首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Cardiac rupture can be fatal after myocardial infarction (MI). Experiments in animals revealed gender differences in rupture rate; however, patient data are controversial. We found a significantly higher rupture rate in testosterone-treated female mice within 1 wk after MI, whereas castration in males significantly reduced rupture. We hypothesized that testosterone may adversely affect remodeling after MI, exaggerating the inflammatory response and increasing cardiac rupture, whereas estrogen may be cardioprotective, attenuating early remodeling and reducing rupture rate. We studied the effect of gender and hormone manipulation on morphological and histological changes during early remodeling after MI in 4-wk-old male and female C57BL/6J mice and how these events could affect cardiac function. Females were randomly divided into 1) sham ovariectomy + placebo (s-ovx + P), 2) s-ovx + testosterone (T), 3) ovx + P, and 4) ovx + T; males were divided into 1) sham castration + P (s-cas + P), 2) s-cas + 17beta-estradiol (E), 3) cas + P, and 4) cas + E. At 6 wk after gonadectomy and hormone manipulation, MI was induced. Mice were randomly killed 1, 2, 4, 7, and 14 days after MI. The left ventricle was weighed and sectioned for evaluation of MI size, infarct expansion index (IEI), and neutrophil infiltration. Transthoracic echocardiography was performed in conscious mice in the 14-day group before organ harvest. Cardiac rupture rate and IEI were significantly higher in testosterone-treated females and noncastrated males than in controls; these effects were accompanied by enhanced neutrophil infiltration and pronounced deterioration of cardiac function and left ventricular dilatation. Ovariectomy in females and estrogen supplementation in males did not confer significant protection from cardiac rupture, IEI, or neutrophil infiltration. We concluded that, in mice, high testosterone levels enhance acute myocardial inflammation, adversely affecting myocardial healing and early remodeling, as indicated by increased cardiac rupture, and possibly causing deterioration of cardiac function after MI, and, conversely, estrogen seems to have no significant protective effect in the acute phase after MI.  相似文献   

2.
Renal function and blood flow decline during aging in association with a decrease in the number of intrarenal vessels, but if loss of estrogen contributes to this microvascular, rarefaction remains unclear. We tested the hypothesis that the decreased renal microvascular density with age is aggravated by loss of estrogen. Six-month-old female C57/BL6 mice underwent ovariectomy (Ovx) or sham operation and then were allowed to age to 18-22 mo. Another comparable group was replenished with estrogen after Ovx (Ovx+E), while a 6-mo-old group served as young controls. Kidneys were then dissected for evaluation of microvascular density (by micro-computed tomography) and angiogenic and fibrogenic factors. Cortical density of small microvessels (20-200 μm) was decreased in all aged groups compared with young controls (30.3 ± 5.8 vessels/mm2, P < 0.05), but tended to be lower in sham compared with Ovx and Ovx+E (9.9 ± 1.7 vs. 17.2 ± 4.2 and 18 ± 3.0 vessels/mm2, P = 0.08 and P = 0.02, respectively). Cortical density of larger microvessels (200-500 μm) decreased only in aged sham (P = 0.04 vs. young control), and proangiogenic signaling was attenuated. On the other hand, renal fibrogenic mechanisms were aggravated in aged Ovx compared with aged sham, but blunted in Ovx+E, in association with downregulated transforming growth factor-β signaling and decreased oxidative stress in the kidney. Therefore, aging induced in female mice renal cortical microvascular loss, which was likely not mediated by loss of endogenous estrogen. However, estrogen may play a role in protecting the kidney by decreasing oxidative stress and attenuating mechanisms linked to renal interstitial fibrosis.  相似文献   

