首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
To isolate the genes involved in the response of graminaceous plants to Fe-deficient stress, a protein induced by Fe-deficiency treatment was isolated from barley (Hordeum vulgare L.) roots. Based on the partial amino acid sequence of this protein, a cDNA (HvAPT1) encoding adenine phosphoribosyltransferase (APRT: EC 2.4.2.7) was cloned from a cDNA library prepared from Fe-deficient barley roots. Southern analysis suggested that there were at least two genes encoding APRT in barley. Fe deficiency increased HvAPT1 expression in barley roots and resupplying Fe to the Fe-deficient plants rapidly negated the increase in HvAPT1 mRNA. Analysis of localization of HvAPT1-sGFP fusion proteins in tobacco BY-2 cells indicated that the protein from HvAPT1 was localized in the cytoplasm of cells. Consistent with the results of Northern analysis, the enzymatic activity of APRT in barley roots was remarkably increased by Fe deficiency. This induction of APRT activity by Fe deficiency was also observed in roots of other graminaceous plants such as rye, maize, and rice. In contrast, the induction was not observed to occur in the roots of a non-graminaceous plant, tobacco. Graminaceous plants generally synthesize the mugineic acid family phytosiderophores (MAs) in roots under Fe-deficient conditions. In this paper, a possible role of HvAPT1 in the biosynthesis of MAs related to adenine salvage in the methionine cycle is discussed.  相似文献   

2.
Rice plants (Oryza sativa L.) take up iron using iron-chelating compounds known as mugineic acid family phytosiderophores (MAs). In the biosynthetic pathway of MAs, nicotianamine aminotransferase (NAAT) catalyses the key step from nicotianamine to the 3′′-keto form. In the present study, we identified six rice NAAT genes (OsNAAT1–6) by screening a cDNA library made from Fe-deficient rice roots and by searching databases. Among the NAAT homologues, OsNAAT1 belongs to a subgroup containing barley functional NAAT (HvNAAT-A and HvNAAT-B) as well as a maize homologue cloned by cDNA library screening (ZmNAAT1). Northern blot and RT-PCR analysis showed that OsNAAT1, but not OsNAAT26, was strongly up-regulated by Fe deficiency, both in roots and shoots. The OsNAAT1 protein had NAAT enzyme activity in vitro, confirming that the OsNAAT1 gene encodes functional NAAT. Promoter–GUS analysis revealed that OsNAAT1 was expressed in companion and pericycle cells adjacent to the protoxylem of Fe-sufficient roots. In addition, expression was induced in all cells of Fe-deficient roots, with particularly strong GUS activity evident in the companion and pericycle cells. OsNAAT1 expression was also observed in the companion cells of Fe-sufficient shoots, and was clearly induced in all the cells of Fe-deficient leaves. These expression patterns highly resemble those of OsNAS1, OsNAS2 and OsDMAS1, the genes responsible for MAs biosynthesis for Fe acquisition. These findings strongly suggest that rice synthesises MAs in whole Fe-deficient roots to acquire Fe from the rhizosphere, and also in phloem cells to maintain metal homeostasis facilitated by MAs-mediated long-distance transport.  相似文献   

3.
Nicotianamine (NA) is an intermediate in the biosynthetic pathway of the mugineic acid family phytosiderophores (MAs), which are crucial components of the iron acquisition apparatus of graminaceous plants. In non-graminaceous plants, NA is thought to be an essential chelator for metal cation homeostasis. Thus NA plays a key role in Fe metabolism and homeostasis in all higher plants. Nicotianamine synthase (NAS, EC 2.5.1.43) catalyzes the trimerization of S-adenosylmethionine to form one molecule of NA. Barley, a plant that is resistant to Fe deficiency, secretes large amounts of MAs, whereas rice, a plant that is susceptible to Fe deficiency, secretes only small amounts. In this study we isolated a genomic fragment containing HvNAS1 from barley and three rice cDNA clones, osnas1, osnas2 and osnas3, from Fe-deficient rice roots. We also isolated a genomic fragment containing both OsNAS1 and OsNAS2. In contrast to barley, in which Fe deficiency induces the expression of NAS genes only in roots, Fe deficiency in rice induced NAS gene expression in both roots and chlorotic leaves. The amounts of endogenous NA in both the roots and leaves were higher than in barley. We introduced barley genomic DNA fragments containing HvNAS1 with either 9 or 2 kb of the 5'-flanking region into rice, using Agrobacterium-mediated transformation. Fe deficiency induced HvNAS1 expression in both roots and leaves of the transgenic rice, as occurs with rice NAS genes. Barley and rice NAS genes are compared in a discussion of alteration of the NAS genes during adaptation to Fe deficiency.  相似文献   

