首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We measured oxygen consumption (V(O(2))) and carbon dioxide emission (V(CO(2))) rates, air-cell gas partial pressures of oxygen (P(A)O(2)) and CO(2) (P(A)CO(2)), eggshell water vapour conductance and energy content of the ostrich (Struthio camelus) egg, 'true hatchling' and residual yolk, and calculated RQ and total oxygen consumption (V(O(2)tot)) for ostrich eggs incubated at 36.5 degrees C and 25% relative humidity. The V(O(2)) pattern showed a drop of approximately 5% before internal pipping. V(O(2)) just prior to internal pipping agrees with allometric calculations. Despite the higher incubation temperature compared to other studies, and the resultant shorter incubation duration (42 days), V(O(2)tot) (91.7 l kg(-1)) was similar to a previously reported value. RQ values during the second half of incubation (approx. 0.68) were lower than expected for lipid catabolism. Prior to internal pipping, P(A)O(2) and P(A)CO(2) were 98 and 48.3 torr (13.1 and 6.4 kPa), respectively. The growth pattern of the ostrich embryo is different from the typical precocial pattern, showing a time delay in the rapid growth phase. As a result, the lowered overall energy expenditure for tissue maintenance, as compared to other species, is reflected in the low yolk utilization and high residual yolk fraction of the whole hatchling dry mass. These could also result from the relatively short incubation period of the ostrich egg, thereby evading desiccation by excess water loss.  相似文献   

2.
Carbon dioxide (CO2) is always maintained at ambient levels by ventilation in commercial egg incubators. However, elevated CO2 levels during the early and late periods have been reported to improve the quality of chicks and shorten the hatch window. This study investigated the effect of precise CO2 supplementation during the early and late periods of incubation on embryo growth and incubation performance by developing and using a CO2 supplementation system to increase the CO2 level in an experimental egg incubator. The CO2 level was maintained at 1% in the early period (from the beginning to the 10th day of incubation, E0E10) and in the late period (from internal pipping (IP) to the 21st day of incubation (E21), IP–E21) in an incubator for the treatment group, whereas the CO2 level was maintained at the ambient level in the other incubators for the control group. A comparative assessment of embryonic development, hatching characteristics, and hormone and nutrient levels was conducted for each trial. The experiment comprised three trials, with 300 Jing Hong No. 1 breeding eggs in each incubator. The elevated CO2 treatment significantly shortened the chick hatching time (H0) by 4 h (P < 0.05) and the hatch window by 3 h (P < 0.05) without affecting hatchability, chick weight at 1 d of age, brooding period, or quality score. At external pipping (EP), the heart weight, intestinal weight, relative intestinal weight, and relative heart weight in the treatment group were significantly higher than those in the control group (P < 0.05). In addition, the embryonic intestine, relative intestine, and relative heart weights of the newly hatched chicks in the treatment group were significantly higher than those in the control group (P < 0.05) at H0. The treatment significantly increased the concentration of corticosterone in the embryonic plasma during the period from IP to EP (P < 0.05), promoted the secretion of triiodothyronine and tetraiodothyronine (P < 0.05), and increased the glycogen content of the embryonic liver on E21 (P < 0.05). This result indicates that elevated CO2 (1%) during the early and late periods of incubation accelerated embryonic organ development and shortened the chick hatching time and hatch window without affecting hatchability or hatchling quality, which can be explained by the synergistic functions of the secretion of plasma corticosterone and thyroid hormones and the accumulation of liver glycogen between the early and late periods of incubation.  相似文献   

3.
Developmental patterns of embryonic heart rate were measured non-invasively in two procellariiform seabirds, the Laysan albatross (Diomedea immutabilis) and wedge-tailed shearwater (Puffinus pacificus), during prepipping and after pipping. The O2 pulse, defined as the O2 consumption per single heart beat, was calculated using the previously reported O2 consumption for these species. The embryonic heart rate of the albatross was not changed by internal pipping (initial pipping event in this species), remained unchanged during the prolonged internal pipping period and tended to increase, although insignificantly, with the initiation of external pipping (second pipping event). Heart rate in the shearwater remained unchanged during the late prepipping stages, did not change with external pipping (initial pipping event), but increased during the prolonged internal pipping period (second pipping event) and reached a maximum on the last day of incubation. The developmental pattern of heart rate in the shearwater was very similar to that reported previously for the brown noddy, a member of the order Charadriiformes but with the same pipping sequence. Developmental patterns of embryonic O2 pulse were also different between the two procellariiform seabirds. However, those of the shearwater and the noddy were similar. The sequence of access to atmospheric O2 during development and hatching may be an important factor determining the developmental patterns of embryonic heart rate and O2 pulse.Abbreviations A-VO2 difference, arteriovenous oxygen difference - BCG ballistocardiogram of egg - CV coefficient of variation - EP external pipping - HR heart rate - IP internal pipping - mass mass of freshly laid egg - SD standard deviation  相似文献   