3.
Although the mechanisms are not understood, evidence suggests that 17beta-estradiol (E2) confers protection from cardiovascular and renal complications in many diseases. We have reported that E2 decreases angiotensin type 1 receptors (AT1Rs) in different tissues and hypothesize that E2 exerts tonic inhibition on AT1Rs, reducing effects of ANG II. This study determined the effects of E2 and dihydrotestosterone (DHT) on cortical estrogen receptors (ERs) and glomerular AT1R binding in rats. Animals underwent sham operation, ovariectomy (Ovx) or orchidectomy (Cas) and were treated (Ovx +/- E2; Cas +/- DHT) for 3 wk. Cortical ERalpha protein was 2.5 times greater, and ERbeta was 80% less in females vs. males (P < 0.01). Glomerular AT1R binding was lower in females than males [4,657 +/- 838 vs. 7,457 +/- 467 counts per minute (cpm), P < 0.01]. Ovx reduced ERalpha protein by 50%, whereas E2 increased ERalpha expression after Ovx. The decrease in cortical ERalpha in Ovx rats was associated with a significant increase in AT1R binding (6,908 +/- 609 cpm), and E2 prevented this increase. There was no change in ERalpha or AT1R binding following Cas +/- DHT (25 mg) treatment, although Cas did elevate cortical ERbeta (P < 0.01). Interestingly, the high dose DHT (200 mg) elevated ERalpha 150% above intact levels and profoundly decreased AT1R binding (1,824 +/- 705 cpm, P < 0.001 vs. intact male). This indicates that under normal conditions, glomerular AT1R binding is significantly greater in male than female animals, which may be important in development of cardiovascular and renal disease in males. Furthermore, E2 regulates ERalpha and is inversely associated with glomerular AT1R binding, supporting our hypothesis that E2 tonically suppresses AT1Rs and suggesting a potential mechanism for the protective effects of estrogen.  相似文献   

4.
Women with functional ovaries have a lower cardiovascular risk than men and postmenopausal women. However, estrogen replacement therapy remains controversial. This study examined the effect of ovarian hormone deficiency and estrogen replacement on ventricular myocyte contractile function and PKB/Akt activation. Nulliparous female rats were subjected to bilateral ovariectomy (Ovx) or sham operation (sham). A subgroup of Ovx rats received estrogen (E(2)) replacement (40 microg. kg(-1). day(-1)) for 8 weeks. Mechanical and intracellular Ca(2+) properties were evaluated including peak shortening (PS), time to PS (TPS), time to 90% relengthening (TR(90)), maximal velocity of shortening/relengthening (+/-dL/dt), fura 2 fluorescence intensity (FFI), and decay rate. Levels of sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA2a), phospholamban (PLB), and Akt were assessed by Western blot. Ovx promoted body weight gain associated with reduced serum E(2) and uterine weight, all of which were abolished by E(2). Ovx depressed PS and +/-dL/dt, prolonged TPS, TR(90), and decay rate, and enhanced resting FFI, all of which, with the exception of TPS, were restored by E(2). Ovx did not alter the levels of SERCA2a, PLB, and total Akt, but significantly reduced Akt activation [phosphorylated Akt (pAkt)], pAkt/Akt, and the SERCA2a-to-PLB ratio. These alterations in protein expression were restored by E(2). E(2) enhanced PS and +dL/dt in vitro, which was abolished by the E(2) receptor antagonist ICI-182780. Ovx reduced myocyte Ca(2+) responsiveness and lessened stimulating frequency-induced decline in PS, both ablated by E(2). These data suggest that mechanical and protein functions of ventricular myocytes are directly regulated by E(2).  相似文献   

5.
The present study tested the hypothesis that 17beta-estradiol (E2) inhibits increases in angiotensin-converting enzyme (ACE) and ANG II type 1 receptor (AT1R) in the brain and heart after myocardial infarction (MI) and, thereby, inhibits development of left ventricular (LV) dysfunction after MI. Age-matched female Wistar rats were treated as follows: 1) no surgery (ovary intact), 2) ovariectomy + subcutaneous vehicle treatment (OVX + Veh), or 3) OVX + subcutaneous administration of a high dose of E2 (OVX + high-E2). After 2 wk, rats were randomly assigned to coronary artery ligation (MI) and sham operation groups and studied after 3 wk. E2 status did not affect LV function in sham rats. At 2-3 wk after MI, impairment of LV function was similar across MI groups, as measured by echocardiography and direct LV catheterization. LV ACE mRNA abundance and activity were increased severalfold in all MI groups compared with respective sham animals and to similar levels across MI groups. In most brain nuclei, ACE and AT1R densities increased after MI. Unexpectedly, compared with the respective sham groups the relative increase was clearest (20-40%) in OVX + high-E2 MI rats, somewhat less (10-15%) in ovary-intact MI rats, and least (< 10-15%) in OVX + Veh MI rats. However, because in the sham group brain ACE and AT1R densities increased in the OVX + Veh rats and decreased in the OVX + high-E2 rats compared with the ovary-intact rats, actual ACE and AT1R densities in most brain nuclei were modestly higher (< 20%) in OVX + Veh MI rats than in the other two MI groups. Thus E2 does not inhibit upregulation of ACE in the LV after MI and amplifies the percent increases in ACE and AT1R densities in brain nuclei after MI, despite E2-induced downregulation in sham rats. Consistent with these minor variations in the tissue renin-angiotensin system, during the initial post-MI phase, E2 appears not to enhance or hinder the development of LV dysfunction.  相似文献   

