首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
TNF and epidermal growth factor (EGF) are well-known stimuli of cyclooxygenase (COX)-2 expression, and TNF stimulates transactivation of EGF receptor (EGFR) signaling to promote survival in colon epithelial cells. We hypothesized that COX-2 induction and cell survival signaling downstream of TNF are mediated by EGFR transactivation. TNF treatment was more cytotoxic to COX-2(-/-) mouse colon epithelial (MCE) cells than wild-type (WT) young adult mouse colon (YAMC) epithelial cells or COX-1(-/-) cells. TNF also induced COX-2 protein and mRNA expression in YAMC cells, but blockade of EGFR kinase activity or expression inhibited COX-2 upregulation. TNF-induced COX-2 expression was reduced and absent in EGFR(-/-) and TNF receptor-1 (TNFR1) knockout MCE cells, respectively, but was restored upon expression of the WT receptors. Inhibition of mediators of EGFR transactivation, Src family kinases and p38 MAPK, blocked TNF-induced COX-2 protein and mRNA expression. Finally, TNF injection increased COX-2 expression in colon epithelium of WT, but not kinase-defective EGFR(wa2) and EGFR(wa5), mice. These data indicate that TNFR1-dependent transactivation of EGFR through a p38- and/or an Src-dependent mechanism stimulates COX-2 expression to promote cell survival. This highlights an EGFR-dependent cell signaling pathway and response that may be significant in colitis-associated carcinoma.  相似文献   

2.
Cyclooxygenase (COX) synthesizes bioactive prostaglandins from arachidonic acid, and there are COX-1 and COX-2 isoforms with distinct pathophysiological functions. Recent studies demonstrated that COX-2 expression was up-regulated in the brain of patients with Alzheimer's disease. We established mouse neuroblastoma x rat glioma hybrid NG108-15 cells stably expressing human COX-2. The COX-2-expressing cells showed 3- to 4-fold increases in both COX activity and prostaglandin E(2) production. The mRNA level of amyloid precursor protein (APP) was elevated by approximately 2-fold in the COX-2-expressing cells compared with mock-transfected cells. Amyloid beta-peptide and a secreted form of APP, both derived from APP by proteolysis was also increased. Interestingly, neurite outgrowth was stimulated in the COX-2-expressing cells with concomitant reduction of the cell proliferation rate. A selective COX-2 inhibitor (JTE-522) and a nonselective COX inhibitor (indomethacin) suppressed production of amyloid beta-peptide and a secreted form of APP by inhibition of APP mRNA level, suggesting that COX-2 plays important roles in the neurodegenerative processes of Alzheimer's disease.  相似文献   

3.
Cyclooxygenase (COX), existing as the COX-1 and COX-2 isoforms, converts arachidonic acid to prostaglandin H2, which is then further metabolized to various prostaglandins. Vascular endothelial growth factor (VEGF) has been shown to play important roles in inflammation and is upregulated by the prostaglandin E series through COX-2 in several cell types. Here, we have investigated the effects of VEGF on the COX isoform expressed in human umbilical vein endothelial cells (HUVEC). The signalling mechanism of the COX isoform expressed in endothelial cells activated with VEGF will be also investigated using the tyrosine kinase inhibitor, genistein, and protein kinase C inhibitor, staurosporine. The activity of COX-2 was assessed by measuring the production of 6-keto-prostaglandin F1alpha in the presence of exogenous arachidonic acids (10 microM, 10 min) by enzyme immunoassay. The expression of COX isoform protein was detected by immunoblot using specific antibodies. Untreated HUVEC contained no COX-2 protein. In HUVEC treated with VEGF (0.01-50 ng/ml), COX-2 protein, but not COX-1, and COX activity were increased in a dose-dependent manner. Interestingly, the increased COX-2 protein and activity in response to VEGF (10 ng/ml) was inhibited by the tyrosine kinase inhibitor, genistein (0.05-5 microg/ml), but not by the protein kinase C inhibitor, staurosporine (0.1-10 ng/ml). Thus, the induction of COX-2 by VEGF in endothelial cells was mediated through protein tyrosine kinase, and the uses of specific COX-2 inhibitors in these conditions, in which VEGF was involved, might have a role.  相似文献   