4.
Carbon dioxide (CO2) is considered to be an important factor during incubation of eggs. Effects attributed to higher CO2 concentrations during experiment might be due to confounding effects of other environmental conditions, such as incubation temperature. To disentangle effects of eggshell temperature (EST) and CO2 concentration, an experiment was conducted. A total of 630 Cobb 500 hatching eggs from 37 to 45 wk commercial breeder flocks were collected and incubated according to treatments. The experiment was setup as a complete randomized 2 × 3 factorial design, resulting in 6 treatments. From day 8 of incubation onward, broiler eggs were exposed to one of two EST (37.8 or 38.9 °C) and one of three CO2 concentrations (0.1, 0.4 or 0.8%). Eggs were incubated in climate-respiration chambers and metabolic heat production was determined continuously. At day 18 of incubation and at 6 h after hatching, embryo and chicken quality were determined by evaluation of organ weights, navel condition, blood metabolites and hepatic glycogen. Hatching time and chicken length at 6 h after hatching showed an interaction between EST and CO2 concentration (both P = 0.001). Furthermore, no effect of CO2 concentration was found on embryo development or chicken quality. Metabolic heat production between day 8 and 18 of incubation was not affected by either EST or CO2. At day 18 of incubation, an EST of 38.9 °C resulted in a higher egg weight loss, longer embryos, higher yolk free body mass (YFBM) and lower heart weight than an EST of 37.8 °C (all P < 0.008). At 6 h after hatching, an EST of 38.9 °C resulted in a higher residual yolk weight and lower YFBM, liver weight and heart weight than an EST of 37.8 °C (all P < 0.003). Lactate, uric acid and hepatic glycogen were not affected by EST at either day 18 of incubation or at hatch. Glucose was not affected by EST at day 18 of incubation, but at hatch, it was higher at an EST of 37.8 °C than at an EST of 38.9 °C (P = 0.02). It can be concluded that effects of CO2 concentration (at concentrations ≤0.8%) on embryonic development and chicken quality appear to be limited when EST is maintained at a constant level. Moreover, a higher EST from day 8 of incubation onward appears to negatively affect chicken quality at hatch.  相似文献   

5.
Oxygen consumption, air cell gases, hematology, blood gases and pH of Puna teal (Anas versicolor puna) embryos were measured at the altitude at which the eggs were laid (4150 m) in the Peruvian Andes. In contrast to the metabolic depression described by other studies on avian embryos incubated above 3700 m, O2 consumption of Puna teal embryos was higher than even that of some lowland avian embryos at equivalent body masses. Air cell O2 tensions dropped from about 80 toor in eggs with small embryos to about 45 toor in eggs containing a 14-g embryo; simultaneously air cell CO2 tension rose from virtually negligible amounts to around 26 torr. Arterial and venous O2 tensions (32–38 and 10–12 toor, respectively, in 12- to 14-g embryos) were lower than described previously in similarly-sized lowland wild avian embryos or chicken embryos incubated in shells with restricted gas exchange. The difference between air cell and arterial O2 tensions dropped significantly during incubation to a minimum of 11 torr, the lowest value recorded in any avian egg. Blood pH (mean 7.49) did not vary significantly during incubation. Hemoglobin concentration and hematocrits rose steadily throughout incubation to 11.5 g · 100 ml-1 and 39.9%, respectively, in 14-g embryos.Abbreviations PO2 partial pressure gradient of O2 - BM body mass - D diffusion coefficient - G gas conductance (cm3·s-1·torr-1) - conductance to water vapor - IP internal pipping of embryos - P ACO2 partial pressure of carbon dioxide in air cell - P AO2 partial pressure of oxygen in air cell - P aCO2 partial pressure of carbon dioxide in arterial blood - P aCO2 partial pressure of oxygen in arteries - P H barometric pressure (torr) - PCO2 partial pressure of carbon dioxide - P IO2 partial pressure in ambiant air - PO2 partial pressure of oxygen - P VCO2 venous carbon dioxide partial pressure - P VO2 mixed venous oxygen partial pressure - SE standard error - VO 2 oxygen consumption  相似文献   

