. PCC 6803, the psbK gene is transcribed as a single gene and is not part of an operon. Single-site mutations were introduced into psbK leading to early termination or deletion of the presequence. The phenotype of these mutants strongly resembles that of the psbK deletion mutant, indicating that indeed the change in phenotype in the deletion mutant is directly correlated with PSII-K. PSII-K is not essential for photosystem II assembly or activity but is needed for optimal photosystem II function.  相似文献   

6.
Ultrastructural and immunocytochemical investigations gave evidence that cyanophycin (multi-L-arginyl-poly-L-aspartate) granules accumulate in the cyanobacterium Synechocystis sp. strain PCC 6803 under nutrient deficient growth conditions, especially under phosphate limitation. Besides nutrient deficiency, growth of Synechocystis PCC 6803 on L-arginine or L-asparagine as sole N-source also led to high increase of cyanophycin synthesis, while growth on the combination of L-arginine or L-asparagine with nitrate only caused minor cyanophycin accumulation. Growth of Synechocystis PCC 6803 on L-arginine as sole N-source caused substantial morphological and physiological changes, such as severe thylakoid membrane degradation with partial loss of pigments and photosynthetic activity leading to a phenotype almost like that seen under nutrient deficiency. In contrast to the wild type, the PsbO-free Synechocystis PCC 6803 mutant could grow on L-arginine as sole N-source with only minor morphological and physiological changes. Due to its fairly balanced growth, the mutant accumulated only few cyanophycin granules. L-arginine degrading activity (measured as ornithine and ammonium formation) was high in the PsbO-free mutant but not in the wild type when cells were grown on L-arginine as sole N-source. In both cells types the L-arginine degrading activity was high (although in the PsbO-free mutant about twice as high as in wild type), when cells were grown on L-arginine in combination with nitrate, and as expected very low when cells were grown on nitrate as sole N-source. Thus, net cyanophycin accumulation in Synechocystis PCC 6803 is regulated by the relative concentration of L-arginine to the total nitrogen pool, and the intracellular L-arginine concentration is greatly influenced by the activity of the L-arginine degrading enzyme system which in part is regulated by the activity status of photosystem II. These results suggest a complex interrelation between cyanophycin synthesis, L-arginine catabolism, and in addition photosynthesis in Synechocystis PCC 6803.  相似文献   

7.
The Synechocystis sp. PCC 6803 triple mutant D2R8 with V247M/A249T/M329I mutations in the D2 subunit of the photosystem II is impaired in Q(A) function, has an apparently mobile Q(A), and is unable to grow photoautotrophically. Several photoautotrophic pseudorevertants of this mutant have been isolated, each of which retained the original psbDI mutations of D2R8. Using a newly developed mapping technique, the site of the secondary mutations has been located in the open reading frame slr0399. Two different nucleotide substitutions and a deletion of about 60% of slr0399 were each shown to restore photoautotrophy in different pseudorevertants of the mutant D2R8, suggesting that inactivation of Slr0399 leads to photoautotrophic growth in D2R8. Indeed, a targeted deletion of slr0399 restores photoautotrophy in D2R8 and in other psbDI mutants impaired in Q(A) function. Slr0399 is similar to the hypothetical protein Ycf39, which is encoded in the cyanelle genome of Cyanophora paradoxa; in the chloroplast genomes of diatoms, dinoflagellates, and red algae; and in the nuclear genome of Arabidopsis thaliana. Slr0399 and Ycf39 have a NAD(P)H binding motif near their N terminus and have some similarity to isoflavone reductase-like proteins and to a subunit of the eukaryotic NADH dehydrogenase complex I. Deletion of slr0399 in wild type Synechocystis sp. PCC 6803 has no significant phenotypic effects other than a decrease in thermotolerance under both photoautotrophic and photomixotrophic conditions. We suggest that Slr0399 is a chaperone-like protein that aids in, but is not essential for, quinone insertion and protein folding around Q(A) in photosystem II. Moreover, as the effects of Slr0399 are not limited to photosystem II, this protein may also be involved in assembly of quinones in other photosynthetic and respiratory complexes.  相似文献   

