首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Arabidopsis thaliana, seed development in recombinants of the ABA-deficient aba mutant with the ABA response mutants abi1 or abi3 is compared to wild type and the monogenic parents. Aberrant seed development occurred in the aba,abi3 recombinant and was normal in aba,abi1, abi3 and aba,abi1 seeds. Embryos of the recombinant aba,abi3 seeds maintained the green color until maturity, the seeds kept a high water content, did not form the late abundant 2S and 12S storage proteins, were desiccation intolerant, and often showed viviparous germination. Application of ABA, and particularly of an ABA analog, to the roots of plants during seed development partially alleviated the aberrant phenotype. Seeds of aba,abi3 were normal when they developed on a mother plant heterozygous for Aba. In contrast to seed development, the induction of dormancy was blocked in all monogenic mutants and recombinants. Dormancy was only induced by embryonic ABA; it could not be increased by maternal ABA or ABA applied to the mother plant. It is concluded that endogenous ABA has at least two different effects in developing seeds. The nature of these responses and of the ABA response system is discussed.  相似文献   

2.
Two new abscisic acid (ABA)-insensitive mutants of Arabidopsis thaliana affected in the abi3 locus are described. These new mutants are severely ABA insensitive. Like the earlier described abi3-1 and the ABA-deficient and -insensitive double mutant aba,abi3, these new mutants vary in the extent of ABA-correlated physiological responses. Mutant seeds fail to degrade chlorophyll during maturation and show no dormancy, and desiccation tolerance and longevity are poorly developed. Carbohydrate accumulation as well as synthesis of LEA or RAB proteins are often suggested to be essential for acquisition of desiccation tolerance. In this work two points are demonstrated. (a) Accumulation of carbohydrates as such does not correlate with acquisition of desiccation tolerance or longevity. It is suggested that a low ratio of mono- to oligosac-charides rather than the absolute amount of carbohydrates controls seed longevity or stability to desiccation tolerance. (b) Synthesis of a few assorted proteins, which is responsive to ABA in the later part of seed maturation, is not correlated with desiccation tolerance or longevity.  相似文献   

3.
During mid-development (25–40 d after pollination: DAP)of the castor bean seed the amount of abscisic acid (ABA) increasesin both the endosperm and the embryo, declining substantiallythereafter until there is little present in the mature dry (60DAP) seed. Premature desiccation of the seed at 35 DAP alsoleads to a major decline in ABA within the embryo and endosperm.Partial water loss from the seed at 35 DAP which, like naturaland premature desiccation, leads to subsequent germination uponreturn of the seed to full hydration, causes a much smallerdecline in ABA levels. In contrast, ABA declines substantiallyin the non-dried (hydrated) control at 35 DAP, but the seedsdo not germinate. Hence, a clear negative correlation betweenABA content and germinability is not observed. Both drying,whether natural or imposed prematurely, and partial drying decreasethe sensitivity of the isolated embryo to exogenous ABA by about10-fold. The protein synthetic response of the castor bean embryo exposedto 0.1 mol m–3 ABA following premature desiccation exhibitssome similarity to the response of the non-dried developingembryo—in both cases the synthesis of some developmentalproteins is enhanced by ABA, and germination is suppressed.Germination of mature seeds is also suppressed by 0.1 mol m–3ABA, but the same developmental proteins are not synthesized.In the cotyledons of prematurely-desiccated seed, some proteinsare hydrolysed upon imbibition in 0.1 mol m–3 ABA, a phenomenonthat occurs also in the cotyledons of similarly treated matureembryos, but not in developing non-dried embryos. Hence theembryo exhibits an ‘intermediate’ response uponrehydration in 0.1 mol m–3 ABA following premature desiccation;viz. some of the responses are developmental and some germinative.Following natural or imposed drying, the isolated embryo becomesrelatively insensitive to 0.01 mol m–3 ABA: germinationis elicited and post-germinative reserve breakdown occurs inthe radicle and cotyledons. The reduced sensitivity of the embryoto ABA as a consequence of desiccation may be an important factorin eliciting the switch to germination and growth within thewhole seed. Key words: Abscisic acid, desiccation, astor bean endosperm, seed development, germination, protein synthesis, isolated embryos, hormone sensitivity  相似文献   