6.
Gas exchange measurements and leaf anatomy of 10 cassava cultivars were conducted to study the interrelationship between the relatively high photosynthetic rates and the factors limiting internal CO2 diffusion. The internal mesophyll surface area per unit leaf surface area (Ames/A) and the intracellular components of CO2 diffusion and fixation resistance (RcellCO2) were determined. Among the group of cultivars tested net CO2 exchange rates were 26±2.5 mol CO2 m–2 s–1 in normal air and intense light and Ames/A ranged from 14 to 38. Estimated RcellCO2 ranged from 4300 to 13,000 s m–1. The combined and compensating effects of Ames/A and RcellCO2 accounted for both the high net photosynthetic rates (Pn) and the lack of large differences in Pn among cultivars.  相似文献   

7.
We compared the developmental patterns of mean heart rate in Larus crassirostris and L. schistisagus embryos and chicks with other avian species of different hatchling developmental modes. We proposed that, since mean heart rate is inversely related to fresh egg mass in all birds, larger species reached a higher fraction of their hatchling mean heart rate by the end of the early phase of incubation and that heart rate contributions to supplying the increasing metabolic demands during mid and late incubation phases were less important than in smaller avian species. Mean heart rate was essentially independent of age throughout the mid-incubation phase (33% of normalised incubation until pipping), but increased with time during early (L. schistisagus only investigated) and late-incubation phases in both species. The O2 pulse of L. schistisagus embryos and chicks increased linearly with yolk-free body mass (log-log) after the early-phase of incubation until shortly before pipping, but was independent of body mass in the periods before and after. We conclude that a high heart rate in this first period is probably more important for increasing the circulation of nutrients to the embryo at a stage when extra-embryonic circulation to the yolk sac is limited by the size of the growing area vaculosa. Furthermore, large increases in mean heart rate during the late-incubation phase are probably important for increasing the cardiac output to hatching levels with onset of endothermy. However, mean heart rate is stable over the mid-incubation while O2 pulse increases, suggesting that increases in stroke volume and other circulatory adjustments may be entirely responsible for the largest increases in O2 transport during incubation of large avian species. Accepted: 18 May 2000  相似文献   

8.
Incubation temperature and the amount of water taken up by eggs from the substrate during incubation affects hatchling size and morphology in many oviparous reptiles. The Brisbane river turtle Emydura signata lays hard-shelled eggs and hatchling mass was unaffected by the amount of water gained or lost during incubation. Constant temperature incubation of eggs at 24 °C, 26 °C, 28 °C and 31 °C had no effect on hatchling mass, yolk-free hatchling mass, residual yolk mass, carapace length, carapace width, plastron length or plastron width. However, hatchlings incubated at 26 °C and 28 °C had wider heads than hatchlings incubated at 24 °C and 31 °C. Incubation period varied inversely with incubation temperature, while the rate of increase in oxygen consumption during the first part of incubation and the peak rate of oxygen consumption varied directly with incubation temperature. The total amount of oxygen consumed during development and hatchling production cost was significantly greater at 24 °C than at 26 °C, 28 °C and 31 °C. Hatchling mass and dimensions and total embryonic energy expenditure was directly proportional to initial egg mass. Accepted: 18 March 1998  相似文献   

9.
Respiratory metabolism in buckwheat seedlings   总被引:12,自引:8,他引:4       下载免费PDF全文
Effer WR  Ranson SL 《Plant physiology》1967,42(8):1042-1052
Young seedlings of buckwheat (Fagopyrum esculentum) respire in air with an RQ of unity. Analysis of respiratory substrates coupled with a study of the utilization of acetate-14C and glucose-14C suggest that both the Embden-Meyerhof-Parnas, tricarboxylic acid and pentose phosphate sequences participate in the total respiratory catabolism.

In anoxia CO2 dropped to one third of the aerobic rate and ethanol accumulated to only about one half the rate of CO2 output on a molar basis. Smaller amounts of lactate, succinate and free amino acids (particularly alanine and γ-aminobutyric acid) accumulated, carboxylic acids decreased and there were initial increased in pyruvate and α-ketoglutarate. The observed changes are consistent with residual tricarboxylic acid and pentose phosphate cycle activity in anoxia and may account for the excess CO2 production over ethanol accumulation. CO2, ethanol and lactate production did not account for all of the carbohydrate consumed in anoxia.