6.
Modulation by sex hormones of aortic reactivity in rats with the metabolic syndrome (MS) was investigated. The following groups of weanling male Wistar rats were used: control rats (C) received regular tap water while MS rats received 30% sucrose in their drinking water; both had rodent chow for 24 weeks. These two groups were further subdivided into the following four groups: intact (Int), castrated (Cas), castrated plus testosterone (T) and castrated plus estradiol (E). Vascular response of thoracic aortic rings to norepinephrine (NE), acetylcholine (ACh), indomethacin (Indo) and nitro-l-arginine-methyl ester (L-NAME) was investigated. Blood pressure (BP) and serum nitrates and nitrites were measured. BP and serum nitrates and nitrites were modified by castration and treatments with either T or E. Vasoconstriction in Int MS and Cas MS+T aortas was larger than in C and Cas C+T, respectively. Vasodilation in Int MS and Cas MS+T was reduced in comparison with C and Cas C+T, Cas MS and Cas MS+E. Indomethacin decreased vasoconstriction in all groups (P<0.002) but Int C and Cas C+T remained significantly smaller than Int MS and Cas MS+T. l-NAME in NE-contracted vessels induced a significant increase in vasoconstriction, except in Cas C+E rats; the responses of Int MS and Cas MS+T were significantly larger than in Int C and Cas C+T. The results suggest endothelial dysfunction in Int MS and Cas MS+T and a protective effect resulting from castration and castration plus E in MS animals, indicating a sex hormone influence.  相似文献   

7.
In the present study, we investigated the effect of estradiol and progesterone supplementation on oxidant and antioxidant parameters of renal tissue in ovariectomized and pinealectomized rats. The study was carried out on 36 adult, Sprague-Dawley strain female rats, 6 months of age and weighing 200-250 g. The rats were divided into six groups, each group included six rats: Group 1: Sham-ovariectomized (Sham-Ovx); Group 2: Ovariectomized (Ovx); Group 3: Ovx and estradiol (E) and progesterone (P) supplemented (Ovx+E-P); Group 4: Ovariectomized and sham pinealectomy (Ovx+sham Pnx); Group 5: Ovariectomized+Pinealectomized (Ovx+Pnx); Group 6: Ovariectomized+Pinealectomized+Hormone Supplemented group (Ovx+Pnx+E-P). The levels of malondialdehyde (MDA), reduced glutathione (GSH) and glutathione peroxidase (GSH-Px) were analysed in renal tissues of rats. The highest and the lowest levels of MDA were determined in Groups 5 and 1 respectively (p < 0.001). However, GSH and GSH-Px levels demonstrated statistically important decreases in groups 2, 4, 5 (p < 0.001). The findings of this study demonstrate that ovariectomy leads to oxidative damage in renal tissue. Pinealectomy in addition to ovariectomy greatly increases the oxidative damage. However, female sex hormones supplementations to the Ovx and/or Ovx+Pnx rats protected against lipid peroxidation by activating the antioxidant system.  相似文献   