4.
The characterization of two cyclooxygenase isoforms (COX), the rate-limiting enzyme for the synthesis of prostaglandins (PGs) from arachidonic acid, has allowed the development of COX-2 selective inhibitors as non-steroidal anti-inflammatory drugs (NSAIDs) with significant gastric tolerability. However, PGs are also important in cancer pathogenesis. Thus, there is an increasing interest in studying COX-2 inhibitors as potential drugs aimed at the prevention and treatment of cancer, especially colorectal cancer. The purpose of this study was to determine the inhibitory effects of some representative 4-thiazolidinones, already widely investigated as potential NSAIDs, on the growth of five human colon carcinoma cell lines with a different COX-2 expression, and to correlate them with COX-2 inhibitory properties. Our results preliminarily revealed that 2-phenylimino derivative 3 and 2,4-thiazolidindione 4 were the most active compounds. In particular, 3 mainly inhibited the HT29 cell line characterized by a high COX-2 expression, whereas 4 showed antiproliferative properties on all tested cell lines, suggesting molecular targets other than COX-2 inhibition.  相似文献   

5.
In some cancers cyclooxygenase (COX) inhibition appears to be anti-mitogenic and anti-angiogenic, but the actions of COX-derived prostaglandins in pancreatic cancer (PaCa) are unknown. In this study COX-2 was detected in three of six PaCa cell lines while COX-1 was identified in all cell lines. COX-2 expression correlated with basal and arachidonic acid (AA) stimulated PGE(2) production. PGE(2) production was inhibited by the COX-2 inhibitor nimesulide. In COX-2 expressing cells, exogenous AA and PGE(2) increased VEGF synthesis via the EP(2) receptor. Whereas PGE(2) stimulated intracellular cAMP formation in COX-2 positive and negative cells, 8-bromo cAMP stimulated VEGF production only in COX-2 expressing cells. Stimulating COX-2 expressing PaCa cell lines with AA enhanced migration of endothelial cells, an effect which was inhibited by a COX-2 inhibitor and EP(2) receptor antagonist. These data identify a subset of human PaCa cell lines that express functional COX-2 enzyme. PGE(2) generated by specific COX-2 activity increases VEGF secretion in human PaCa cells through an autocrine mechanism.  相似文献   

6.
7.
Acute cholecystitis is associated with increased gallbladder prostanoid formation and the inflammatory changes and prostanoid increases can be inhibited by nonsteroidal anti-inflammatory agents. Recent information indicates that prostanoids are produced by two cyclooxygenase (COX) enzymes, COX-1 and COX-2. The purpose of this study was to determine the COX enzymatic pathway in gallbladder mucosal cells involved in the production of prostanoids stimulated by inflammatory agents. Human gallbladder mucosal cells were isolated from cholecystectomy specimens and maintained in cell culture and studied in comparison with cells from a well differentiated gallbladder mucosal carcinoma cell line. COX enzymes were evaluated by Western immunoblotting and prostanoids were measured by ELISA. Unstimulated and stimulated cells were exposed to specific COX-1 and COX-2 inhibitors. In both normal and transformed cells constitutive COX-1 was evident and in gallbladder cancer cells lysophosphatidyl choline (LPC) induced the formation of constitutive COX-1 enzyme. While not detected in unstimulated normal mucosal cells and cancer cells, COX-2 protein was induced by both lipopolysaccharide (LPS) and LPC. Unstimulated gallbladder mucosal cells and cancer cells produced prostaglandin E2 (PGE2) and prostacyclin (6-keto prostaglandin F1alpha, 6-keto PGF1alpha) continuously. In freshly isolated normal gallbladder mucosal cells, continuously produced 6 keto PGF1alpha was inhibited by both COX-1 and COX-2 inhibitors while PGE2 levels were not affected. Both LPS and LPC stimulated PGE2 and 6 keto PGF1alpha formation were blocked by COX-2 inhibitors in freshly isolated, normal human gallbladder mucosal cells and in the gallbladder cancer cells. The prostanoid response of gallbladder cells stimulated by proinflammatory agents is inhibited by COX-2 inhibitors suggesting that these agents may be effective in treating the pain and inflammation of gallbladder disease.  相似文献   