Relative rates of carbon loss were measured in air and in atmospheres containing 3.5%, 2.1%, 1.3% and 0.6% oxygen. The extinction point of anaerobic metabolism was 1.5%.

On return to air from anoxia the CO2 output increased and the RQ rose from 0.8 to 1.0 over the first 2-hour period. Ethanol, lactate and succinate were consumed and other constituents returned to their previous aerobic level. Some of these changes suggest a rather slow resumption of tricarboxylic acid cycle activity on return to air.

Carbon loss as CO2 in air was greater than the carbon loss as CO2 at the extinction point. Carbon loss in anoxia as CO2, ethanol and lactate was similar to carbon loss at the extinction point. Assessed in this orthodox manner buckwheat seedlings show no Pasteur effect but the complex nature of the changes in levels of metabolic substrates and intermediates do not allow firm conclusions to be drawn on the effects of oxygen on the rates of glycolysis and other respiratory processes.

  相似文献   

10.
  • 1.1. In this study, we review reported values for fluxes of water vapor and oxygen across the pores in avian eggshells, pore numbers per egg, the changes in O2 and CO2 tensions in the air space during development, and the absolute humidity of bird nests in various climates.
  • 2.2. With egg mass from 1 to 1500 g as the independent variable we use regression analysis of daily water vapor loss, O2 uptake at the preinternal pipping (PIP) stage of development, and pore numbers to show that O2, CO2 and water vapor fluxes per pore are 68, 50 and 49 μl/day, respectively, independent of egg mass. When these fluxes are divided by the invariant pore conductance previously established by Ar and Rahn (Respir. Physiol. 61, 1–20, 1985), predicted air cell O2 and CO2 tensions of ca 100 and 40 Torr just prior to the initiation of lung function are obtained, values which agree well with mean measured gas tensions in 25 species.
  • 3.3. Our analysis complements the model proposed by Ar and Rahn, in which pores serve as basic respiratory units for most bird eggs. In this model, pore number per egg is matched to O2 demand at the PIP stage of development to produce the commonly observed air cell gas tensions. Average, total diffusive water loss in 117 species is 15%, SD 2.6, of initial egg mass. To achieve this value requires the proper combination of pore number, egg temperature and nest water vapor tension; the latter is also a function of nest construction and incubation behavior. Examples of nest absolute humidity are cited for 20 species which incubate in diverse climates with ambient absolute humidities from 4 to 22 Torr. Exceptions to the model are seen in eggs incubated under environmental conditions which are unusual in temperature, humidity, or altitude.
  相似文献   

11.
Avian eggs contain a variety of maternally-derived substances that can influence the development and performance of offspring. The levels of these egg compounds vary in relation to environmental and genetic factors, but little is known about whether there are correlative links between maternal substances in the egg underlying common and different pathways of maternal effects. In the present study, we investigated genetically determined variability and mutually adjusted deposition of sex hormones (testosterone-T, androstenedione-A4 and progesterone-P4), antibodies (IgY) and antimicrobial proteins (lysozyme) in eggs of Japanese quail (Coturnix japonica). We used different genetic lines that were independently selected for yolk T concentrations, duration of tonic immobility and social reinstatement behaviour, since both selections for behavioural traits (fearfulness and social motivation, respectively) produced considerable correlative responses in yolk androgen levels. A higher selection potential was found for increased rather than decreased yolk T concentrations, suggesting that there is a physiological minimum in egg T levels. Line differences in yolk IgY concentrations were manifested within each selection experiment, but no consistent inter-line pattern between yolk IgY and T was revealed. On the other hand, a consistent inverse inter-line pattern was recorded between yolk IgY and P4 in both selections for behavioural traits. In addition, selections for contrasting fearfulness and social motivation were associated with changes in albumen lysozyme concentrations and an inverse inter-line pattern between the deposition of yolk IgY and albumen lysozyme was found in lines selected for the level of social motivation. Thus, our results demonstrate genetically-driven changes in deposition of yolk T, P4, antibodies and albumen lysozyme in the egg. This genetic variability can partially explain mutually adjusted maternal deposition of sex hormones and immune-competent molecules but the inconsistent pattern of inter-line differences across all selections indicates that there are other underlying mechanisms, which require further studies.  相似文献   