8.
Males develop higher blood pressure than do females. This study tested the hypothesis that androgens enhance responsiveness to ANG II during the development of hypertension in New Zealand genetically hypertensive (NZGH) rats. Male NZGH rats were obtained at 5 wk of age and subjected to sham operation (Sham) or castration (Cas) then studied at three age groups: 6-7, 11-12, and 16-17 wk. Mean arterial blood pressure (MAP), heart rate (HR), and renal blood flow (RBF) measurements were recorded under Inactin anesthesia. These variables were measured after enalapril (1 mg/kg) treatment and during intravenous ANG II infusion (20, 40, and 80 ng/kg/min). Plasma testosterone was measured by ELISA. Angiotensin type 1 (AT1) receptor expression was assessed by Western blot analysis and RT-PCR. ANG II-induced MAP responses were significantly attenuated in Cas NZGH rats. At the highest ANG II dose, MAP increased by 40+/-4% in Sham vs. 22+/-1% in Cas NZGH rats of 16-17 wk of age. Similarly, renal vascular resistance (RVR) responses to ANG II were reduced by castration (209+/-20% in Sham vs. 168+/-10% in Cas NZGH rats at 16-17 wk of age). Castration also reduced MAP recorded in conscious NZGH rats of this age group. Testosterone replacement restored baseline MAP and the pressor and RVR responses to ANG II. Castration reduced testosterone concentrations markedly. Testosterone treatment restored these concentrations. Neither castration nor castration+testosterone treatment affected AT1 receptor mRNA or protein expression. Collectively, these data suggest that androgens modulate renal and systemic vascular responsiveness to ANG II, which may contribute to androgen-induced facilitation of NZGH rat hypertension.  相似文献   

9.
Myocardial infarction (MI) results in left ventricular remodeling (e.g., ventricular hypertrophy, dilatation, and fibrosis). Fibrosis contributes to increased myocardial stiffening, impaired ventricular filling and function, and reduced cardiac output. Adenylyl cyclase (AC) expression and activity are reduced in animal models of heart failure. Stimulation of AC can inhibit extracellular matrix production in isolated cardiac fibroblasts; however, a role for reduced AC expression and activity in fibrosis associated with cardiac remodeling after chronic MI has never been determined. We tested the hypothesis that AC expression and activity are reduced in cardiac fibroblasts after chronic (18 wk) MI. Rats underwent coronary artery ligation or sham surgery (control), and echocardiography was used to assess left ventricular remodeling 1, 3, 5, 7, 10, 12, and 18 wk after surgery. Cardiac fibroblasts were isolated from the noninfarcted myocardium and compared for differences in AC activity and collagen synthesis. End-diastolic dimension was increased [control: 0.76 +/- 0.02 cm and MI: 1.0 +/- 0.02 cm (means +/- SE), P < 0.001] and fractional shortening was decreased (control: 44 +/- 2% and MI: 17 +/- 2%, P < 0.001) in MI compared with control rats. Basal and forskolin-stimulated cAMP production were decreased by 90% and 93%, respectively, and AC5/6 expression was decreased 39% in fibroblasts isolated from MI rats compared with sham controls. Serum-stimulated collagen production was increased twofold and forskolin-mediated inhibition of collagen synthesis was reduced in fibroblasts from MI rats compared with controls. Our data demonstrate that AC expression and activity are reduced and collagen production is increased in cardiac fibroblasts of rats after MI.  相似文献   

10.
Administration of testosterone (T) to oophorectomized (Ovx) female rats is followed by severe insulin resistance, localized to postreceptor cellular events in the muscle. In this study, intervention by exercise was introduced to examine whether circulatory adaptations are involved in insulin resistance. Two groups of Ovx rats were studied: one group was given T (Ovx+T); another group had free access to running wheels (Ovx+T+Ex). In addition, one control group (sham operated) was studied. Insulin sensitivity was measured with the euglycemic hyperinsulinemic clamp technique (submaximal) for 150 min. Muscle interstitial glucose and insulin concentrations were measured by microdialysis. The measurements showed that, in Ovx+T rats, the onset of insulin action was significantly (P < 0.05) slower during the first 95 min of the clamp compared with that in Ovx+T+Ex and controls. Muscle interstitial concentrations of insulin but not glucose were lower in both Ovx+T and Ovx+T+Ex rats than in controls throughout the clamp. It was concluded that physical exercise prevented the slow onset of insulin action in Ovx+T rats without changing the distribution time of muscle interstitial insulin. The results indicate that hyperandrogenicity is characterized by delayed muscle insulin action. Physical exercise reverses these defects without any beneficial effect on muscle interstitial insulin concentrations.  相似文献   