4.
In order to investigate the role of the plant hormones gibberellin (GA) and abscisic acid (ABA) in seed development and germination the GA biosynthetic inhibitor, Uniconazol, was used to isolate mutants with abnormal germination profiles. In one of these mutants, the ability to germinate on Uniconazol is due to a mutation in the ABI3 gene. However, unlike the previously reported abi3 mutant, this line displays an array of seed-specific developmental defects. The accumulation of seed reserve proteins is dramatically reduced due to reduced levels of the storage protein mRNA. The embryos remain green throughout development and are desiccation intolerant. However, immature seeds are completely non-dormant and grow normally. These results suggest the ABI3 gene is essential for the synthesis of seed storage proteins and for the protection of the embryo during desiccation.  相似文献   

5.
Seed dormancy is an important economic trait for agricultural production. Abscisic acid (ABA) and Gibberellins (GA) are the primary factors that regulate the transition from dormancy to germination, and they regulate this process antagonistically. The detailed regulatory mechanism involving crosstalk between ABA and GA, which underlies seed dormancy, requires further elucidation. Here, we report that ABI4 positively regulates primary seed dormancy, while negatively regulating cotyledon greening, by mediating the biogenesis of ABA and GA. Seeds of the Arabidopsis abi4 mutant that were subjected to short-term storage (one or two weeks) germinated significantly more quickly than Wild-Type (WT), and abi4 cotyledons greened markedly more quickly than WT, while the rates of germination and greening were comparable when the seeds were subjected to longer-term storage (six months). The ABA content of dry abi4 seeds was remarkably lower than that of WT, but the amounts were comparable after stratification. Consistently, the GA level of abi4 seeds was increased compared to WT. Further analysis showed that abi4 was resistant to treatment with paclobutrazol (PAC), a GA biosynthesis inhibitor, during germination, while OE-ABI4 was sensitive to PAC, and exogenous GA rescued the delayed germination phenotype of OE-ABI4. Analysis by qRT-PCR showed that the expression of genes involved in ABA and GA metabolism in dry and germinating seeds corresponded to hormonal measurements. Moreover, chromatin immunoprecipitation qPCR (ChIP-qPCR) and transient expression analysis showed that ABI4 repressed CYP707A1 and CYP707A2 expression by directly binding to those promoters, and the ABI4 binding elements are essential for this repression. Accordingly, further genetic analysis showed that abi4 recovered the delayed germination phenotype of cyp707a1 and cyp707a2 and further, rescued the non-germinating phenotype of ga1-t. Taken together, this study suggests that ABI4 is a key factor that regulates primary seed dormancy by mediating the balance between ABA and GA biogenesis.  相似文献   

6.
7.
Lin  T; Yen  W; Chien  C 《Journal of experimental botany》1998,49(324):1203-1212
The relationship between sugar content and loss of desiccation tolerance of hydrated crop seeds (tomato, okra, snow pea, mung bean, and cucumber) was evaluated by imbibing seeds with or without ABA, followed by dehydration and germination. During the process of hydration, but before the seeds lost desiccation tolerance, monosaccharide content increased only slightly, sucrose increased in snow peas, mung bean and cucumber, but maintained its original level in other species and the oligosaccharides declined dramatically. At the time of losing desiccation tolerance, the sucrose content of imbibed seeds was 2-3 times higher than the original level in most species. Positive significant correlation coefficients (r) were found in many, but not all crop seeds between desiccation tolerance and the oligosaccharide mass, or oligo/sucrose ratio. The ratio of oligo/sucrose in intact seeds at the time of losing desiccation tolerance, however, was not a fixed value and varied among species. Oligosaccharides declined significantly in different seed parts of imbibed cucumber seeds while sucrose increased to a higher level in the radicle than in the hypocotyl. Radicles were far more sensitive to desiccation than hypocotyls. The same observation was found for cucumber seeds imbibed in 100 M ABA, yet desiccation tolerance was largely maintained in hypocotyls and cotyledons. It is concluded that sucrose and oligosaccharides are not the determinants of the loss of desiccation tolerance in hydrated seeds.Imbibed seeds did not show any differences between seed parts in their ability to resynthesize sugars during the process of slow dehydration. Differences in sensitivity to desiccation among seed parts were not due to differences in the initial water content or to the rate of water content increase among seed parts. Physiological regulation of the loss of desiccation tolerance in crop seeds during hydration is discussed.  相似文献   

