首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
2.
The present study was designed to explore the mechanism of action of walnut (the seed of Juglans regia) leaf and ridge on hepatic glucose metabolism in diabetic mice. Experimental diabetes was induced by intravenous administration of streptozotocin (60 mg/kg)and confirmed with an increase of blood glucose, 90–100% of the control, 72 hours later. Isolated extracts from walnut leaf and ridges were administered in a single effective dose of 400 mg/kg orally. Firstly, blood glucose was determined every 1 hour until 5 hours post administration of extracts. In the second experiment, the liver was surgically removed, 2 hours post treatment of diabetic animals with extracts, homogenized and used for measurement of key enzymes of glycogenolysis (glycogen phosphorylase, GP) and gluconeogenesis (phosphoenolpyruvate carboxykinase, PEPCK). Treatment by both leaf and ridge extracts decreased blood glucose and liver PEPCK activity and increased blood insulin and liver GP activity. It is concluded that walnut is able to lower blood glucose through inhibition of hepatic gluconeogenesis and secretion of pancreatic insulin.  相似文献   

3.
Novel concepts in insulin regulation of hepatic gluconeogenesis   总被引:1,自引:0,他引:1  
The regulation of hepatic gluconeogenesis is an important process in the adjustment of the blood glucose level, and pathological changes in the glucose production of the liver are a central characteristic in type 2 diabetes. The pharmacological intervention in signaling events that regulate the expression of the key gluconeogenic enzymes phosphoenolpyruvate carboxykinase (PEPCK) and the catalytic subunit glucose-6-phosphatase (G-6-Pase) is regarded as a potential strategy for the treatment of metabolic aberrations associated with this disease. However, such intervention requires a detailed understanding of the molecular mechanisms involved in the regulation of this process. Glucagon and glucocorticoids are known to increase hepatic gluconeogenesis by inducing the expression of PEPCK and G-6-Pase. The coactivator protein PGC-1 has been identified as an important mediator of this regulation. In contrast, insulin is known to suppress both PEPCK and G-6-Pase gene expression by the activation of PI 3-kinase. However, PI 3-kinase-independent pathways can also lead to the inhibition of gluconeogenic enzymes. This review focuses on signaling mechanisms and nuclear events that transduce the regulation of gluconeogenic enzymes.  相似文献   

4.
Glucose is absolutely essential for the survival and function of the brain. In our current understanding, there is no endogenous glucose production in the brain, and it is totally dependent upon blood glucose. This glucose is generated between meals by the hydrolysis of glucose-6-phosphate (Glc-6-P) in the liver and the kidney. Recently, we reported a ubiquitously expressed Glc-6-P hydrolase, glucose-6-phosphatase-beta (Glc-6-Pase-beta), that can couple with the Glc-6-P transporter to hydrolyze Glc-6-P to glucose in the terminal stages of glycogenolysis and gluconeogenesis. Here we show that astrocytes, the main reservoir of brain glycogen, express both the Glc-6-Pase-beta and Glc-6-P transporter activities and that these activities can couple to form an active Glc-6-Pase complex, suggesting that astrocytes may provide an endogenous source of brain glucose.  相似文献   

5.
6.
We examined the effects of subchronic exposure to malathion, an organophosphorous (OP) insecticide, on plasma glucose and hepatic enzymes of glycogenolysis and gluconeogenesis in rats in vivo. Malathion was administered orally at doses of 100, 200 and 400 ppm for 4 weeks. At the end of the specified treatment (18 h fasting after the last dose of malathion), the liver was removed. The activities of glycogen phosphorylase (GP) and phosphoenolpyruvate carboxykinase (PEPCK) were analyzed in the homogenate. Four weeks administration of malathion at doses of 100 ppm, 200 ppm, and 400 ppm increased plasma glucose concentrations by 25% (P < 0.01), 17% (P < 0.01), and 14% (P < 0.01) of control, respectively. Malathion also increased hepatic PEPCK activity by 25% (100 ppm, P < 0.01), 16% (200 ppm, P < 0.01), and 21% (400 ppm, P < 0.01) of control, respectively. In addition, malathion increased hepatic GP by 22% (100 ppm, P < 0.01), 41% (200 ppm, P < 0.01), and 32% (400 ppm, P < 0.01) of controls. We conclude that exposure of rats to malathion as a widely used OP in subchronic exposure, which resembles human exposure, may induce diabetes associated with stimulation of hepatic gluconeogenesis and glycogenolysis in favor of glucose release into the blood. The possible mechanisms including increased energy production to detoxification, depressed paraoxonase activity, and increased production of cyclic nucleotides are discussed.  相似文献   