11.
We investigated the effects of estrogen on global myocardial ischemia-reperfusion injury in rats that were ovariectomized (Ovx), sham-operated, or ovariectomized and then given 17beta-estradiol (E(2)beta) supplementation (Ovx+E(2)beta). Hearts were excised, cannulated, perfused with and then immersed in chilled (4 degrees C) cardioplegia solution for 30 min, and then retrogradely perfused with warm (37 degrees C), oxygenated Krebs-Henseleit bicarbonate buffer for 120 min. The coronary flow rate, first derivative of left ventricular pressure, and nitrite production were all significantly lower in Ovx than in sham-operated or Ovx+E(2)beta hearts. However, coronary flow rates or nitrate production were not consistently different throughout the entire reperfusion period. Ca(2+) accumulated more in Ovx rat hearts than in sham-operated or Ovx+E(2)beta hearts, and mitochondrial respiratory function was lower in Ovx hearts than in hearts from the other two groups. Marked interstitial edema and contraction bands were seen in hematoxylin-eosin-stained sections of Ovx rat hearts but not in hearts from either of the other groups. Hematoxylin-basic fuchsin-picric acid-stained sections revealed fewer viable myocytes in hearts from the Ovx group than from the sham or Ovx+E(2)beta group. Transmission electron microscopy demonstrated more severely damaged mitochondria and ultrastructural damage to myocytes in Ovx rat hearts. Our results indicate that estrogen plays a cardioprotective role in global myocardial ischemia-reperfusion injury in female rats.  相似文献   

12.
Metformin is the first choice drug for the treatment of patients with diabetes, but its use is debated in patients with advanced cardiorenal disease. Epidemiological data suggest that metformin may reduce cardiac events, in patients both with and without heart failure. Experimental evidence suggests that metformin reduces cardiac ischemia-reperfusion injury. It is unknown whether metformin improves cardiac function (remodeling) in a long-term post-MI remodeling model. We therefore studied male, nondiabetic, Sprague-Dawley rats that were subjected to either myocardial infarction (MI) or sham operation. Animals were randomly allocated to treatment with normal water or metformin-containing water (250 mg·kg(-1)·day(-1)). At baseline, 6 wk, and 12 wk, metabolic parameters were analyzed and oral glucose tolerance tests (OGTT) were performed. Echocardiography and hemodynamic parameters were assessed 12 wk after MI. In the MI model, infarct size was significantly smaller after 12-wk metformin treatment (29.6 ± 3.2 vs. 38.0 ± 2.2%, P < 0.05). Moreover, metformin resulted in less left ventricular dilatation (6.0 ± 0.4 vs. 7.6 ± 0.6 mm, P < 0.05) and preservation of left ventricular ejection fraction (65.8 ± 3.7% vs. 48.6 ± 5.6%, P < 0.05) compared with MI control. The improved cardiac function was associated with decreased atrial natriuretic peptide mRNA levels in the metformin-treated group (50% reduction compared with MI, P < 0.05). Insulin resistance did not occur during cardiac remodeling (as indicated by normal OGTT) and fasting glucose levels and the pattern of the OGTT were not affected by metformin. Molecular analyses suggested that altered AMP kinase phosphorylation status and low insulin levels mediate the salutary effects of metformin. Altogether our results indicate that metformin may have potential to attenuate heart failure development after myocardial infarction, in the absence of diabetes and independent of systemic glucose levels.  相似文献   

13.
We examined effects of 4 wk of food restriction on ovariectomy-related changes in muscle, bone, and plasma insulin-like growth factor I (IGF-I). Female Sprague-Dawley rats (7 mo old) were assigned to freely eating groups: sham-operated (Sham), ovariectomized (Ovx-AL), and estrogen (estradiol)-replaced Ovx (Ovx+E(2)). Ovx rats were also pair fed with Sham (Ovx-PF) or weight matched with Sham by food restriction (Ovx-FR). Ovx-AL and Ovx-PF rats had similar estrogen status and body weight; therefore, the groups were combined (group: Ovx). After treatment, body weight was approximately 10% greater in Ovx than in Sham rats (P < 0.05), and muscle weight-to-body weight ratios were comparable among all groups. Bone mineral contents of whole tibiae in Ovx-FR and Ovx were approximately 15% (P < 0.05) and approximately 6% lower than in Sham rats (P < 0.05), respectively. Plasma IGF-I was approximately 30% higher in Ovx than in Sham (P < 0.05) but was similar between Sham and Ovx-FR. IGF-I was highly correlated with body weight and muscle mass. Within non-estrogen-replaced Ovx rats, IGF-I explained approximately 19% of variance in bone mineral content after accounting for variance attributable to body weight. Findings suggest that estrogen acts indirectly on skeletal muscle and bone in rats through regulation of body growth by factors such as IGF-I.  相似文献   