4.
5.
6.
7.
To identify the proteins induced by Fe deficiency, we have compared the proteins of Fe-sufficient and Fe-deficient barley (Hordeum vulgare L.) roots by two-dimensional polyacrylamide gel electrophoresis. Peptide sequence analysis of induced proteins revealed that formate dehydrogenase (FDH), adenine phosphoribosyltransferase, and the Ids3 gene product (for Fe deficiency-specific) increased in Fe-deficient roots. FDH enzyme activity was detected in Fe-deficient roots but not in Fe-sufficient roots. A cDNA encoding FDH (Fdh) was cloned and sequenced. Fdh expression was induced by Fe deficiency. Fdh was also expressed under anaerobic stress and its expression was more rapid than that induced by Fe deficiency. Thus, the expression of Fdh observed in Fe-deficient barley roots appeared to be a secondary effect caused by oxygen deficiency in Fe-deficient plants.  相似文献   

8.
9.
[11C]methionine was supplied to Fe-deficient and Fe-sufficient barley plants through a single leaf, and real time 11C movement was monitored using a Positron Emitting Tracer Imaging System (PETIS). In Fe-deficient plants, [11C]methionine was translocated from the tip of the absorbing leaf to the 'discrimination centre' located at the base of the shoot, and then retranslocated to all the chlorotic leaves within 60 min, while a negligible amount was retranslocated to the roots. In Fe-sufficient plants, methionine was translocated to the discrimination centre and then only to the newest leaf on the main shoot within 60 min. A negligible amount was also retranslocated to the roots. In conclusion, methionine from the above-ground parts of a plant is not a precursor of mugineic acid under Fe-deficiency. The discrimination centre is suggested to play a vital role in the distribution of mineral elements and metabolites in graminaceous monocots.Keywords: [11C]methionine, discrimination centre, Fe deficiency, mugineic acid, PETIS.   相似文献   

10.
11.
12.
In a previous paper we reported that an acidic 36 kDa peptide is the most strongly induced peptide among several peptides induced by Fe deficiency in barley roots. In this paper, polyclonal antibodies were raised against the 36 kDa peptide. This peptide appeared in the roots of all the graminaceous species tested (barley, rye, wheat, oat, maize, sorghum and rice) in response to Fe deficiency. More of the peptide was found in the roots of graminaceous species which secrete higher amounts of mugineic acids (MAs) under Fe deficient nutrition status. Induction of the 36 kDa peptide was first observed on the third day of Fe deficiency, rising to a maximum value on the seventh day. The trend has a positive correlation with secretion of MAs during Fe deficiency. Further, resupply of Fe resulted in a decrease in peptide production on the second day, reaching a control level on the seventh day. The rate of decrease in peptide production was observed to be slower than that of MA secretion. Other nutrient stresses such as B excess, B deficiency, Cu excess, Cu deficiency, Mn excess, Mn deficiency, Zn excess and Zn deficiency induced far less of the peptide. The specific expression of the 36 kDa peptide in roots of graminaceous species under Fe deficiency suggested the positive association of the peptide with a specific Fe deficiency tolerance mechanism in graminaceous plants.  相似文献   

13.
Nicotianamine (NA) is a precursor for mugineic acid-family phytosiderophores, which are a critical component of the Fe aquisition process in graminaceous plants. In addition, nicotianamine synthase (NAS) is strongly induced in these plants by Fe deficiency. NA is essential for Fe metabolism also in dicots, but NAS is not induced by Fe deficiency. We introduced a barley HvNAS1 promoter-gus fusion gene into tobacco. GUS activity was induced in the roots of these plants by Fe deficiency, and was constitutively expressed at a low level in their leaves.  相似文献   