12.
Bacterioplankton respiration (BR) may represent the largest single sink of organic carbon in the biosphere and constitutes an important driver of atmospheric carbon dioxide (CO2) emissions from freshwaters. Complete understanding of BR is precluded by the fact that most studies need to assume a respiratory quotient (RQ; mole of CO2 produced per mole of O2 consumed) to calculate rates of BR. Many studies have, without clear support, assumed a fixed RQ around 1. Here we present 72 direct measurements of bacterioplankton RQ that we carried out in epilimnetic samples of 52 freshwater sites in Québec (Canada), using O2 and CO2 optic sensors. The RQs tended to converge around 1.2, but showed large variability (s.d.=0.45) and significant correlations with major gradients of ecosystem-level, substrate-level and bacterial community-level characteristics. Experiments with natural bacterioplankton using different single substrates suggested that RQ is intimately linked to the elemental composition of the respired compounds. RQs were on average low in net autotrophic systems, where bacteria likely were utilizing mainly reduced substrates, whereas we found evidence that the dominance of highly oxidized substrates, for example, organic acids formed by photo-chemical processes, led to high RQ in the more heterotrophic systems. Further, we suggest that BR contributes to a substantially larger share of freshwater CO2 emissions than presently believed based on the assumption that RQ is ∼1. Our study demonstrates that bacterioplankton RQ is not only a practical aspect of BR determination, but also a major ecosystem state variable that provides unique information about aquatic ecosystem functioning.  相似文献   

13.
Egg yolk-based diluents provide adequate cryoprotection for the sperm of several mammalian species. Traditionally, chicken egg yolk has been used as additive for the freeze preservation of spermatozoa because of its wide availability. Variations in the chemical composition of the egg yolk of different avian species appear to influence the protection afforded during cooling, freezing, and thawing. The aim of the present study was to assess the use of quail egg yolk as a novel additive for the epididymal spermatozoa of a threatened wild ruminant species—the Spanish ibex—and to compare its efficacy with chicken egg yolk. Epididymal spermatozoa were diluted using a Tris–citric acid–glucose medium (TCG) composed of 3.8% Tris (w v−1), 2.2% citric acid (w v−1), 0.6% glucose (w v−1), 5% glycerol (v v−1), and 6% egg yolk (v v−1). Sperm masses from the right epididymes were diluted with TCG-6% chicken egg yolk medium, while those from the left were diluted with TCG-6% quail egg yolk. The thawed spermatozoa preserved with TCG-6% quail egg yolk extender exhibited lower motility (P < 0.001), membrane integrity (P < 0.001), and viability (P < 0.01) than those diluted with the TCG-6% chicken egg yolk extender. The fertility of spermatozoa frozen in TCG-6% chicken egg yolk tended to be higher than in those frozen with TCG-6% quail egg yolk (63.3% vs 36.4%, P = 0.19). These results show that quail egg yolk offers no advantages over chicken egg yolk in the cryopreservation of Spanish ibex epididymal spermatozoa.  相似文献   

14.
This work focused on monitoring respiratory quotient, RQ (defined as a ratio of CO2 production to O2 uptake rates), microbial growth and residual hydrocarbon concentration during bioremediation experiments performed on laboratory soil microcosms. The aim of the study was to determine if the time course biodegradation profile of the contaminant can be related to the RQ evolution and to investigate the effect of the water content on RQ measurements. A natural soil was artificially contaminated with hexadecane and adjusted with inorganic nutrients to stimulate biodegradation. Microbial growth, CO2 production, O2 uptake and residual hexadecane were periodically monitored at different soil water contents ranging from 0.15 to 0.35 g water g−1 of dry soil. Results showed that microbial activity and contaminant degradation were strongly dependent on soil water content. Maximal growth and hexadecane depletion were obtained at a water content of 0.20 g water g−1 of dry soil, which corresponded to 46.6% of the water holding capacity. Hexadecane degradation was considerably reduced with increasing soil water content. RQ values fluctuated as a function of the hexadecane biodegradation phases. The lowest RQs corresponded to the highest hexadecane depletion and microbial growth. The water content variation did not significantly affect the shape of the RQ evolution curves as a function of time. It only modified the magnitude of RQ values. This study indicates that additional biological and chemical analyses are needed to support RQ data when monitoring contaminant degradation to have an accurate understanding of all the biotic processes, which may occur simultaneously.  相似文献   

