首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
The resolvase from the transposon Tn21 catalyses site-specific recombination between the two res sites on its DNA substrate both in the absence and presence of Mg2+ ions. This contrasts with reports on the resolvase from gamma-delta (Tn1000) and on other recombinational proteins that are homologous to Tn21 resolvase but which need Mg2+ for their activity. Magnesium ions could enhance the activity of Tn21 resolvase, as did a number of other cations but some metal ions such as Ni2+ inhibit recombination. The metal ions are not directly involved in the catalytic process but probably affect recombination by altering the conformation of the DNA. Tn21 resolvase relaxes its DNA substrate in the presence and in the absence of Mg2+, and also in ionic conditions that inhibit recombination. Hence, the topoisomerization reflects an activity of resolvase that is distinct from recombination. However, the two activities are functions of the same DNA-protein complex. The complex contains about 6 molecules of the resolvase dimer per molecule of DNA.  相似文献   

3.
The Tn3-encoded resolvase protein promotes a site-specific recombination reaction between two directly repeated copies of the recombination site res. Several inhibitors that block this event in vitro have been isolated. In this study four of these inhibitors were tested on various steps in the recombination reaction. Two inhibitors. A9387 and A1062, inhibit resolvase binding to the res site. Further, DNase I footprinting revealed that at certain concentrations of A9387 and A1062, resolvase was preferentially bound to site I of res, the site containing the recombinational crossover point. The two other inhibitors, A20812 and A21960, do not affect resolvase binding and bending of the DNA but inhibit synapse formation between resolvase and two directly repeated res sites.  相似文献   

4.
The SfiI endonuclease differs from other type II restriction enzymes by cleaving DNA concertedly at two copies of its recognition site, its optimal activity being with two sites on the same DNA molecule. The nature of this communication event between distant DNA sites was analysed on plasmids with recognition sites for SfiI interspersed with recombination sites for resolvase. These were converted by resolvase to catenanes carrying one SfiI site on each ring. The catenanes were cleaved by SfiI almost as readily as a single ring with two sites, in contrast to the slow reactions on DNA rings with one SfiI site. Interactions between SfiI sites on the same DNA therefore cannot follow the DNA contour and, instead, must stem from their physical proximity. In buffer lacking Mg2+, where SfiI is inactive while resolvase is active, the addition of SfiI to a plasmid with target sites for both proteins blocked recombination by resolvase, due to the restriction enzyme bridging its sites and thus isolating the sites for resolvase into separate loops. The extent of DNA looping by SfiI matched its extent of DNA cleavage in the presence of Mg2+.  相似文献   

5.
The resolvases from the transposons Tn3 and Tn21 are homologous proteins but they possess distinct specificities for the DNA sequence at their respective res sites. The DNA binding domain of resolvase contains an amino acid sequence that can be aligned with the helix-turn-helix motif of other DNA binding proteins. Mutations in the gene for Tn21 resolvase were made by replacing the section of DNA that codes for the helix-turn-helix with synthetic oligonucleotides. Each mutation substituted one amino acid in Tn21 resolvase with either the corresponding residue from Tn3 resolvase or a residue that lacks hydrogen bonding functions. The ability of these proteins to mediate recombination between res sites from either Tn21 or Tn3 was measured in vivo and in vitro. With one exception, where a glutamate residue had been replaced by leucine, the activity of these mutants was similar to that of wild-type Tn21 resolvase. A further mutation was made in which the complete recognition helix of Tn21 resolvase was replaced with that from Tn3 resolvase. This protein retained activity in recombining Tn21 res sites, though at a reduced level relative to wild-type; the reduction can be assigned entirely to weakened binding to this DNA. Neither this mutant nor any other derivative of Tn21 resolvase had any detectable activity for recombination between res sites from Tn3. The exchange of this section of amino acid sequence between the two resolvases is therefore insufficient to alter the DNA sequence specificity for recombination.  相似文献   