14.
Overcoming Fe deficiency by a transgenic approach in rice   总被引:2,自引:0,他引:2  
Iron (Fe) is an essential microelement for plant growth. Fe availability is particularly limited on calcareous soils, which have high pH. Approximately 30% of the world's soils are considered calcareous with low Fe availability, which results in extensive areas of Fe deficiency in plants. Some graminaceous plants are known to secrete high amounts of mugineic acid family phytosiderophores (MAs) under Fe deficiency. This Fe acquisition system is called the Strategy-II mechanism. Tolerance to Fe deficiency in graminaceous plants is thought to depend on the quantity of MAs secreted by plants under Fe deficiency stress. This system was utilized to enhance the tolerance of rice to low Fe availability. Transgenic rice expressing the barley naat genes, one of the genes for the enzymes on the biosynthetic pathway of MAs, showed tolerance to low Fe availability when grown in a calcareous soil.  相似文献   

15.
Nicotianamine (NA) is a precursor for mugineic acid-family phytosiderophores, which are a critical component of the Fe aquisition process in graminaceous plants. In addition, nicotianamine synthase (NAS) is strongly induced in these plants by Fe deficiency. NA is essential for Fe metabolism also in dicots, but NAS is not induced by Fe deficiency. We introduced a barley HνNAS1 promoter-gus fusion gene into tobacco. GUS activity was induced in the roots of these plants by Fe deficiency, and was constitutively expressed at a low level in their leaves.  相似文献   

16.
Nicotianamine synthase (NAS) is an enzyme that is critical for the biosynthesis of the mugineic acid family of phytosiderophores in graminaceous plants, and for the homeostasis of metal ions in nongraminaceous plants. We isolated one genomic NAS clone, ZmNAS3, and two cDNA NAS clones, ZmNAS1 and ZmNAS2, from maize (Zea mays cv Alice). In agreement with the increased secretion of phytosiderophores with Fe deficiency, ZmNAS1 and ZmNAS2 were positively expressed only in Fe-deficient roots. In contrast, ZmNAS3 was expressed under Fe-sufficient conditions, and was negatively regulated by Fe deficiency. This is the first report describing down-regulation of NAS gene expression in response to Fe deficiency in plants, shedding light on the role of nicotianamine in graminaceous plants, other than as a precursor in phytosiderophore production. ZmNAS1-green fluorescent protein (sGFP) and ZmNAS2-sGFP were localized at spots in the cytoplasm of onion (Allium cepa) epidermal cells, whereas ZmNAS3-sGFP was distributed throughout the cytoplasm of these cells. ZmNAS1 and ZmNAS3 showed NAS activity in vitro, whereas ZmNAS2 showed none. Due to its duplicated structure, ZmNAS2 was much larger (65.8 kD) than ZmNAS1, ZmNAS3, and previously characterized NAS proteins (30-38 kD) from other plant species. We reveal that maize has two types of NAS proteins based on their expression pattern and subcellular localization.  相似文献   

17.
Tomato plants (Lycopersicum esculentum Mill.) were grown for 21-days in a complete hydroponic nutrient solution including Fe3+-ethylenediamine-di(o-hydroxyphenylacetate) and subsequently switched to nutrient solution withholding Fe for 8 days to induce Fe stress. The roots of Fe-stressed plants reduced chelated Fe at rates sevenfold higher than roots of plants grown under Fe-sufficient conditions. The response in intact Fe-deficient roots was localized to root hairs, which developed on secondary roots during the period of Fe stress. Plasma membranes (PM) isolated by aqueous two-phase partitioning from tomato roots grown under Fe stress exhibited a 94% increase in rates of NADH-dependent Fe3+-citrate reduction compared to PM isolated from roots of Fe-sufficient plants. Optimal detection of the reductase activity required the presence of detergent indicating structural latency. In contrast, NADPH-dependent Fe3+-citrate reduction was not significantly different in root PM isolated from Fe-deficient versus Fe-sufficient plants and proceeded at substantially lower rates than NADH-dependent reduction. Mg2+-ATPase activity was increased 22% in PM from roots of Fe-deficient plants compared to PM isolated from roots of Fe-sufficient plants. The results localized the increase in Fe reductase activity in roots grown under Fe stress to the PM.  相似文献   