7.
A potential new role for muscle in blood glucose homeostasis   总被引:1,自引:0,他引:1  
The breakdown of tissue glycogen into glucose is critical for blood glucose homeostasis between meals. In the final steps of glycogenolysis, intracellular glucose 6-phosphate (Glc-6-P) is transported into the endoplasmic reticulum where it is hydrolyzed to glucose by glucose-6-phosphatase (Glc-6-Pase). Although the majority of body glycogen is stored in the muscle, the current dogma holds that Glc-6-Pase (now named Glc-6-Pase-alpha) is expressed only in the liver, kidney, and intestine, implying that muscle glycogen cannot contribute to interprandial blood glucose homeostasis. Recently we reported a second Glc-6-P hydrolase, Glc-6-Pase-beta. Glc-6-Pase-beta shares kinetic and structural similarities to Glc-6-Pase-alpha and couples with the Glc-6-P transporter to form an active Glc-6-Pase complex (Shieh, J.-J., Pan, C.-J., Mansfield, B. C., and Chou, J. Y. (2003) J. Biol. Chem. 278, 47098-47103). Here we demonstrate that muscle expresses both Glc-6-Pase-beta and Glc-6-P transporter and that they can couple to form an active Glc-6-Pase complex. Our data suggest that muscle may have a previously unrecognized role in interprandial glucose homeostasis.  相似文献   

8.
9.
A triple-tracer method was developed to provide absolute fluxes contributing to endogenous glucose production and hepatic tricarboxylic acid (TCA) cycle fluxes in 24-h-fasted rats by (2)H and (13)C nuclear magnetic resonance (NMR) analysis of a single glucose derivative. A primed, intravenous [3,4-(13)C(2)]glucose infusion was used to measure endogenous glucose production; intraperitoneal (2)H(2)O (to enrich total body water) was used to quantify sources of glucose (TCA cycle, glycerol, and glycogen), and intraperitoneal [U-(13)C(3)] propionate was used to quantify hepatic anaplerosis, pyruvate cycling, and TCA cycle flux. Plasma glucose was converted to monoacetone glucose (MAG), and a single (2)H and (13)C NMR spectrum of MAG provided the following metabolic data (all in units of micromol/kg/min; n = 6): endogenous glucose production (40.4+/-2.9), gluconeogenesis from glycerol (11.5+/-3.5), gluconeogenesis from the TCA cycle (67.3+/-5.6), glycogenolysis (1.0+/-0.8), pyruvate cycling (154.4+/-43.4), PEPCK flux (221.7+/-47.6), and TCA cycle flux (49.1+/-16.8). In a separate group of rats, glucose production was not different in the absence of (2)H(2)O and [U-(13)C]propionate, demonstrating that these tracers do not alter the measurement of glucose turnover.  相似文献   

10.
Direct effects of leptin on gluconeogenesis in rat hepatocytes are equivocal, and model systems from other species have not been extensively explored in assessing the regulation of glucose metabolism by leptin. Therefore, the goal of the present study was to compare the effects of leptin on gluconeogenesis in pig and rat hepatocyte cultures as well as to investigate an underlying mechanism of action at the level of phosphoenolpyruvate carboxykinase (PEPCK). In rat hepatocytes, leptin exposure (3 h, 50 and 100 nM) attenuated glucagon-stimulated hepatic gluconeogenesis by 35 and 38% (P < 0.05), respectively. However, leptin did not produce any significant acute effect in pig hepatocytes. Leptin exposure for 24 h failed to produce any significant effect on gluconeogenesis in either rat or pig hepatocytes cultured in the presence of glucagon or dexamethasone. Mechanistically, there was a 25-35% decrease (P < 0.05) in glucagon-induced PEPCK mRNA levels in rat but not pig hepatocytes cultured with leptin. This effect on PEPCK mRNA was not due to an alteration in the relative abundance of the leptin receptor or the ability of PEPCK to respond to cAMP. The nonuniformity of the effects of leptin on gluconeogenesis in pig and rat hepatocytes indicates differences in leptin action between species. Furthermore, the unique action of leptin in porcine hepatocytes points to the utility of this model system for biomedical research and also underscores the value of comparative studies.  相似文献   