6.
Orthologs of RecG and RuvABC are highly conserved among prokaryotes; in Escherichia coli, they participate in independent pathways that branch migrate Holliday junctions during recombinational DNA repair. RecG also has been shown to directly convert stalled replication forks into Holliday junctions. The bacterium Helicobacter pylori, with remarkably high levels of recombination, possesses RecG and RuvABC homologs, but in contrast to E. coli, H. pylori RecG limits recombinational repair. We now show that the RuvABC pathway plays the prominent, if not exclusive, repair role. By introducing an E. coli resolvase (RusA) into H. pylori, the repair and recombination phenotypes of the ruvB mutant but not the recG mutant were improved. Our results indicate that RecG and RuvB compete for Holliday junction structures in recombinational repair, but since a classic RecG resolvase is absent from H. pylori, deployment of the RecG pathway is lethal. We propose that evolutionary loss of the H. pylori RecG resolvase provides an "antirepair" pathway allowing for selection of varied strains. Such competition between repair and antirepair provides a novel mechanism to maximize fitness at a bacterial population level.  相似文献   

7.
The Escherichia coli RuvABC proteins process recombination intermediates during genetic recombination and recombinational repair. Although early biochemical studies indicated distinct RuvAB-mediated branch migration and RuvC-mediated Holliday junction resolution reactions, more recent studies have shown that the three proteins act together as a "resolvasome" complex. In this work we have used recombination intermediates made by RecA to determine whether the RuvAB proteins affect the sequence specificity of the RuvC resolvase. We find that RuvAB proteins do not alter significantly the site specificity of RuvC-dependent cleavage, although under certain conditions, they do affect the efficiency of cleavage at particular sites. The presence of RecA also influences cleavage at some sites. We also show that the RuvAB proteins act upon transient strand exchange intermediates made using substrates that have the opposite polarity of those preferred by RecA. Together, our results allow us to develop further a model for the recombinational repair of DNA lesions that lead to the formation of post-replication gaps during DNA replication. The novel features of this model are as follows: (i) the RuvABC resolvasome recognizes joints made by RecA; (ii) resolution by RuvABC occurs at specific sites containing the RuvC consensus cleavage sequence 5'-(A/T)TT downward arrow(G/C)-3'; and (iii) Holliday junction resolution often occurs close to the initiating gap without significant heteroduplex DNA formation.  相似文献   

8.
Before cleaving DNA substrates with two recognition sites, the Cfr10I, NgoMIV, NaeI and SfiI restriction endonucleases bridge the two sites through 3D space, looping out the intervening DNA. To characterise their looping interactions, the enzymes were added to plasmids with two recognition sites interspersed with two res sites for site-specific recombination by Tn21 resolvase, in buffers that contained either EDTA or CaCl2 so as to preclude DNA cleavage by the endonuclease; the extent to which the res sites were sequestered into separate loops was evaluated from the degree of inhibition of resolvase. With Cfr10I, a looped complex was detected in the presence but not in the absence of Ca(2+); it had a lifetime of about 90 seconds. Neither NgoMIV nor NaeI gave looped complexes of sufficient stability to be detected by this method. In contrast, SfiI with Ca(2+) produced a looped complex that survived for more than seven hours, whereas its looping interaction in EDTA lasts for about four minutes. When resolvase was added to a SfiI binding reaction in EDTA followed immediately by CaCl2, the looped DNA was blocked from recombination while the unlooped DNA underwent recombination. By measuring the distribution between looped and unlooped DNA at various SfiI concentrations, and by fitting the data to a model for DNA binding by a tetrameric protein to two sites in cis, an equilibrium constant for the looping interaction was determined. The equilibrium constant was essentially independent of the length of DNA between the SfiI sites.  相似文献   