14.
The effect of low serum estrogen levels on urinary bladder function remains poorly understood. Using a rabbit model, we analyzed the effects of estrogen on the expression of the isoforms of myosin, the molecular motor for muscle contraction, in detrusor smooth muscle. Expression of myosin heavy chain (MHC) isoforms, which differ in the COOH-terminal (SM1 and SM2) and the NH(2)-terminal (SM-A and SM-B) regions as a result of alternative splicing of the mRNA at either the 3'- or 5'-ends, was analyzed in age-matched female rabbits that were sham operated, ovariectomized (Ovx), and given estrogen after ovariectomy (4 rabbits/group). Ovx rabbits showed a significant decrease in the overall MHC content per gram of wet detrusor smooth muscle compared with controls (P < 0.04), which was reversed by estrogen replacement (P < 0.02). MHC content, as a proportion of total milligram of protein in the bladder tissue extracted, was also increased in estrogen-treated Ovx rabbits. Quantitative competitive RT-PCR revealed 1.72-, 2.63-, and 5.82 x 10(6) copies of MHC mRNA/100 ng total mRNA in Ovx, control, and estrogen-treated rabbits, respectively (P < 0.01). RT-PCR analysis using oligonucleotides specific for the region containing the SM1/SM2 MHC alternative splice sites indicated a lower SM2-to-SM1 ratio in estrogen-treated compared with control and Ovx rabbits (P < 0.05). Similarly, SDS-PAGE analysis of extracted myosin from estrogen-treated rabbits revealed a significantly lower SM2-to-SM1 isoform ratio compared with control and Ovx rabbits (P < 0.05). Expression of the SM-A and SM-B isoforms was not affected. These results indicate that myosin content is increased upon estrogen replacement in Ovx rabbits and that the abundance of SM1 relative to SM2 is greater in estrogen-treated rabbits compared with normal and Ovx rabbits. These data suggest that estrogen affects alternative splicing at the 3'-end of the MHC pre-mRNA to increase the proportion of SM1 vs. SM2.  相似文献   

15.
We examined the cardiac effects of chronic erythropoietin (EPO) therapy initiated 7 days after myocardial infarction (MI) in rats. A single high dose of EPO has been shown to reduce infarct size by preventing apoptosis when injected immediately after myocardial ischemia. The proangiogenic potential of EPO has also been reported, but the effects of chronic treatment with standard doses after MI are unknown. In this study, rats underwent coronary occlusion followed by reperfusion or a sham procedure. Infarcted rats were assigned to one of three treatment groups: 1) 0.75 microg/kg darbepoetin (MI+darb 0.75, n = 12); 2) 1.5 microg/kg darbepoetin (MI+darb 1.5, n = 12); 3) vehicle (MI+PBS, n = 16), once a week from day 7 postsurgery. Sham rats received the vehicle alone (n = 10). After 8 wk of treatment, the animals underwent echocardiography, left ventricular pressure-volume measurements, and peripheral blood endothelial progenitor cell (EPC) counting. MI size and capillary density in the border zone and the area at risk (AAR) were measured postmortem. The AAR was similar in the three MI groups. Compared with MI+PBS, the MI+darb 1.5 group showed a reduction in the MI-to-AAR ratio (20.8% vs. 38.7%; P < 0.05), as well as significantly reduced left ventricle dilatation and improved cardiac function. This reduction in post-MI remodeling was accompanied by increased capillary density (P < 0.05) and by a higher number of EPC (P < 0.05). Both darbepoetin doses increased the hematocrit, whereas MI+darb 0.75 did not increase EPC numbers or capillary density and had no functional effect. We found that chronic EPO treatment reduces MI size and improves cardiac function only at a dose that induces EPC mobilization in blood and that increases capillary density in the infarct border zone.  相似文献   