8.
Kufryk GI  Vermaas WF 《Biochemistry》2001,40(31):9247-9255
Mutation of Glu69 to Gln in the D2 protein of photosystem II is known to lead to a loss of photoautotrophic growth in Synechocystis sp. PCC 6803. However, second-site mutants (pseudorevertants) with restored photoautotrophic growth but still maintaining the E69Q mutation in D2 are easily obtained. Using a genomic mapping technique involving functional complementation, the secondary mutation was mapped to slr0286 in two independent mutants. The mutations in Slr0286 were R42M or R394H. To study the function of Slr0286, mutants of E69Q and of the wild-type strain were made that lacked slr0286. Deletion of slr0286 did not affect photoautotrophic capacity in wild type but led to a marked decrease in the apparent affinity of Ca(2+) to its binding site at the water-splitting system of photosystem II and to a reduced heat tolerance of the oxygen-evolving system, particularly in E69Q. Moreover, a small increase in the half-time for photoactivation of the oxygen-evolving complex of photosystem II for both wild type and the E69Q mutant was observed in the absence of Slr0286. The accumulation of photosystem II reaction centers, dark stability of the oxygen-evolving apparatus, stability of oxygen evolution, and the kinetics of charge recombination between Q(A)(-) and the donor side were not affected by deletion of slr0286. Slr0286 lacks clear functional motifs, and no homologues are apparent in other organisms, even not in other cyanobacteria. In any case, Slr0286 appears to help the functional assembly and stability of the water-splitting system of photosystem II.  相似文献   

9.
Photosystem I reaction center of the cyanobacterium Synechocystis sp. PCC 6803 contains seven different polypeptide subunits. The subunit with a molecular mass of about 8 kDa was isolated, and the sequence of its amino-terminal residues was determined. Oligonucleotide probes corresponding to this sequence were used to isolate the gene encoding this subunit. The gene, termed as psaE, codes for a polypeptide with a mass of 8075 Da. It is present as a single copy in the genome and is transcribed as a monocistronic messenger. The amino acid sequence of the 8-kDa subunit deduced from the gene sequence shows high homology with the deduced amino acid sequence of subunit IV of photosystem I from spinach. The DNA fragment sequenced in these studies also contains two other unidentified major open reading frames. A stable deletion mutation for the psaE gene was generated by transforming Synechocystis sp. PCC 6803 with a cloned DNA in which the psaE gene for 8-kDa subunit was replaced by a gene conferring resistance to kanamycin. The mutant strain shows minor differences in growth under photoautotrophic conditions and in the photosystem I activity in comparison to the wild type.  相似文献   

10.
Cytochrome c-550 is an extrinsic protein associated with photosystem II (PSII) in cyanobacteria and lower eukaryotic algae and plays an important role in the water-splitting reaction. The gene (psbV) for cytochrome c-550 was cloned from the thermophilic cyanobacteria Thermosynechococcus (formerly Synechococcus) elongatus and T. (formerly Synechococcus) vulcanus. In both genomes, located downstream of psbV were a novel gene (designated psbV2) for a c-type cytochrome and petJ for cytochrome c-553. The deduced product of psbV2 showed composite similarities to psbV and petJ. Phenotype of psbV-disruptant in Thermosynechococcus was practically the same as that reported in Synechocystis sp. PCC 6803. Either psbV or psbV2 gene of T. elongatus was expressed in the psbV-disruptant of Synechocystis sp. PCC 6803, which resulted in recovery of the photoautotrophic growth. However, the enhanced requirement of Ca(2+) or Cl- ions in the psbV-disruptant of Synechocystis was suppressed by expression of psbV but not by expression of psbV2. Thus, it is concluded that psbV2 can partly replace the role of psbV in PSII. The close tandem arrangement of psbV/psbV2/petJ implies that psbV2 was created by gene duplication and intergenic recombination during evolution.  相似文献   