9.
Activated mutants of the serine recombinase, gammadelta resolvase, form a simplified recombinogenic synaptic complex containing a tetramer of resolvase and two crossover sites. We have probed the architecture of this complex by measuring the efficiency of recombination of a series of constrained DNA substrates (with phased recombination sites separated by an IHF-induced U-turn); this serves as a direct report on the topology of a productive synapse. Our data show that in the active complex, the catalytic domains from two resolvase dimers form a central core, while the DNA binding domains and the DNA lie on the outside. In addition, the crossover sites cross one another to form a local positive node. The implications of our data for the mechanism of strand exchange and the process of resolvase activation are discussed.  相似文献   

10.
M A Krasnow  N R Cozzarelli 《Cell》1983,32(4):1313-1324
We studied the dynamics of site-specific recombination by the resolvase encoded by the Escherichia coli transposon Tn3. The pure enzyme recombined supercoiled plasmids containing two directly repeated recombination sites, called res sites. Resolvase is the first strictly site-specific topoisomerase. It relaxed only plasmids containing directly repeated res sites; substrates with zero, one or two inverted sites were inert. Even when the proximity of res sites was ensured by catenation of plasmids with a single site, neither relaxation nor recombination occurred. The two circular products of recombination were catenanes interlinked only once. These properties of resolvase require that the path of the DNA between res sites be clearly defined and that strand exchange occur with a unique geometry. A model in which one subunit of a dimeric resolvase is bound at one res site, while the other searches along adjacent DNA until it encounters the second site, would account for the ability of resolvase to distinguish intramolecular from intermolecular sites, to sense the relative orientation of sites and to produce singly interlinked catenanes. Because resolvase is a type 1 topoisomerase, we infer that it makes the required duplex bDNA breaks of recombination one strand at a time.  相似文献   

11.
The carboxyl-terminal domain of gamma delta resolvase binds to each half of the three resolvase binding sites that constitute the recombination site, res. Ethylation inhibition experiments show that the phosphate contacts made by the C-terminal DNA binding domain are similar to those made by intact resolvase, with the exception of a single phosphate at the inside end of each contact region which is contacted solely by the intact resolvase. The DNA binding domain makes essentially identical contacts to all 6 half sites, whereas the intact resolvase makes slightly different contacts to each binding site. Despite its small size, only 43 amino acid residues, the resolvase C-terminal domain interacts with an unusually large segment of DNA. Phosphate contacts extend across an adjacent major and minor groove of DNA and about one third of the circumference around the helix. The minimal binding segment, determined experimentally, is a 12 bp sequence that includes the 9 base pair inverted repeat (common to all half sites), the adjacent 3 base pairs (towards the center of the intact resolvase binding site), and phosphates at both ends.  相似文献   

12.
The Tn3 resolvase requires that the two recombination (res) sites be aligned as direct repeats on the same molecule for efficient recombination to occur. To test whether resolvase must contact the DNA between res sites as predicted by tracking models, we have determined the sensitivity of recombination to protein diffusion blockades. Recombination between two res sites is unaffected either by lac repressor or bacteriophage T7 RNA polymerase being bound between them. Yet recombination is inhibited by lac repressor if the res site is bounded by a lac operator on both sides. We demonstrate that lac repressor will bind to more than one DNA site under the conditions used to assay recombination. This result suggests that lac repressor can inhibit resolvase by forming a DNA loop that isolates a res site topologically. These results do not support a tracking model for resolvase but suggest that the structure and topology of the DNA substrate is important in the formation of a synapse between res sites.  相似文献   