18.
The real-time translocation of iron (Fe) in barley (Hordeumvulgare L. cv. Ehimehadaka no. 1) was visualized using the positron-emittingtracer 52Fe and a positron-emitting tracer imaging system (PETIS).PETIS allowed us to monitor Fe translocation in barley non-destructivelyunder various conditions. In all cases, 52Fe first accumulatedat the basal part of the shoot, suggesting that this regionmay play an important role in Fe distribution in graminaceousplants. Fe-deficient barley showed greater translocation of52Fe from roots to shoots than did Fe-sufficient barley, demonstratingthat Fe deficiency causes enhanced 52Fe uptake and translocationto shoots. In the dark, translocation of 52Fe to the youngestleaf was equivalent to or higher than that under the light condition,while the translocation of 52Fe to the older leaves was decreased,in both Fe-deficient and Fe-sufficient barley. This suggeststhe possibility that the mechanism and/or pathway of Fe translocationto the youngest leaf may be different from that to the olderleaves. When phloem transport in the leaf was blocked by steamtreatment, 52Fe translocation from the roots to older leaveswas not affected, while 52Fe translocation to the youngest leafwas reduced, indicating that Fe is translocated to the youngestleaf via phloem in addition to xylem. We propose a novel modelin which root-absorbed Fe is translocated from the basal partof the shoots and/or roots to the youngest leaf via phloem ingraminaceous plants.  相似文献   

19.
The effects of iron (Fe) deficiency on carboxylate metabolism were investigated in barley (Hordeum vulgare L.) using two cultivars, Steptoe and Morex, which differ in their Fe efficiency response. In both cultivars, root extracts of plants grown in Fe-deficient conditions showed higher activities of enzymes related to organic acid metabolism, including citrate synthase, malate dehydrogenase and phosphoenolpyruvate carboxylase, compared to activities measured in root extracts of Fe-sufficient plants. Accordingly, the concentration of total carboxylates was higher in Fe-deficient roots of both cultivars, with citrate concentration showing the greatest increase. In xylem sap, the concentration of total carboxylates was also higher with Fe deficiency in both cultivars, with citrate and malate being the major organic acids. Leaf extracts of Fe-deficient plants also showed increases in citric acid concentration and in the activities of glucose-6-phosphate dehydrogenase and fumarase activities, and decreases in aconitase activity. Our results indicate that changes in root carboxylate metabolism previously reported in Strategy I species also occur in barley, a Strategy II plant species, supporting the existence of anaplerotic carbon fixation via increases in the root activities of these enzymes, with citrate playing a major role. However, these changes occur less intensively than in Strategy I plants. Activities of the anaerobic metabolism enzymes pyruvate decarboxylase and lactate dehydrogenase did not change in barley roots with Fe deficiency, in contrast to what occurs in Strategy I plants, suggesting that these changes may be Strategy I-specific. No significant differences were observed in overall carboxylate metabolism between cultivars, for plants challenged with high or low Fe treatments, suggesting that carboxylate metabolism changes are not behind the Fe-efficiency differences between these cultivars. Citrate synthase was the only measured enzyme with constitutively higher activity in Steptoe relative to Morex leaf extracts.  相似文献   

20.
Formation of Root Epidermal Transfer Cells in Plantago   总被引:1,自引:0,他引:1  
The root ultrastructure and transmembrane electron transport activities of two Plantago species have been examined with respect to alterations in response to Fe deficiency, exogenously supplied auxin, and the presence of chromium in the external medium. Both species showed increased ferric reductase activity upon Fe starvation, but they differed in the maximum rates. The addition of chromium to the nutrient solution led to a further enhancement in Fe-ethylenediaminetetraacetate reduction by Fe-deficient plants. In roots of Plantago lanceolata, the enhanced redox activity is associated with the formation of transfer cells in the epidermis. Similar characteristics of rhizodermal cells were observed in Fe-sufficient roots 3 d after application of the auxin analog 2,4-dichlorophenoxy-acetic acid. No structural adaptations occurred in roots of Plantago maritima. A quantitative estimation of the frequencies of transfer cells in root segments of Fe-deficient plants that differ in reduction activity revealed no correlation between the two phenomena. It is concluded that the area of plasmalemma infoldings is not specialized for the enhanced reduction of extracytoplasmatic Fe in response to Fe deficiency. The role of transfer cells in the adaptation to suboptimal Fe availability and the mechanisms triggering their formation are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号