11.
The Synechocystis sp. strain PCC 6803, which has a T192H mutation in the D2 protein of photosystem II, is an obligate photoheterotroph due to the lack of assembled photosystem II complexes. A secondary mutant, Rg2, has been selected that retains the T192H mutation but is able to grow photoautotrophically. Restoration of photoautotrophic growth in this mutant was caused by early termination at position 294 in the Slr2013 protein. The T192H mutant with truncated Slr2013 forms fully functional photosystem II reaction centers that differ from wild-type reaction centers only by a 30% higher rate of charge recombination between the primary electron acceptor, QA-, and the donor side and by a reduced stability of the oxidized form of the redox-active Tyr residue, YD, in the D2 protein. This suggests that the T192H mutation itself did not directly affect electron transfer components, but rather affected protein folding and/or stable assembly of photosystem II, and that Slr2013 is involved in the folding of the D2 protein and the assembly of photosystem II. Besides participation in photosystem II assembly, Slr2013 plays a critical role in the cell, because the corresponding gene cannot be deleted completely under conditions in which photosystem II is dispensable. Truncation of Slr2013 by itself does not affect photosynthetic activity of Synechocystis sp. strain PCC 6803. Slr2013 is annotated in CyanoBase as a hypothetical protein and shares a DUF58 family signature with other hypothetical proteins of unknown function. Genes for close homologues of Slr2013 are found in other cyanobacteria (Nostoc punctiforme, Anabaena sp. strain PCC 7120, and Thermosynechococcus elongatus BP-1), and apparent orthologs of this protein are found in Eubacteria and Archaea, but not in eukaryotes. We suggest that Slr2013 regulates functional assembly of photosystem II and has at least one other important function in the cell.  相似文献   

12.
To identify important residues in the D2 protein of photosystem II (PSII) in the cyanobacterium Synechocystis sp. strain PCC 6803, we randomly mutagenized a region of psbDI (coding for a 96-residue-long C-terminal part of D2) with sodium bisulfite. Mutagenized plasmids were introduced into a Synechocystis sp. strain PCC 6803 mutant that lacks both psbD genes, and mutants with impaired PSII function were selected. Nine D2 residues were identified that are important for PSII stability and/or function, as their mutation led to impairment of photoautotrophic growth. Five of these residues are likely to be involved in the formation of the Q(A)-binding niche; these are Ala249, Ser254, Gly258, Ala260, and His268. Three others (Gly278, Ser283, and Gly288) are in transmembrane alpha-helix E, and their alteration leads to destabilization of PSII but not to major functional alterations of the remaining centers, indicating that they are unlikely to interact directly with cofactors. In the C-terminal lumenal tail of D2, only one residue (Arg294) was identified as functionally important for PSII. However, from the number of mutants generated it is likely that most or all of the 70 residues that are susceptible to bisulfite mutagenesis have been altered at least once. The fact that mutations in most of these residues have not been picked up by our screening method suggests that these mutations led to a normal photoautotrophic phenotype. A novel method of intragenic complementation in Synechocystis sp. strain PCC 6803 was developed to facilitate genetic analysis of psbDI mutants containing several amino acid changes in the targeted domain. Recombination between genome copies in the same cell appears to be much more prevalent in Synechocystis sp. strain PCC 6803 than was generally assumed.  相似文献   