13.
To analyse the mechanism and kinetics of DNA strand cleavages catalysed by the serine recombinase Tn3 resolvase, we made modified recombination sites with a single-strand nick in one of the two DNA strands. Resolvase acting on these sites cleaves the intact strand very rapidly, giving an abnormal half-site product which accumulates. We propose that these reactions mimic second-strand cleavage of an unmodified site. Cleavage occurs in a synapse of two sites, held together by a resolvase tetramer; cleavage at one site stimulates cleavage at the partner site. After cleavage of a nicked-site substrate, the half-site that is not covalently linked to a resolvase subunit dissociates rapidly from the synapse, destabilizing the entire complex. The covalent resolvase–DNA linkages in the natural reaction intermediate thus perform an essential DNA-tethering function. Chemical modifications of a nicked-site substrate at the positions of the scissile phosphodiesters result in abolition or inhibition of resolvase-mediated cleavage and effects on resolvase binding and synapsis, providing insight into the serine recombinase catalytic mechanism and how resolvase interacts with the substrate DNA.  相似文献   

14.
We identified and characterized four different recombination mechanisms involved in the cointegrative transfer of the Neisseria gonorrhoeae beta-lactamase plasmid pSJ5.2 by the gonococcal 41 kb tet(M) and the Gram negative self-transmissible plasmids N3 and R64 drd-33 using an Escherichia colirecA-background. Mobilization of pSJ5.2 by the tet(M) plasmid occurred by cointegration through a replicative transposition of two IS1 elements inserted upstream from the beta-lactamase gene of pSJ5.2 and creating a IS1::beta-lactamase hybrid promoter. Two types of recombinational events occurred within the 1.8 kb BamH1-HindIII fragment of pSJ5.2 with the N3 and R64 plasmids. A non-homologous recombination was found at coordinates 1817 and 2849 of pSJ5.2 with sequences from R64. A non-homologous recombination combined with an IS26-mediated one-ended transposition was found at coordinates 1817 and 3010 of pSJ5.2 with N3. In both recombinational events, a deletion of over 1 kb of pSJ5.2 occurred. The fourth recombination event was detected in the 1.0 kb BamH1-HindIII fragment of pSJ5.2 by homologous recombination between DNA from the truncated Tn3 resolvase gene of pSJ5.2 and the resolvase sequences from R64 and N3.  相似文献   

15.
P A Rice  T A Steitz 《The EMBO journal》1994,13(7):1514-1524
The packing arrangement of the 12 subunits of intact gamma delta resolvase in the unit cell of a hexagonal crystal form suggests a model for site-specific recombination that involves a DNA-mediated synaptic intermediate. The crystal structure has been determined by molecular replacement and partially refined at 2.8/3.5 A resolution. Although the small DNA-binding domain is disordered in these crystals, packing considerations show that only a small region of space in the crystal could accommodate a domain of its size. A family of related models for a synaptic complex between two DNA duplexes and 12 monomers that are arranged as situated in the crystal is consistent with the known topology of the complex and the distances between the three resolvase dimer-binding sites per DNA; further, these models place the two DNA recombination sites in contact with each other between two resolvase dimers, implying that strand exchange is accomplished through direct DNA-DNA interaction. A major role postulated, then, for the resolvase protein assembly is to stabilize a res DNA structure that is close to the topological transition state of the reaction.  相似文献   

16.
In vitro recombination by Tn3 resolvase of plasmids containing two directly repeated recombination (res) sites generates two singly interlinked catenated rings. This simple product catenane structure was maintained over a wide range of substrate supercoil densities and in a reaction mixture in which phage lambda Int-mediated recombination generated its characteristic multiply interlinked forms. Using substrates containing four res sites, we found that resolvase recombined neighboring res sites with high preference. This position effect implies that resolvase searches systematically along the DNA for a partner site. Intervening res sites in the opposite orientation did not prevent translocation. We analyzed the geometric arrangement of the interlocked rings after multiple recombination events in a four-site substrate and the pattern of segregation of nonspecific reporter rings catenated to the standard substrate. The results of these novel topological tests imply that the translocating enzyme may not make continuous contact with the DNA.  相似文献   