8.
ABA plays important roles in many aspects of seed development, including accumulation of storage compounds, acquisition of desiccation tolerance, induction of seed dormancy and suppression of precocious germination. Quantification of ABA in the F(1) and F(2) populations originated from crosses between the wild type and an ABA-deficient mutant aba2-2 demonstrated that ABA was synthesized in both maternal and zygotic tissues during seed development. In the absence of zygotic ABA, ABA synthesized in maternal tissues was translocated into the embryos and partially induced seed dormancy. We also analyzed the levels of ABA metabolites, gibberellins, IAA, cytokinins, jasmonates and salicylic acid (SA) in the developing seeds of the wild type and aba2-2. ABA metabolites accumulated differentially in the silique and seed tissues during development. Endogenous levels of SA were elevated in aba2-2 in the later developmental stages, whereas that of IAA was reduced compared with the wild type. These data suggest that ABA metabolism depends on developmental stages and tissues, and that ABA interacts with other hormones to regulate seed developmental processes.  相似文献   

9.
Sugars regulate important processes and affect the expression of many genes in plants. Characterization of Arabidopsis (Arabidopsis thaliana) mutants with altered sugar sensitivity revealed the function of abscisic acid (ABA) signalling in sugar responses. However, the exact interaction between sugar signalling and ABA is obscure. Therefore ABA deficient plants with constitutive ABI4 expression (aba2-1/35S::ABI4) were generated. Enhanced ABI4 expression did not rescue the glucose insensitive (gin) phenotype of aba2 seedlings indicating that other ABA regulated factors are essential as well. Interestingly, both glucose and ABA treatment of Arabidopsis seeds trigger a post-germination seedling developmental arrest. The glucose-arrested seedlings had a drought tolerant phenotype and showed glucose-induced expression of ABSCISIC ACID INSENSITIVE3 (ABI3), ABI5 and LATE EMBRYOGENESIS ABUNDANT (LEA) genes reminiscent of ABA signalling during early seedling development. ABI3 is a key regulator of the ABA-induced arrest and it is shown here that ABI3 functions in glucose signalling as well. Multiple abi3 alleles have a glucose insensitive (gin) phenotype comparable to that of other known gin mutants. Importantly, glucose-regulated gene expression is disturbed in the abi3 background. Moreover, abi3 was insensitive to sugars during germination and showed sugar insensitive (sis) and sucrose uncoupled (sun) phenotypes. Mutant analysis further identified the ABA response pathway genes ENHANCED RESPONSE TO ABA1 (ERA1) and ABI2 as intermediates in glucose signalling. Hence, three previously unidentified sugar signalling genes have been identified, showing that ABA and glucose signalling overlap to a larger extend than originally thought. Bas J. W. Dekkers and Jolanda A. M. J. Schuurmans contributed equally to this paper.  相似文献   

10.
The correlation between desiccation tolerance and soluble sugars was investigated in seeds of a number of rice cultivars belonging to the Asian rice Oryza sativa L. They were dried or ultradried to various low moisture content and then imbibed for germination testing. Few or no changes on germination percentage and vigor index were found in Indian rice seeds even after their moisture content fell to 3.5%, indicating that Indian rice exhibited a strong desiccation tolerance. On the contrary, Japonica rice seed germination percentage rapidly decreased, after their moisture content fell to 4.5%. The capacity for desiccation tolerance in Japonica (cv. Chunjiang 15) and Indian (cv. Zhongzu 1) developing seeds increased on 23–40 and 15–25 days after pollination, respectively. Though the level of monosaccharides declined, the content of sucrose has increased during desiccation. These results suggest that desiccation tolerance might be associated with the increase in seed viability and the changes in sugar level, and that raffinose could be capable of contributing to the desiccation tolerance to ultradrying. Published in Russian in Fiziologiya Rastenii, 2006, Vol. 53, No. 2, pp. 220–226. The text was submitted by the authors in English.  相似文献   

11.