11.
The multicomponent hepatic glucose 6-phosphatase (Glc-6-Pase) system catalyzes the terminal step of hepatic glucose production and plays a key role in the regulation of blood glucose. We used the chlorogenic acid derivative S 3483, a reversible inhibitor of the glucose-6-phosphate (Glc-6-P) translocase component, to demonstrate for the first time upregulation of Glc-6-Pase expression in rat liver in vivo after inhibition of Glc-6-P translocase. In accordance with its mode of action, S 3483-treatment of overnight-fasted rats induced hypoglycemia and increased blood lactate, hepatic Glc-6-P, and glycogen. The metabolic changes were accompanied by rapid and marked increases in Glc-6-Pase mRNA (above 35-fold), protein (about 2-fold), and enzymatic activity (about 2-fold). Maximal mRNA levels were reached after 4 h of treatment. Glycemia, blood lactate, and Glc-6-Pase mRNA levels returned to control values, whereas Glc-6-P and glycogen levels decreased but were still elevated 2 h after S 3483 withdrawal. The capacity for Glc-6-P influx was only marginally increased after 8.5 h of treatment. Prevention of hypoglycemia by euglycemic clamp did not abolish the increase in Glc-6-Pase mRNA induced by S 3483 treatment. A similar pattern of hypoglycemia and possibly of associated counterregulatory responses elicited by treatment with the phosphoenolpyruvate carboxykinase inhibitor 3-mercaptopicolinic acid could account for only a 2-fold induction of Glc-6-Pase mRNA. These findings suggest that the significant upregulation of Glc-6-Pase gene expression observed after treatment of rats in vivo with an inhibitor of Glc-6-P translocase is caused predominantly either by S 3483 per se or by the compound-induced changes of intracellular carbohydrate metabolism.  相似文献   

12.
Liver-specific phosphoenolpyruvate carboxykinase (PEPCK) null mice, when fasted, maintain normal whole body glucose kinetics but develop dramatic hepatic steatosis. To identify the abnormalities of hepatic energy generation that lead to steatosis during fasting, we studied metabolic fluxes in livers lacking hepatic cytosolic PEPCK by NMR using 2H and 13C tracers. After a 4-h fast, glucose production from glycogenolysis and conversion of glycerol to glucose remains normal, whereas gluconeogenesis from tricarboxylic acid (TCA) cycle intermediates was nearly absent. Upon an extended 24-h fast, livers that lack PEPCK exhibit both 2-fold lower glucose production and oxygen consumption, compared with the controls, with all glucose production being derived only from glycerol. The mitochondrial reduction-oxidation (red-ox) state, as indicated by the NADH/NAD+ ratio, is 5-fold higher, and hepatic TCA cycle intermediate concentrations are dramatically increased in the PEPCK null livers. Consistent with this, flux through the TCA cycle and pyruvate cycling pathways is 10- and 40-fold lower, respectively. Disruption of hepatic cataplerosis due to loss of PEPCK leads to the accumulation of TCA cycle intermediates and a nearly complete blockage of gluconeogenesis from amino acids and lactate (an energy demanding process) but intact gluconeogenesis from glycerol (which contributes to net NADH production). Inhibition of the TCA cycle and fatty acid oxidation due to increased TCA cycle intermediate concentrations and reduced mitochondrial red-ox state lead to the development of steatosis.  相似文献   

13.
14.
The effect of increased glycogenolysis, simulated by galactose's conversion to glucose, on the contribution of gluconeogenesis (GNG) to hepatic glucose production (GP) was determined. The conversion of galactose to glucose is by the same pathway as glycogen's conversion to glucose, i.e., glucose 1-phosphate --> glucose 6-phosphate --> glucose. Healthy men (n = 7) were fasted for 44 h. At 40 h, hepatic glycogen stores were depleted. GNG then contributed approximately 90% to a GP of approximately 8 micromol.kg(-1).min(-1). Galactose, 9 g/h, was infused over the next 4 h. The contribution of GNG to GP declined from approximately 90% to 65%, i.e., by approximately 2 micromol.kg(-1).min(-1). The rate of galactose conversion to blood glucose, measured by labeling the infused galactose with [1-(2)H]galactose (n = 4), was also approximately 2 micromol.kg(-1).min(-1). The 41st h GP rose by approximately 1.5 micromol.kg(-1).min(-1) and then returned to approximately 9 micromol.kg(-1).min(-1), while plasma glucose concentration increased from approximately 4.5 to 5.3 mM, accompanied by a rise in plasma insulin concentration. Over 50% of the galactose infused was accounted for in blood glucose and hepatic glycogen formation. Thus an increase in the rate of GP via the glycogenolytic pathway resulted in a concomitant decrease in the rate of GP via GNG. While the compensatory response to the galactose administration was not complete, since GP increased, hepatic autoregulation is operative in healthy humans during prolonged fasting.  相似文献   