15.
During the first day of hatching, the developing chicken embryo internally pips the air cell and relies on both the lungs and chorioallantoic membrane (CAM) for gas exchange. Our objective in this study was to examine respiratory and cardiovascular responses to acute changes in oxygen at the air cell or the rest of the egg during internal pipping. We measured lung (O2lung) and CAM (O2CAM) oxygen consumption independently before and after 60 min exposure to combinations of hypoxia, hyperoxia, and normoxia to the air cell and the remaining egg. Significant changes in O2total were only observed with combined egg and air cell hypoxia (decreased O2total) or egg hyperoxia and air cell hypoxia (increased O2total). In response to the different O2 treatments, a change in O2lung was compensated by an inverse change in O2CAM of similar magnitude. To test for the underlying mechanism, we focused on ventilation and cardiovascular responses during hypoxic and hyperoxic air cell exposure. Ventilation frequency and minute ventilation (VE) were unaffected by changes in air cell O2, but tidal volume (VT) increased during hypoxia. Both VT and VE decreased significantly in response to decreased PCO2. The right-to-left shunt of blood away from the lungs increased significantly during hypoxic air cell exposure and decreased significantly during hyperoxic exposure. These results demonstrate the internally pipped embryo's ability to control the site of gas exchange by means of altering blood flow between the lungs and CAM.  相似文献   

16.
The circadian rhythms in activity, core temperature (Tc), O2 consumption, CO2 production, and respiratory quotient (RQ) were monitored in four captive Chinese pangolins (Manis pentadactyla). The pangolins were strictly nocturnal, never emerging from their nest before 1600 h, and their intermittent activity continued no later than 0230. As is usual in nocturnal mammals, the highest values observed in Tc, O2 consumption, and CO2 production occurred during the night; the lowest values occurred during the day. The magnitude of the variation in Tc, O2 consumption, CO2 production, and RQ averaged 1.2°C, 1.3 ml O2 kg?1 min?1, 1.2 ml CO2 kg?1 min?1, and 0.24, respectively. The circadian pattern in RQ was independent of activity, Tc, and the metabolic parameters and was of a different character than the patterns exhibited in the other variables. RQ remained constant at either a high or low level for long periods (8–10 h) and then increased or decreased relatively rapidly (1–2h) to the other level as in a square wave, whereas the rhythms in the other variables are similar to sine waves. The sharp increase in RQ was followed by a slow decline in Tc, and the sharp decline in RQ was followed by a slow increase in Tc.  相似文献   

17.
Summary This study determined how structural features of the eggshells of coots (Fulica americana) laid at 4150 m in the Peruvian Andes differed from those at sea level in Peru and California and how these features affected exchange of water vapor, O2, and CO2. While barometric pressure at 4150 m was reduced to 60% of that at sea level, the conductance to water vapor, corrected to 760 torr, of montane eggs was 107% of the corresponding lowland value. When the effect of low barometric pressure on the diffusion coefficient of gases was considered, the effective conductance of the montane eggs at altitude was 177% of that at sea level. As a result, daily water loss from the montane eggs was substantially greater than that from lowland ones. The oxygen consumption of montane embryos was lower than that of lowland embryos of all sizes, particularly at larger embryonic masses. Just before pipping, the oxygen consumption of montane embryos was about 60% of the corresponding value for lowland individuals. Air cell oxygen tensions in montane eggs varied between about 65 and 38 torr; these values were about 60–70 torr below those in lowland eggs at equivalent embryonic masses. Just before pipping, the air cell CO2 tension of montane eggs was about 20 torr below levels in sea level eggs. The eggshell conductance to gases of montane eggs appears to have been selected to promote oxygen delivery at the cost of increased losses of water vapor and CO2.  相似文献   