16.
Intact female rats fed a high-phytoestrogen diet are protected against adverse left ventricular (LV) remodeling induced by chronic volume overload. We hypothesized that both phytoestrogens and ovarian hormones, particularly estrogen, are necessary for this dietary-induced cardioprotection. To test this hypothesis, eight groups of female rats were studied; rats were fed either a high-phytoestrogen (+phyto) or phytoestrogen-free diet. Groups included sham-operated rats, intact rats with fistula (Fist), ovariectomized rats with fistula (Fist-OX), and Fist-OX rats treated with estrogen (EST). Myocardial function and remodeling were assessed after 8 wk of volume overload using a blood-perfused isolated heart apparatus. Fist-OX rats developed significant ventricular dilatation and increased compliance vs. intact Fist rats, which were associated with a significant decrease in contractility. Estrogen treatment prevented pulmonary edema and attenuated LV hypertrophy and dilatation but did not maintain contractility. However, dietary phytoestrogens completely prevented LV dilatation in both the Fist+phyto and Fist-OX+EST+phyto groups but had no effect on LV remodeling in the Fist-OX+phyto group. Contractility was significantly greater in the estrogen-treated rats fed the phytoestrogen diet than in those treated with estrogen alone. Dietary phytoestrogens did not affect LV or uterine mass, serum estrogen, LV estrogen receptor expression, or cardiac function in sham animals. These data indicate that estrogen is not solely responsible for the cardioprotection exhibited by intact females and that phytoestrogens can work synergistically with ovarian hormones to attenuate ventricular remodeling induced by chronic volume overload in female rats.  相似文献   

17.
We evaluated the effects of swimming and anabolic steroids (AS) on ventricular function, collagen synthesis, and the local renin-angiotensin system in rats. Male Wistar rats were randomized into control (C), steroid (S; nandrolone decanoate; 5 mg/kg sc, 2x/wk), steroid + losartan (SL; 20 mg.kg(-1).day(-1)), trained (T), trained + steroid (T+S), and trained + steroid + losartan (T+SL; n = 14/group) groups. Swimming was performed 5 times/wk for 10 wk. Serum testosterone increased in S and T+S. Resting heart rate was lower in T and T+S. Percent change in left ventricular (LV) weight-to-body weight ratio increased in S, T, and T+S. LV systolic pressure declined in S and T+S. LV contractility increased in T (P < 0.05). LV relaxation increased in T (P < 0.05). It was significantly lower in T+S compared with C. Collagen volumetric fraction (CVF) and hydroxyproline were higher in S and T+S than in C and T (P < 0.05), and the CVF and LV hypertrophy were prevented by losartan treatment. LV-ANG I-converting enzyme activity increased (28%) in the S group (33%), and type III collagen synthesis increased (56%) in T+S but not in T group. A positive correlation existed between LV-ANG I-converting enzyme activity and collagen type III expression (r(2) = 0.88; P < 0.05, for all groups). The ANG II and angiotensin type 1a receptor expression increased in the S and T+S groups but not in T group. Supraphysiological doses of AS exacerbated the cardiac hypertrophy in exercise-trained rats. Exercise training associated with AS induces maladaptive remodeling and further deterioration in cardiac performance. Exercise training associated with AS causes loss of the beneficial effects in LV function induced by exercising. These results suggest that aerobic exercise plus AS increases cardiac collagen content associated with activation of the local renin-angiotensin system.  相似文献   