13.
To analyze the function of a protein encoded by the open reading frame ssr2998 in Synechocystis sp. PCC 6803, the corresponding gene was disrupted, and the generated mutant strain was analyzed. Loss of the 7.2-kDa protein severely reduced the growth of Synechocystis, especially under high light conditions, and appeared to impair the function of the cytochrome b6 f complex. This resulted in slower electron donation to cytochrome f and photosystem 1 and, concomitantly, over-reduction of the plastoquinone pool, which in turn had an impact on the photosystem 1 to photosystem 2 stoichiometry and state transition. Furthermore, a 7.2-kDa protein, encoded by the open reading frame ssr2998, was co-isolated with the cytochrome b6 f complex from the cyanobacterium Synechocystis sp. PCC 6803. ssr2998 seems to be structurally and functionally associated with the cytochrome b6 f complex from Synechocystis, and the protein could be involved in regulation of electron transfer processes in Synechocystis sp. PCC 6803.  相似文献   

14.
15.
The mechanism of oxygen evolution by photosystem II (PSII) has remained highly conserved during the course of evolution from ancestral cyanobacteria to green plants. A cluster of manganese, calcium, and chloride ions, whose binding environment is optimized by PSII extrinsic proteins, catalyzes this water-splitting reaction. The accepted view is that in plants and green algae, the three extrinsic proteins are PsbO, PsbP, and PsbQ, whereas in cyanobacteria, they are PsbO, PsbV, and PsbU. Our previous proteomic analysis established the presence of a PsbQ homolog in the cyanobacterium Synechocystis 6803. The current study additionally demonstrates the presence of a PsbP homolog in cyanobacterial PSII. Both psbP and psbQ inactivation mutants exhibited reduced photoautotrophic growth as well as decreased water oxidation activity under CaCl(2)-depleted conditions. Moreover, purified PSII complexes from each mutant had significantly reduced activity. In cyanobacteria, one PsbQ is present per PSII complex, whereas PsbP is significantly substoichiometric. These findings indicate that both PsbP and PsbQ proteins are regulators that are necessary for the biogenesis of optimally active PSII in Synechocystis 6803. The new picture emerging from these data is that five extrinsic PSII proteins, PsbO, PsbP, PsbQ, PsbU, and PsbV, are present in cyanobacteria, two of which, PsbU and PsbV, have been lost during the evolution of green plants.  相似文献   

16.
A mutation was recovered in the slr0721 gene, which encodes the decarboxylating NADP(+)-dependent malic enzyme in the cyanobacterium Synechocystis sp. strain PCC 6803, yielding the mutant 3WEZ. Under continuous light, 3WEZ exhibits poor photoautotrophic growth while growing photoheterotrophically on glucose at rates nearly indistinguishable from wild-type rates. Interestingly, under diurnal light conditions (12 h of light and 12 h of dark), normal photoautotrophic growth of the mutant is completely restored.  相似文献   

17.
AIM: To stimulate poly-beta-hydroxybutyrate (PHB) accumulation in Synechocystis sp. PCC 6803 by manipulating culture conditions. METHODS AND RESULTS: Stationary phase cultures of Synechocystis sp. PCC 6803 were subjected to N- and P-deficiency, chemoheterotrophy and limitations of gas-exchange. Enhanced PHB accumulation was observed under all the above conditions. However, interaction of P-deficiency with gas-exchange limitation (GEL) in the presence of exogenous carbon boosted PHB accumulation maximally. CONCLUSIONS: Combined effects of P-deficiency and GEL boosted PHB accumulation up to 38% (w/w) of dry cell weight (dcw) in Synechocystis sp. PCC 6803 in the presence of fructose and acetate. This value is about eightfold higher as compared with the accumulation under photoautotrophic growth condition. SIGNIFICANCE AND IMPORTANCE OF THE STUDY: These results showed a good potential of Synechocystis sp. PCC 6803 in accumulating poly-beta-hydroxybutyrate, an appropriate raw material for biodegradable and biocompatible plastic. Poly-beta-hydroxybutyrate could be an important material for plastic and pharmaceutical industries.  相似文献   