Vateria indica L. is a critically endangered tree species in South-Western Ghats of India, commercially exploited for its valuable resins. Seed recalcitrance is a major problem hindering the natural regeneration of this species and it poses a great challenge in seed storage and conservation. There was a continuous import of water from the maternal tissues to seed tissues till maturity and the seeds were released in a fully hydrated state. Differential accumulation of water has been noticed in the cotyledons and embryonal axis. There was a positive correlation between seed moisture content and rate of germination which is a character of recalcitrant seeds. The critical moisture content was found to be 40% in the axis and 23.5% in the cotyledons, below which the embryo will not germinate. Loss of germination ability as a result of desiccation was attributed to the cell membrane damage, expressed as the electrolyte leakage exceeding 0.79 μS/cm. ABA peaked in the mid embryogenesis, then dropped drastically and maintained a lower level till seed maturity. On desiccation, ABA started to increase but gradually dropped down. Both cotyledons and embryonal axis had differential ABA content but exhibited a general pattern of ABA level during embryogeny. Due to the thin seed coat/embryo ratio and low investment in the seed coat, this recalcitrant seed could not hold water as efficient as orthodox seeds. Thus, it germinated as soon as it was shed from the mother plant. On desiccation, ABA shot up and moisture content decreased along with electrolyte leakage and cell membrane damage. All these hindered germination of the seed. Thus, we can see a clear interplay between moisture content and ABA levels during embryogeny and desiccation. Since the seed biology of this species has not been well documented, the present work is mainly intended to study the dynamics of water and ABA during embryogeny and embryo drying. This study can surely contribute to the long-term storage and conservation of recalcitrant seeds which is a less explored area.

  相似文献   

12.
Developing seeds of alfalfa (Medicago sativa L.) acquire the ability to germinate during the latter stages of development, the maturation drying phase. Isolated embryos placed on Murashige and Skoog medium germinate well during early and late development, but poorly during mid-development; however, when placed on water they germinate well only during the latter stage of development. Germination of isolated embryos is very slow and poor when they are incubated in the presence of surrounding seed structures (the endosperm or seed coat) taken from the mid-development stages. This inhibitory effect is also achieved by incubating embryos in 10?5 M abscisic acid (ABA). Endogenous ABA attains a high level during mid-development, especially in the endosperm. Seeds developing in pods treated with fluridone (1-methyl-3-phenyl-5[3-(trifluoromethyl)-phenyl]-4(1H)-pyridinone) contain low levels of ABA during mid-development, and the endosperm and seed coat only weakly inhibit the germination of isolated embryos. However, intact seeds from fluridone-treated pods do not germinate viviparously, which is indicative that ABA alone is not responsible for maintaining seeds in a developing state. Application of osmoticum (e.g. 0.35 M sucrose) to isolated developing embryos prevents their germination. Also, in the developing seed in situ the osmotic potential is high. Thus internal levels of osmoticum may play a role in preventing germination of the embryo and maintaining development. Abscisic acid and osmoticum impart distinctly different metabolic responses on developing embryos, as demonstrated by their protein-synthetic capacity. Only in the presence of osmoticum do embryos synthesize proteins which are distinctly recognizable as those synthesized by developing embryos in situ, i.e. when inside the pod. Abscisic acid induces the synthesis of a few unique proteins, but these arise even in mature embryos treated with ABA. Thus while both osmoticum and ABA prevent precocious germination, their effects on the synthetic capacity of the developing embryo are quite distinct. Since seeds with low endogenous ABA do not germinate, osmotic regulation may be the more important of these two factors in controlling seed development.  相似文献   

13.
14.
After-ripening (AR) is a time and environment regulated process occurring in the dry seed, which determines the germination potential of seeds. Both metabolism and perception of the phytohormone abscisic acid (ABA) are important in the initiation and maintenance of dormancy. However, molecular mechanisms that regulate the capacity for dormancy or germination through AR are unknown. To understand the relationship between ABA and AR, we analysed genome expression in Arabidopsis thaliana mutants defective in seed ABA synthesis (aba1-1) or perception (abi1-1). Even though imbibed mutant seeds showed no dormancy, they exhibited changes in global gene expression resulting from dry AR that were comparable with changes occurring in wild-type (WT) seeds. Core gene sets were identified that were positively or negatively regulated by dry seed storage. Each set included a gene encoding repression or activation of ABA function (LPP2 and ABA1, respectively), thereby suggesting a mechanism through which dry AR may modulate subsequent germination potential in WT seeds. Application of exogenous ABA to after-ripened WT seeds did not reimpose characteristics of freshly harvested seeds on imbibed seed gene expression patterns. It was shown that secondary dormancy states reinstate AR status-specific gene expression patterns. A model is presented that separates the action of ABA in seed dormancy from AR and dry storage regulated gene expression. These results have major implications for the study of genetic mechanisms altered in seeds as a result of crop domestication into agriculture, and for seed behaviour during dormancy cycling in natural ecosystems.  相似文献   