8.
9.
10.
Intestinal smooth muscle plays a major role in the repair of injured intestine and contributes to the prostanoid pool during intestinal inflammatory states. Cyclooxygenase (COX), which catalyzes the conversion of arachidonic acid to prostanoids exists in two isoforms, COX-1 and COX-2. The purpose of this study was to determine the relative contributions of COX-1 and COX-2 in the production of prostanoids by human intestinal smooth muscle (HISM) cells when stimulated by interleukin-1beta (IL-1beta) and lipopolysaccharide (LPS). Furthermore the effects of specific COX-1 and COX-2 inhibitors on the proliferation of smooth muscle cells was also evaluated. Confluent monolayer cultures of HISM cells were incubated with IL-1beta or LPS for 0-24h while control cells received medium alone. PGE2 and PGI2 as 6-keto-PGF1alpha and LTB4 were measured by a specific radioimmunoassay. COX enzymes were evaluated by Western immunoblotting. Unstimulated and stimulated cells were exposed to the specific COX-1 inhibitor valerylsalicylic acid (VSA) and the COX-2 inhibitors NS-398 and SC-58125. The effects of serum on proliferation were then evaluated in the presence of each of the specific COX inhibitors by incorporation of 3H-thymidine into DNA. IL-1beta and LPS increased both PGE2 and 6-keto-PGF1alpha in a dose dependent fashion with enhanced production detected two hours following exposure. Neither stimulus stimulated LTB4 release. Immunoblot analysis using isoform-specific antibodies showed that both COX-1 and COX-2 were present constitutively. Furthermore, COX-1 was upregulated by each inflammatory stimulus. In a separate set of experiments cells were pretreated with either the selective COX-1 inhibitor VSA or the selective COX-2 inhibitors NS-398 or SC-58125 prior to treatment with IL-1beta or LPS. The COX-1 and COX-2 inhibitors decreased both basal and IL-1beta and LPS stimulated prostanoid release. Spontaneous DNA synthesis was present and serum consistently increased proliferation. 3H-thymidine incorporation, stimulated by serum, was inhibited by both COX-1 and COX-2 inhibitors. This study suggests that the prostanoid response stimulated by proinflammatory agents of gut-derived smooth muscle cells appears to be mediated by both COX-1 and COX-2 enzymes. Proliferation of smooth muscles cells also appears to be influenced by both COX-1 and COX-2.  相似文献   

11.
Cyclooxygenase (COX) is the rate-limiting enzyme in the production of prostaglandins from arachidonic acid. This enzyme exists in at least two isoforms, COX-1 and COX-2. COX-1 is constitutively expressed in most tissues and plays various physiological roles. However, COX-2 expression is induced by a variety of agents, which include pro-inflammatory agents and mitogens. Evidence exists to indicate that increased expression of COX-2 occurs in several types of epithelial neoplasms. In this study, we show the effect of chronic exposure of murine skin to carcinogenic UVB on cutaneous COX-2 expression. SKH-1 mice were irradiated with 180 mJ/cm(2) UVB daily for five days a week for periods ranging from 1 to 20 weeks. Nontumor bearing skin areas of irradiated mice, skin of age-matched controls and benign papillomas and malignant tumors were assessed immunohistochemically for COX-2 expression in these mice. No epidermal staining occurred in any of the non-UVB-treated controls throughout the experiment. Epidermal COX-2 expression only occurred in UVB-irradiated mice. After 1 and 5 weeks of irradiation, patchy epidermal staining mostly confined to the granular layer and stratum corneum was observed. At week 9, staining intensity had increased, particularly in the granular layer. At week 13, staining was uniformly seen in all epidermal layers with particular prominence in the basal cell layer underlying areas of visible epidermal hyperplasia. It is of interest that the most intense staining was seen in the perinuclear region of keratinocytes and at the plasma membrane. At week 20, COX-2 staining was predominant in the granular layer, although in some tissue sections, the entire epidermis was positive. In benign papillomas, staining was confined to the superficial layers of the epidermis and in squamous cell carcinomas (SCCs), patchy staining in the granular and spinous layers predominated. In general, COX-2 expression was more intense in well-differentiated SCCs than in papillomas. In summary, our results indicate that COX-2 serves as an early marker of epidermal UVB exposure and its expression increases in benign papillomas and in SCCs. These results suggest that pharmacological intervention using specific COX-2 inhibitors could have anticarcinogenic effects in UVB-induced human skin cancer.  相似文献   