18.
We examined pial arteriolar reactivity to a partially endothelial nitric oxide synthase (eNOS)-dependent vasodilator ADP as a function of chronic estrogen status. The eNOS-dependent portion of the ADP response was ascertained by comparing ADP-induced pial arteriolar dilations before and after suffusion of a NOS inhibitor, N(omega)-nitro-L-arginine (L-NNA; 1 mM) in intact, ovariectomized (Ovx), and 17beta-estradiol (E2)-treated Ovx females. We also examined whether ovariectomy altered the participation of other factors in the ADP response. Those factors were the following: 1) the prostanoid indomethacin (Indo); 2) the Ca2+-dependent K+ (K(Ca)) channel, iberiotoxin (IbTX); 3) the ATP-regulated K+ (K(ATP)) channel glibenclamide (Glib); 4) the K(Ca)-regulating epoxygenase pathway miconazole (Mic); and 5) the adenosine receptor 8-sulfophenyltheophylline (8-SPT). In intact females, the eNOS-dependent (L-NNA sensitive) portion of the ADP response represented approximately 50% of the total. The ADP response was retained in the Ovx rats but L-NNA sensitivity disappeared. On E2 replacement, the initial pattern was restored. ADP reactivity was unaffected by Indo, Glib, Mic, and 8-SPT. IbTX was associated with 50-80% reductions in the response to ADP in the intact group that was nonadditive with L-NNA, and 60-100% reductions in the Ovx group. The present findings suggest that estrogen influences the mechanisms responsible for ADP-induced vasodilation. The continued sensitivity to IbTX in Ovx rats, despite the loss of a NO contribution, is suggestive of a conversion to a hyperpolarizing factor dependency in the absence of E2.  相似文献   

19.
Our previous study has demonstrated that ovariectomy (Ovx) significantly increased the left ventricular developed pressure (LVDP) and the maximal rate of developed pressure over time (±dP/dtmax) in the isolated perfused rat heart and the effects were reversed by female sex hormone replacement. In the present investigation, we studied the effects of Ovx for 6 wk on Ca2+ homeostasis that determines the contractile function. Particular emphasis was given to Ca2+ handling by ryanodine receptor (RyR) and Na+-Ca2+ exchange (NCX). 45Ca2+ fluxes via the RyR, NCX, and Ca2+-ATPase (SERCA) were compared with their expression in myocytes from Ovx rats with and without estrogen replacement. Furthermore, we correlated the handling of Ca2+ by these Ca2+ handling proteins with the overall Ca2+ homeostasis by determining the Ca2+ transients induced by electrical stimulation and caffeine, which reveals the dynamic changes of cytosolic Ca2+ concentration ([Ca2+]i) in the heart. In addition, we determined the expression and contribution of protein kinase A (PKA) to the regulation of the aforementioned Ca2+ handling proteins in Ovx rats. It was found that after Ovx there were 1) increased Ca2+ fluxes via RyR and NCX, which were reversed not only by estrogen replacement, but more importantly by blockade of PKA; 2) an increased expression of PKA; and 3) no increase in expression of NCX and SERCA. We suggest that hyperactivities of RyR and NCX are a result of upregulation of PKA. The increased release of Ca2+ through RyR and removal of Ca2+ by NCX are believed to be responsible for the greater contractility and faster relaxation after Ovx. ovariectomy  相似文献   

20.
This study was designed to test the hypothesis that basal estrone conjugate (E1C) profiles do not accurately detect ovarian function when ovarian estrogen production is low or absent. We employed surgical removal of active ovaries from laboratory rhesus macaques to simulate an acute decline in ovarian estrogen production. In the first experiment, urine samples collected prior to and following ovariectomy (Ovx) were subjected to high-performance liquid chromatography (HPLC) separation. Eluates were then assayed for E1C immunoreactive components. The results indicated a modest decrease in total immunoreactive polar conjugates following ovariectomy, with no substantial change in the overall retention profile. In the second experiment, estradiol (E2) cypionate injections were used to replace the E2 component of ovarian estrogen production in the treated (Tx) group, while the control group (C) received only vehicle. Urine samples were hydrolyzed and individual estrogens were separated by celite chromatography prior to immuno-assay. Both the Tx and C groups exhibited similar urinary excretion levels of estrone (E1), E2, and E1C prior to Ovx (Pre-Ovx) and after Ovx (Post-Ovx), but there were significant differences between groups after treatment (Post-Tx). Significant differences were observed in the Tx group's excretion of E1, E2, and E1C in the Pre- vs. Post-Ovx samples and in the Post-Ovx and Post-Tx samples. The C group also showed the expected significant differences in the Pre- vs. Post-Ovx samples, as well as in the Pre-Ovx and Post-Tx samples. The results indicate that the use of E1C measurements is clearly a suitable method for monitoring ovarian function in intact, cycling animals, but urinary E2 measurements are required to verify loss of follicular activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号