15.
16.
Leptin has both insulin-like and insulin-antagonistic effects on glucose metabolism. To test whether leptin interferes directly with insulin signaling, we perfused isolated rat livers with leptin (0.1, 0.5, 5, and 25 nmol/liter), leptin + insulin (5 nmol/liter + 10 nmol/liter), insulin (10 nmol/liter), or vehicle (control). Leptin reduced L-lactate-(10 mmol/liter)-stimulated glucose production by 39-66% (P < 0.006 vs. control) and phosphoenolpyruvate carboxykinase (PEPCK) activity by 22-52% (P < 0.001). Physiological leptin concentrations (0.1-5 nmol/liter) stimulated the tyrosine phosphorylation (pY) of insulin receptor substrate-2 (IRS-2) (280-954%; P < 0.05) and its associated phosphatidylinositol-3 kinase activity (122-621%; P < 0.003). Leptin (0.5-25 nmol/liter) inhibited IRS-1 pY and its associated phosphatidylinositol-3 kinase activity (20-89%; P < 0.03) but stimulated janus kinase-2 pY (272-342%; P < 0.001). Leptin also down-regulated its short receptor isoform in a time- and concentration-dependent manner (28-54%; P < 0.05). Exposure to leptin + insulin additively reduced glucose production and PEPCK activity (approximately 50%; P < 0.001 vs. control) and doubled IRS-2 pY (P < 0.01 vs. insulin). However, leptin + insulin decreased IRS-1 pY by 57% (P < 0.01 vs. insulin). Insulin alone (P < 0.01), but not leptin, increased autophosphorylation of nonreceptor tyrosine kinases (pp59(Lyn) + pp125(Fak)). In conclusion, leptin both alone and in combination with insulin reduces hepatic glucose production by decreasing the synthesis of the key enzyme of gluconeogenesis, PEPCK, which results mainly from the stimulation of the IRS-2 pathway.  相似文献   

17.
18.
The acute effects of physiological levels of leptin (10 ng ml(-1)) and insulin (20 microU ml(-1)) on hepatic gluconeogenesis and ketogenesis were compared. Leptin or insulin alone decreased (p<0.05) the activation of hepatic glucose, L-lactate and urea production from L-alanine. However, the hepatic glucose production was not modified if leptin was combined with insulin. These results indicated that both, i.e. leptin and insulin, could promote a non-additive reduction in the rate of catabolism of L-alanine. However, in contrast with insulin (p<0.05), leptin did not inhibit the activation of hepatic glucose production from pyruvate or glycerol. On the other hand, activation of hepatic production of acetoacetate and beta-hydroxybutyrate from octanoate was not affected by leptin or insulin. Thus, our data demonstrate that the acute effect of leptin on hepatic metabolism was partially similar to insulin (activation of glucose production from L-alanine and activation of acetoacetate or beta-hydroxybutyrate production from octanoate) and partially different from insulin (activation of glucose production from pyruvate or glycerol).  相似文献   

19.
Troglitazone is an oral insulin-sensitizing drug used to treat patients with type 2 diabetes. A major feature of this hyperglycemic state is the presence of increased rates of hepatic gluconeogenesis, which troglitazone is able to ameliorate. In this study, we examined the molecular basis for this property of troglitazone by exploring the effects of this compound on the expression of the two genes encoding the major regulatory enzymes of gluconeogenesis, phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) in primary cultures of rat hepatocytes. Insulin is able to inhibit expression of both of these genes, which was verified in our model system. Troglitazone significantly reduced mRNA levels of PEPCK and G6Pase in rat hepatocytes isolated from normal and Zucker-diabetic rats, but to a lesser extent than that observed with insulin. Interestingly, troglitazone was unable to reduce cAMP-induced levels of PEPCK mRNA, suggesting that the molecular mechanism whereby troglitazone exerted its effects on gene expression differed from that of insulin. This was further supported by the observation that troglitazone was able to reduce PEPCK mRNA levels in the presence of the insulin signaling pathway inhibitors wortmannin, rapamycin, and PD98059. These results indicate that troglitazone can regulate the expression of specific genes in an insulin-independent manner, and that genes encoding gluconeogenic enzymes are targets for the inhibitory effects of this drug.  相似文献   

20.
Leptin has pleiotropic effects on glucose homeostasis and feeding behavior. Here, we validate the use of a cell-permeable phosphopeptide that blocks STAT3 activation in vivo. The combination of this biochemical approach with stereotaxic surgical techniques allowed us to pinpoint the contribution of hypothalamic STAT3 to the acute effects of leptin on food intake and glucose homeostasis. Leptin's ability to acutely reduce food intake critically depends on intact STAT3 signaling. Likewise, hypothalamic signaling of leptin through STAT3 is required for the acute effects of leptin on liver glucose fluxes. Lifelong obliteration of STAT3 signaling via the leptin receptor in mice (s/s mice) results in severe hepatic insulin resistance that is comparable to that observed in db/db mice, devoid of leptin receptor signaling. Our results demonstrate that the activation of the hypothalamic STAT3 pathway is an absolute requirement for the effects of leptin on food intake and hepatic glucose metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号