12.
Proteinase-activated receptor (PAR)(2), a G protein-coupled receptor activated by serine proteinases, has been implicated in both intestinal inflammation and epithelial proliferation. Cyclooxygenase (COX)-2 is overexpressed in the gut during inflammation as well as in colon cancer. We hypothesized that PAR(2) drives COX-2 expression in intestinal epithelial cells. Treatment of Caco-2 colon cancer cells with the PAR(2)-activating peptide 2-furoyl-LIGRLO-NH(2) (2fLI), but not by its reverse-sequence PAR(2)-inactive peptide, for 3 h led to an increase in intracellular COX-2 protein expression accompanied by a COX-2-dependent increase in prostaglandin E(2) production. 2fLI treatment for 30 min significantly increased metalloproteinase activity in the culture supernatant. Increased epidermal growth factor receptor (EGFR) phosphorylation was observed in cell lysates following 40 min of treatment with 2fLI. The broad-spectrum metalloproteinase inhibitor marimastat inhibited both COX-2 expression and EGFR phosphorylation. The EGFR tyrosine kinase inhibitor PD153035 also abolished 2fLI-induced COX-2 expression. Although PAR(2) activation increased ERK MAPK phosphorylation, neither ERK pathway inhibitors nor a p38 MAPK inhibitor affected 2fLI-induced COX-2 expression. However, inhibition of either Src tyrosine kinase signaling by PP2, Rho kinase signaling by Y27632, or phosphatidylinositol 3 (PI3) kinase signaling by LY294002 prevented 2fLI-induced COX-2 expression. Trypsin increased COX-2 expression through PAR(2) in Caco-2 cells and in an EGFR-dependent manner in the noncancerous intestinal epithelial cell-6 cell line. In conclusion, PAR(2) activation drives COX-2 expression in Caco-2 cells via metalloproteinase-dependent EGFR transactivation and activation of Src, Rho, and PI3 kinase signaling. Our findings provide a mechanism whereby PAR(2) can participate in the progression from chronic inflammation to cancer in the intestine.  相似文献   

13.
Both cyclooxygenase (COX)-1 and COX-2, encoded by Ptgs1 and Ptgs2, function coordinately during inflammation. But the relative contributions and compensations of COX-1 and COX-2 to inflammatory responses remain unanswered. We used three engineered mouse lines where the Ptgs1 and Ptgs2 genes substitute for one another to discriminate the distinct roles and interchangeability of COX isoforms during systemic inflammation. In macrophages, kidneys, and lungs, “flipped” Ptgs genes generate a “reversed” COX expression pattern, where the knock-in COX-2 is expressed constitutively and the knock-in COX-1 is lipopolysaccharide inducible. A panel of eicosanoids detected in serum and kidney demonstrates that prostaglandin (PG) biosynthesis requires native COX-1 and cannot be rescued by the knock-in COX-2. Our data further reveal preferential compensation of COX isoforms for prostanoid production in macrophages and throughout the body, as reflected by urinary PG metabolites. NanoString analysis indicates that inflammatory networks can be maintained by isoform substitution in inflamed macrophages. However, COX-1>COX-2 macrophages show reduced activation of inflammatory signaling pathways, indicating that COX-1 may be replaced by COX-2 within this complex milieu, but not vice versa. Collectively, each COX isoform plays a distinct role subject to subcellular environment and tissue/cell-specific conditions, leading to subtle compensatory differences during systemic inflammation.  相似文献   

14.
《Cell》1998,93(5):705-716
To explore the role of cyclooxygenase (COX) in endothelial cell migration and angiogenesis, we have used two in vitro model systems involving coculture of endothelial cells with colon carcinoma cells. COX-2-overexpressing cells produce prostaglandins, proangiogenic factors, and stimulate both endothelial migration and tube formation, while control cells have little activity. The effect is inhibited by antibodies to combinations of angiogenic factors, by NS-398 (a selective COX-2 inhibitor), and by aspirin. NS-398 does not inhibit production of angiogenic factors or angiogenesis induced by COX-2-negative cells. Treatment of endothelial cells with aspirin or a COX-1 antisense oligonucleotide inhibits COX-1 activity/expression and suppresses tube formation. Cyclooxygenase regulates colon carcinoma-induced angiogenesis by two mechanisms: COX-2 can modulate production of angiogenic factors by colon cancer cells, while COX-1 regulates angiogenesis in endothelial cells.  相似文献   