15.
Background and Aims Although abscisic acid (ABA) is commonly recognized as a primary cause of seed dormancy, there is a lack of information on the role of ABA during orchid seed development. In order to address this issue, the localization and quantification of ABA were determined in developing seeds of Cypripedium formosanum.Methods The endogenous ABA profile of seeds was measured by enzyme-linked immunosorbent assay (ELISA). Temporal and spatial distributions of ABA in developing seeds were visualized by immunohistochemical staining with monoclonal ABA antibodies. Fluoridone was applied to test the causal relationship between ABA content and seed germinability.Key Results ABA content was low at the proembryo stage, then increased rapidly from 120 to 150 days after pollination (DAP), accompanied by a progressive decrease in water content and seed germination. Immunofluorescence signals indicated an increase in fluorescence over time from the proembryo stage to seed maturation. From immunogold labelling, gold particles could be seen within the cytoplasm of embryo-proper cells during the early stages of seed development. As seeds approached maturity, increased localization of gold particles was observed in the periplasmic space, the plasmalemma between embryo-proper cells, the surface wall of the embryo proper, and the inner walls of inner seed-coat cells. At maturity, gold particles were found mainly in the apoplast, such as the surface wall of the embryo proper, and the shrivelled inner and outer seed coats. Injection of fluoridone into capsules resulted in enhanced germination of mature seeds.Conclusions The results indicate that ABA is the key inhibitor of germination in C. formosanum. The distinct accumulation pattern of ABA suggests that it is synthesized in the cytosol of embryo cells during the early stages of seed development, and then exported to the apoplastic region of the cells for subsequent regulatory processes as seeds approach maturity.  相似文献   

16.
Chen Y  Ji F  Xie H  Liang J  Zhang J 《Plant physiology》2006,140(1):302-310
The regulator of G-protein signaling (RGS) proteins, recently identified in Arabidopsis (Arabidopsis thaliana; named as AtRGS1), has a predicted seven-transmembrane structure as well as an RGS box with GTPase-accelerating activity and thus desensitizes the G-protein-mediated signaling. The roles of AtRGS1 proteins in Arabidopsis seed germination and their possible interactions with sugars and abscisic acid (ABA) were investigated in this study. Using seeds that carry a null mutation in the genes encoding RGS protein (AtRGS1) and the alpha-subunit (AtGPA1) of the G protein in Arabidopsis (named rgs1-2 and gpa1-3, respectively), our genetic evidence proved the involvement of the AtRGS1 protein in the modulation of seed germination. In contrast to wild-type Columbia-0 and gpa1-3, stratification was found not to be required and the after-ripening process had no effect on the rgs1-2 seed germination. In addition, rgs1-2 seed germination was insensitive to glucose (Glc) and sucrose. The insensitivities of rgs1-2 to Glc and sucrose were not due to a possible osmotic stress because the germination of rgs1-2 mutant seeds showed the same response as those of gpa1-3 mutants and wild type when treated with the same concentrations of mannitol and sorbitol. The gpa1-3 seed germination was hypersensitive while rgs1-2 was less sensitive to exogenous ABA. The different responses to ABA largely diminished and the inhibitory effects on seed germination by exogenous ABA and Glc were markedly alleviated when endogenous ABA biosynthesis was inhibited. Hypersensitive responses of seed germination to both Glc and ABA were also observed in the overexpressor of AtRGS1. Analysis of the active endogenous ABA levels and the expression of NCED3 and ABA2 genes showed that Glc significantly stimulated the ABA biosynthesis and increased the expression of NCED3 and ABA2 genes in germinating Columbia seeds, but not in rgs1-2 mutant seeds. These data suggest that AtRGS1 proteins are involved in the regulation of seed germination. The hyposensitivity of rgs1-2 mutant seed germination to Glc might be the result of the impairment of ABA biosynthesis during seed germination.  相似文献   