17.
The dual functions of resolvase, site-specific recombination and the regulation of its own expression from tnpR, both require the interaction of this protein with the DNA sequence at res, but the specificity of this interaction differs between groups of Tn3-like elements. In this study, DNA fragments that contained res from Tn21 or Tn1721 were subjected to either cleavage by DNase I or methylation by dimethyl sulphate in the presence of the purified resolvase from Tn21 or Tn1721. These experiments showed that each resolvase bound to the same three sites (I, II and III) within res from Tn1721 and to an equivalent series of three sites on Tn21: the differences in the amino acid sequences of the two proteins did not affect their interaction with either DNA. The DNA sequences at each site had some similarities and, in conjunction with data from the related transposon Tn501, a consensus was established. However, the three sites are functionally distinct: site I (tnpR-distal) spans the recombination cross-over point and sites II and III (tnpR-proximal) overlap the promoter of tnpR. The binding sites on these transposons were compared with those in the gamma delta/Tn3 system: the similarities between the two groups of transposons revealed some general features of resolvase-DNA interactions while the differences in fine structure elucidated the specificity of each resolvase.  相似文献   

18.
gamma delta resolvase, a transposon-encoded site-specific recombinase, catalyzes the resolution of the cointegrate intermediate of gamma delta transposition. The recombination reaction involves the formation of a catalytic nucleoprotein complex whose structure is determined by specific protein-DNA and protein-protein interactions. We have isolated many resolvase mutants and have identified four that are unable to mediate a subclass of higher order protein-protein interactions necessary for recombination. This mutant phenotype is characterized by an inability to catalyze recombination, a loss of cooperative binding to res DNA, and a failure to induce looping out of the DNA between two resolvase binding sites within res. The amino acid side chains identified by the cooperativity mutants cluster on a surface of the protein that mediates an interaction between resolvase dimers in a crystallographic tetramer. We have therefore identified a region of resolvase that mediates an interdimer protein-protein interaction necessary for the formation of the recombinogenic synaptic intermediate.  相似文献   

19.
Catalysis of DNA recombination by Tn3 resolvase is conditional on prior formation of a synapse, comprising 12 resolvase subunits and two recombination sites (res). Each res binds a resolvase dimer at site I, where strand exchange takes place, and additional dimers at two adjacent 'accessory' binding sites II and III. 'Hyperactive' resolvase mutants, that catalyse strand exchange at site I without accessory sites, were selected in E. coli. Some single mutants can resolve a res x site I plasmid (that is, with one res and one site I), but two or more activating mutations are necessary for efficient resolution of a site I x site I plasmid. Site I x site I resolution by hyperactive mutants can be further stimulated by mutations at the crystallographic 2-3' interface that abolish activity of wild-type resolvase. Activating mutations may allow regulatory mechanisms of the wild-type system to be bypassed, by stabilizing or destabilizing interfaces within and between subunits in the synapse. The positions and characteristics of the mutations support a mechanism for strand exchange by serine recombinases in which the DNA is on the outside of a recombinase tetramer, and the tertiary/quaternary structure of the tetramer is reconfigured.  相似文献   

20.
A kinetic analysis of site specific recombination by Tn21 resolvase has been carried out using DNA substrates of varying superhelicities. The rates for the formation of the recombinant product increased with increasing superhelicity up to a maximum value, after which further increases in superhelicity caused no further increase in rate. The reactions with DNA of reduced superhelicity were extremely slow, yet they eventually led to virtually all of the substrate being converted to product. Hence, the level of DNA superhelicity must determine the activation energy barrier for at least one of the steps within the reaction pathway that can be rate-limiting. In the presence (but not in the absence) of Mg2+ ions, the DNA was fully saturated with resolvase whenever the protein was in stoichiometric excess over resolvase binding sites on the DNA. Thus the process affected by DNA supercoiling cannot be coupled to the binding of resolvase. Instead, the step whose rate is determined by supercoiling seems to be located within the reaction pathway after the synapse. However, these reactions may involve two forms of the synaptic complex that are converted to the recombinant product at different rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号