15.
It is known that subepithelial myofibroblast-derived prostaglandin (PG)E2 can regulate intestinal epithelial cell functions, and that proteinase-activated receptor-2 (PAR2) is abundantly expressed in the gastrointestinal tract. Since PAR2 activation has previously been associated with stimulation of PGE2 synthesis, we hypothesized that PAR2 expressed on primary human gastrointestinal myofibroblasts regulates PGE2 synthesis via cyclooxygenase (COX)-1 and (or) COX-2, and associated PGE synthases. Primary human myofibroblasts were isolated from the resection tissue of the esophagus, small intestine, and colon. Expression of functional PAR2 was determined by RT-PCR and by calcium mobilization in Fura-2/AM-loaded cells. Trypsin and the selective PAR2-activating peptide (PAR2-AP) SLIGRL-NH2 stimulated PGE2 synthesis in a concentration-dependent manner, as measured by enzyme immunoassay. Selective COX inhibition showed PAR2-induced PGE2 synthesis to be COX-1 dependent in esophageal myofibroblasts and both COX-1 and COX-2 dependent in colonic cells, consistent with the distribution of COX-1 and COX-2 expression. Although both cytosolic and microsomal PGE synthases were expressed in cells from all tissues, microsomal PGE synthases were expressed at highest levels in the colonic myofibroblasts. Activation of PAR2 on gastrointestinal myofibroblasts stimulates PGE2 synthesis via different pathways in the colon than in the esophagus and small intestine.  相似文献   

16.
Neutrophil infiltration mediated by TNF-alpha is associated with various types of gastric injury, whereas PGs play a crucial role in gastric defense. We examined roles of two isoforms of cyclooxygenase (COX) and PGE2 in Helicobacter pylori-induced gastritis in mice. Mice infected with H. pylori were given selective COX-1 inhibitor SC-560 (10 mg/kg), selective COX-2 inhibitor NS-398 (10 mg/kg), or nonselective COX inhibitor indomethacin (2 mg/kg) with or without 16,16-dimethyl PGE2 for 1 wk. H. pylori infection increased levels of mRNA for COX-1 and -2 in gastric tissue by 1.2-fold and 3.3-fold, respectively, accompanied by a significant increase in PGE2 production by gastric tissue. H. pylori infection significantly elevated MPO activity, a marker of neutrophil infiltration, and epithelial cell apoptosis in the stomach. SC-560 augmented MPO activity and epithelial cell apoptosis with associated reduction in PGE2 production, whereas NS-398 had the same effects without affecting PGE2 production. Inhibition of both COX-1 and -2 by indomethacin or concurrent treatment with SC-560 and NS-398 resulted in a stronger increase in MPO activity and apoptosis than inhibition of either COX-1 or -2 alone. H. pylori infection elevated TNF-alpha mRNA expression in the stomach, which was further increased by indomethacin. Effects of COX inhibitors on neutrophil infiltration, apoptosis, and TNF-alpha expression in H. pylori-infected mice were abolished by exogenous 16,16-dimethyl PGE2. In conclusion, PGE2 derived from either COX-1 or -2 is involved in regulation of gastric mucosal inflammation and contributes to maintenance of mucosal integrity during H. pylori infection via inhibition of TNF-alpha expression.  相似文献   