17.
Low concentrations of sugars altered the sensitivity of seed germination to inhibition by exogenous abscisic acid (ABA). Germination of wild-type and ABA-insensitive (abi) Arabidopsis seeds was assayed on media containing ABA and a variety of sugars and sugar alcohols. The inhibitory effects of ABA were strongly repressed in the presence of 15 to 90 mM glucose (Glc), sucrose, or fructose, but not by comparable concentrations of sorbitol or mannitol. Several features of the response to Glc are inconsistent with a purely nutritional effect: The optimal sugar concentration is low and differs between the wild type and the abi mutants. Furthermore, Glc suppression of ABA inhibition is light dependent and limited to the process of radicle emergence.  相似文献   

18.
Orchid is a major floral crop around the world and Dendrobium hybrids are considered to be one of the most popular orchids. In vitro germination of hybrid seeds is a common practice among orchid growers, however, in many cross pollinations the embryos may not develop to maturity, leading to poor seed germination. The effect of seed maturity and sucrose concentration were investigated via asymbiotic germination of nobile Dendrobium hybrids. Capsules were harvested from two hybrids (Den. Lucky Girl × Den. Second Love ‘Kirameki’ and Den. Lucky Girl × Den. Hamana Lake ‘Kumi’) and one selfing of Den. Second Love ‘Kirameki’ at 2, 3, 4, and 5 months after pollination and immature seeds were taken. Immature seeds from 3- to 5-month old capsules could be successfully germinated on Hyponex based medium. Immature seeds from 4-month old capsules showed greatest germination rate of tested treatments, whereas 3-month old immature seeds showed the least germination. After 6 weeks of in vitro culture, protocorms derived from embryos developed on every concentration of sucrose, but germination was greater at lower concentrations. Greater concentration of sucrose decreased normal-developed protocorms.  相似文献   

19.
Summary The influence of the zygotic seed coat on precocious germination and desiccation tolerance of somatic embryos has been studied using alfalfa (Medicago sativa L.). When cultured in contact with somatic embryos, seed coats at certain developmental stages inhibited precocious germination and induced desiccation tolerance in the somatic embryos. Germination of somatic embryos was inhibited by seed coats at the age of 16–26 days after pollination (DAP) and desiccation tolerance was induced after 20–26 DAP. Both phenomena were related to the synthesis of abscisic acid in the seed coat. The absence of a quiescent phase and desiccation tolerance in alfalfa somatic embryos may be related to the lack of developmental control by the seed coat.Abbreviations ABA Abscisic acid - DAP Days after pollination  相似文献   

20.

Background

Kernel moisture at harvest is an important trait since a low value is required to prevent unexpected early germination and ensure seed preservation. It is also well known that early germination occurs in viviparous mutants, which are impaired in abscisic acid (ABA) biosynthesis. To provide some insight into the genetic determinism of kernel desiccation in maize, quantitative trait loci (QTLs) were detected for traits related to kernel moisture and ABA content in both embryo and endosperm during kernel desiccation. In parallel, the expression and mapping of genes involved in kernel desiccation and ABA biosynthesis, were examined to detect candidate genes.

Results

The use of an intermated recombinant inbred line population allowed for precise QTL mapping. For 29 traits examined in an unreplicated time course trial of days after pollination, a total of 78 QTLs were detected, 43 being related to kernel desiccation, 15 to kernel weight and 20 to ABA content. Multi QTL models explained 35 to 50% of the phenotypic variation for traits related to water status, indicating a large genetic control amenable to breeding. Ten of the 20 loci controlling ABA content colocated with previously detected QTLs controlling water status and ABA content in water stressed leaves. Mapping of candidate genes associated with kernel desiccation and ABA biosynthesis revealed several colocations between genes with putative functions and QTLs. Parallel investigation via RT-PCR experiments showed that the expression patterns of the ABA-responsive Rab17 and Rab28 genes as well as the late embryogenesis abundant Emb5 and aquaporin genes were related to desiccation rate and parental allele effect. Database searches led to the identification and mapping of two zeaxanthin epoxidase (ZEP) and five novel 9-cis-epoxycarotenoid dioxygenase (NCED) related genes, both gene families being involved in ABA biosynthesis. The expression of these genes appeared independent in the embryo and endosperm and not correlated with ABA content in either tissue.

Conclusions

A high resolution QTL map for kernel desiccation and ABA content in embryo and endosperm showed several precise colocations between desiccation and ABA traits. Five new members of the maize NCED gene family and another maize ZEP gene were identified and mapped. Among all the identified candidates, aquaporins and members of the Responsive to ABA gene family appeared better candidates than NCEDs and ZEPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号