18.
Photoautotrophically grown cells of the cyanobacterium Synechocystis sp. PCC 6803 wild type and the Ins2 mutant carrying an insertion in the drgA gene encoding soluble NAD(P)H:quinone oxidoreductase (NQR) did not differ in the rate of light-induced oxygen evolution and Photosystem I reaction center (P700+) reduction after its oxidation with a white light pulse. In the presence of DCMU, the rate of P700+ reduction was lower in mutant cells than in wild type cells. Depletion of respiratory substrates after 24 h dark-starvation caused more potent decrease in the rate of P700+ reduction in DrgA mutant cells than in wild type cells. The reduction of P700+ by electrons derived from exogenous glucose was slower in photoautotrophically grown DrgA mutant than in wild type cells. The mutation in the drgA gene did not impair the ability of Synechocystis sp. PCC 6803 cells to oxidize glucose under heterotrophic conditions and did not impair the NDH-1-dependent, rotenone-inhibited electron transfer from NADPH to P700+ in thylakoid membranes of the cyanobacterium. Under photoautotrophic growth conditions, NADPH-dehydrogenase activity in DrgA mutant cells was less than 30% from the level observed in wild type cells. The results suggest that NQR, encoded by the drgA gene, might participate in the regulation of cytoplasmic NADPH oxidation, supplying NADP+ for glucose oxidation in the pentose phosphate cycle of cyanobacteria.  相似文献   

19.
Gun4 is a porphyrin-binding protein that activates magnesium chelatase, a multimeric enzyme catalyzing the first committed step in chlorophyll biosynthesis. In plants, GUN4 has been implicated in plastid-to-nucleus retrograde signaling processes that coordinate both photosystem II and photosystem I nuclear gene expression with chloroplast function. In this work we present the functional analysis of Gun4 from the cyanobacterium Synechocystis sp. PCC 6803. Affinity co-purification of the FLAG-tagged Gun4 with the ChlH subunit of the magnesium chelatase confirmed the association of Gun4 with the enzyme in cyanobacteria. Inactivation of the gun4 gene abolished photoautotrophic growth of the resulting gun4 mutant strain that exhibited a decreased activity of magnesium chelatase. Consequently, the cellular content of chlorophyll-binding proteins was highly inadequate, especially that of proteins of photosystem II. Immunoblot analyses, blue native polyacrylamide gel electrophoresis, and radiolabeling of the membrane protein complexes suggested that the availability of the photosystem II antenna protein CP47 is a limiting factor for the photosystem II assembly in the gun4 mutant.  相似文献   

20.
Analysis of the genome of Synechocystis sp. strain PCC 6803 reveals three open reading frames (slr0851, slr1743, and sll1484) that may code for type 2 NAD(P)H dehydrogenases (NDH-2). The sequence similarity between the translated open reading frames and NDH-2s from other organisms is low, generally not exceeding 30% identity. However, NAD(P)H and flavin adenine dinucleotide binding motifs are conserved in all three putative NDH-2s in Synechocystis sp. strain PCC 6803. The three open reading frames were cloned, and deletion constructs were made for each. An expression construct containing one of the three open reading frames, slr1743, was able to functionally complement an Escherichia coli mutant lacking both NDH-1s and NDH-2s. Therefore, slr0851, slr1743, and sll1484 have been designated ndbA, ndbB, and ndbC, respectively. Strains that lacked one or more of the ndb genes were created in wild-type and photosystem (PS) I-less backgrounds. Deletion of ndb genes led to small changes in photoautotrophic growth rates and respiratory activities. Electron transfer rates into the plastoquinone pool in thylakoids in darkness were consistent with the presence of a small amount of NDH-2 activity in thylakoids. No difference was observed between wild-type and the Ndb-less strains in the banding patterns seen on native gels when stained for either NADH or NADPH dehydrogenase activity, indicating that the Ndb proteins do not accumulate to high levels. A striking phenotype of the PS I-less background strains lacking one or more of the NDH-2s is that they were able to grow at high light intensities that were lethal to the control strain but they retained normal PS II activity. We suggest that the Ndb proteins in Synechocystis sp. strain PCC 6803 are redox sensors and that they play a regulatory role responding to the redox state of the plastoquinone pool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号