17.
We studied the effect of two members of the epidermal growth factor (EGF) family--amphiregulin and heparin-binding EGF-like growth factor (HB-EGF)-on cell proliferation, growth factor and growth factor receptor expression, and cell differentiation in two human colon cell lines of varying liver-colonizing potential. The effect of amphiregulin and HB-EGF was assessed both in cells grown on plastic, as well as on cells grown on hepatocyte-derived extracellular matrix (ECM). We found that both colon cell lines were sensitive to HB-EGF stimulation of cell proliferation. Amphiregulin inhibited cell proliferation in KM12 cells and stimulated the strongly metastatic cell line KM12SM to a slight extent. When the cells were cultured on hepatocyte-derived ECM, amphiregulin inhibited the weakly metastatic KM12 and stimulated the growth of KM12SM. HB-EGF synergistically acted with hepatocyte-derived ECM to enhance cell proliferation in both colon cell lines. Expression of ligands of the EGF family, such as transforming growth factor-alpha (TGF-alpha) and amphiregulin, was decreased in both cell lines when cultured on ECM. Hepatocyte-derived ECM decreased expression of cripto in KM12 and increased it in KM12SM cells. Neither cripto nor TGF-alpha mRNA levels was affected by growing the cells in the presence of amphiregulin. However, amphiregulin increased expression of its own mRNA in the weakly metastatic KM12 and decreased it in the strongly metastatic KM12SM when the cells were cultured on plastic. Amphiregulin and HB-EGF stimulated expression of erb-B2 in both cell lines cultured on plastic. Surprisingly, when the cells were grown on hepatocyte-derived ECM, amphiregulin inhibited erb-B2 expression in both cell lines. We observed no effect of amphiregulin on cell differentiation as assessed by alkaline phosphatase expression. Our studies demonstrate one mechanism that could play a role in site-specific metastasis. We found an inhibitory response to an autocrine growth factor in the context of hepatocyte-derived ECM in a weakly metastatic cell and a stimulatory effect of the same growth factor when strongly metastatic cells were cultured on the same ECM.  相似文献   

18.
Cyclooxygenase (COX)-1- and COX-2-derived prostaglandins are implicated in the development and progression of several malignancies. We have recently demonstrated that treatment of ovarian carcinoma cells with endothelin-1 (ET-1) induces expression of both COX-1 and COX-2, which contributes to vascular endothelial growth factor (VEGF) production. In this study, we show that in HEY and OVCA 433 ovarian carcinoma cells, ET-1, through the binding with ETA receptor (ETAR), induces prostaglandin E2 (PGE2) production, as the more represented PG types, and increases the expression of PGE2 receptor type 2 (EP2) and type 4 (EP4). The use of pharmacological EP agonists and antagonists indicates that ET-1 and PGE2 stimulate VEGF production principally through EP2 and EP4 receptors. At the mechanistic level, we prove that the induction of PGE2 and VEGF by ET-1 involves Src-mediated epidermal growth factor receptor transactivation. Finally, we demonstrate that ETAR-mediated activation of PGE2-dependent signaling participates in the regulation of the invasive behavior of ovarian carcinoma cells by activating tumor-associated matrix metalloproteinase. These results implicate EP2 and EP4 receptors in the induction of VEGF expression and cell invasiveness by ET-1 and provide a mechanism by which ETAR/ET-1 can promote and interact with PGE2-dependent machinery to amplify its proangiogenic and invasive phenotype in ovarian carcinoma cells. Pharmacological blockade of ETAR can therefore represent an additional strategy to control PGE2 signaling, which has been associated with ovarian carcinoma progression.  相似文献   

19.
Phospholipases A2 (PLA2) and cyclooxygenases (COX) are important enzymes responsible for production of potent lipid mediators, including prostaglandins (PG) and thromboxane A2. We investigated coupling between PLA2 and COX isoforms by using transient transfection in COS-1 cells. Untransfected cells, incubated with or without phorbol ester + the Ca2+ ionophore ionomycin, generated trivial amounts of PGE2. In cells co-transfected with cytosolic PLA2 (cPLA2) and COX-1 or COX-2, phorbol ester + ionomycin markedly stimulated PGE2 production. There was no preferential coupling of cPLA2 to either of the COX isoforms. In contrast, group IIA secretory PLA2 (sPLA2) co-transfected with COX-1 or COX-2 did not lead to an increase in PGE2 production, despite high levels of sPLA2 enzymatic activity. Transfection of cPLA2 did not affect basal free arachidonic acid (AA) levels. Phorbol ester + ionomycin stimulated release of AA in cPLA2-transfected COS-1 cells, but not in untransfected cells, whereas sPLA2 transfection (without stimulation) led to high basal free AA. Thus, AA released by cPLA2 is accessible to both COX isoforms for metabolism to PG, whereas AA released by sPLA2 is not metabolized by COX.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号