18.
Older breeder flocks produce eggs with a relatively larger yolk and thereby a higher nutrient availability than young breeder flocks. To optimise nutrient utilisation and embryonic development throughout incubation and posthatch period, embryos originating from older breeder flocks may require a higher oxygen availability. The current study investigated effects of broiler breeder flock age and incubational oxygen concentration on embryonic metabolism and chicken development until 7-day posthatch. Similar sized eggs of a young (28–32 week) or old (55–59 week) Cobb 500 breeder flock were incubated at one of three oxygen concentrations (17%, 21% or 25%) from day 7 of incubation until 6 h after emergence from the eggshell. Posthatch, chickens were reared until 7 days of age. Egg composition at the start of incubation, heat production during incubation, and embryo or chicken development at embryonic day (ED)14 and ED18 of incubation, 6 h after hatch and day 7 posthatch were evaluated. An interaction was found between breeder age and oxygen concentration for yolk-free body mass (YFBM) at ED18. A higher oxygen concentration increased YFBM in the old breeder flock, whereas no difference was found between 21 and 25% oxygen in the young breeder flock. Yolk size was larger in the old compared to the young flock from ED0 until 6 h after hatch. Breeder flock age did not affect YFBM at ED14 and 6 h after hatch nor daily embryonic heat production, but there were some effects on relative organ weights. Chickens of the old compared to the young breeder flock showed a higher weight gain at day 7, but at a similar feed conversion ratio (FCR). A higher oxygen concentration during incubation stimulated embryonic development, especially between 17% and 21% of oxygen, in both flock ages. Although this growth advantage disappeared at 7 days posthatch, a low oxygen concentration during incubation resulted in a higher FCR at 7 days posthatch. Results indicated that breeder flock age seemed to influence body development, with an advantage for the older breeder flock during the posthatch period. Oxygen concentrations during incubation affected body development during incubation and FCR in the first 7 days posthatch. Although an interaction was found between breeder flock age and oxygen concentration at ED18 of incubation, there was no strong evidence that nutrient availability at the start of incubation (represented by breeder flock ages) affected embryo and chicken development at a higher oxygen concentration.  相似文献   

19.
The choice of a suitable nest habitat by oviparous reptiles that deposit eggs into a nest and provide no subsequent parental care is likely to play a major role in the survival of the offspring. In particular variations in nest temperature may influence the rate at which embryos utilise their yolk energy.The effects of nest temperature on total energy use are however complex. High temperatures may advance development and shorten the time to hatching, thereby reducing energy use, but they also stimulate metabolic rate increasing energy use. The net effect of temperature on total energy demands is therefore uncertain.Oxygen consumption (VO2) and carbon dioxide production (VCO2) were measured by open-flow respirometry during the incubation of loggerhead sea turtle eggs at three temperatures (27.6, 30.0 and 31.8 °C).At each temperature, VO2 and VCO2 showed a peak followed by a decline to hatching. Incubation temperature was negatively related to incubation duration and positively related to the maximum metabolic rate of the embryos. Peak VO2 was 74.8 ml/egg/day at 27.6 °C, 91.9 ml/egg/day at 30.0 °C, and 97.9 ml/egg/day at 31.8 °C. Peak VO2 occurred closer to hatching in eggs incubated at higher temperatures.Total energy expenditure was greatest at the lowest incubation temperature and lowest at the highest temperature. Total VO2 and VCO2 were 1777 ml/egg and 1226 ml/egg, respectively, at 27.6 °C, 1680 ml/egg and 1235 ml/egg at 30.0 °C, and 1613 ml/egg and 1191 ml/egg at 31.8 °C. Using the actual RQ values, this corresponds to a cost of development of 34,963 J/egg at 27.6 °C, 33,403 J/egg at 30.0 °C, and 32,107 J/egg at 31.8 °C.At all temperatures, the calculated respiratory quotient values did not suggest that yolk substrates were oxidised proportionately, but more likely indicated their sequential use.Nest temperatures may play a key role in energy use, with cooler temperature nests increasing the overall energy demands placed on developing embryos.  相似文献   

20.
Ocean acidification is an important consequence of rising levels of atmospheric CO2. The chemistry of acidification is, however, general and may disturb pH in terrestrial systems. The present study examines the effects of rising CO2 on insect eggs, which may be vulnerable to acidification because they are small, have (at least initially) poorly developed physiological systems, and support important developmental events. Newly‐laid eggs of the moth Manduca sexta are exposed to levels of CO2 between 0 and 2200 p.p.m., in air, and effects on yolk pH, total developmental time, and survival are measured. Altered CO2 has no effect, over several hours, on the pH of egg yolk, suggesting that yolk fluids are well buffered. By contrast, there is a large developmental change in yolk pH. Eggs exposed to eight different levels of CO2 for the duration of development show a small but significant parabolic response in development time. Eggs develop fastest at intermediate levels of CO2, between 400 and 1200 p.p.m., and slower at 0, 1600 and 2000 p.p.m. These results suggest that future rises in CO2 may not have strong direct effects on insect development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号