首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In HeLa cells metabolically labeled in vivo with [32P] orthophosphate in the presence of okadaic acid the concentration of phosphorylated A1 protein was increased significantly as compared to controls. Purified recombinant hnRNP protein A1 served as an excellent substrate in vitro for the catalytic subunit of cAMP-dependent protein kinase (PKA) and for casein kinase II (CKII). Thin layer electrophoresis of A1 acid hydrolysates showed the protein to be phosphorylated exclusively on serine residue by both kinases. V8 phosphopeptide maps revealed that the target site(s) of in vitro phosphorylation are located in the C-terminal region of A1. Phosphoamino acid sequence analysis and site directed mutagenesis identified Ser 199 as the sole phosphoamino acid in the protein phosphorylated by PKA. Phosphorylation introduced by PKA resulted in the suppression of the ability of protein A1 to promote strand annealing in vitro, without any detectable effect on its nucleic acid binding capacity. This finding indicates that phosphorylation of a single serine residue in the C-terminal domain may significantly alter the properties of protein A1.  相似文献   

2.
3.
The heterogeneous nuclear RNP (hnRNP) A1 protein is one of the major pre-mRNA/mRNA binding proteins in eukaryotic cells and one of the most abundant proteins in the nucleus. It is localized to the nucleoplasm and it also shuttles between the nucleus and the cytoplasm. The amino acid sequence of A1 contains two RNP motif RNA-binding domains (RBDs) at the amino terminus and a glycine-rich domain at the carboxyl terminus. This configuration, designated 2x RBD-Gly, is representative of perhaps the largest family of hnRNP proteins. Unlike most nuclear proteins characterized so far, A1 (and most 2x RBD-Gly proteins) does not contain a recognizable nuclear localization signal (NLS). We have found that a segment of ca. 40 amino acids near the carboxyl end of the protein (designated M9) is necessary and sufficient for nuclear localization; attaching this segment to the bacterial protein beta- galactosidase or to pyruvate kinase completely localized these otherwise cytoplasmic proteins to the nucleus. The RBDs and another RNA binding motif found in the glycine-rich domain, the RGG box, are not required for A1 nuclear localization. M9 is a novel type of nuclear localization domain as it does not contain sequences similar to classical basic-type NLS. Interestingly, sequences similar to M9 are found in other nuclear RNA-binding proteins including hnRNP A2.  相似文献   

4.
hnRNP F was identified in a screen for proteins that interact with human CBP80 and CBP20, the components of the nuclear cap-binding complex (CBC). In vitro interaction studies showed that hnRNP F can bind to both CBP20 and CBP80 individually. hnRNP F and CBC bind independently to RNA, but hnRNP F binds preferentially to CBC-RNA complexes rather than to naked RNA. The hnRNP H protein, which is 78% identical to hnRNP F and also interacts with both CBP80 and CBP20 in vitro, does not discriminate between naked RNA and CBC-RNA complexes, showing that this effect is specific. Depletion of hnRNP F from HeLa cell nuclear extract decreases the efficiency of pre-mRNA splicing, a defect which can be partially compensated by addition of recombinant hnRNP F. Thus, hnRNP F is required for efficient pre-mRNA splicing in vitro and may participate in the effect of CBC on pre-mRNA splicing.  相似文献   

5.
6.
7.
Antibodies induced against mammalian single-stranded DNA binding protein (ssDBP) UP I were shown to be cross-reactive with most of the basic hnRNP core proteins, the main constituents of 40S hnRNP particles. This suggested a structural relationship between both groups of proteins. Using the anti-ssDBP antibodies, a cDNA clone (pRP10) was isolated from a human liver cDNA library in plasmid expression vector pEX1. By DNA sequencing this clone was shown to encode in its 949 bp insert the last 72 carboxy terminal amino acids of the ssDBP UP I. Thereafter, an open reading frame continued for another 124 amino acids followed by a UAA (ochre) stop codon. Direct amino acid sequencing of a V8 protease peptide from hnRNP core protein A1 showed that this peptide contained at its amino terminus the last 11 amino acids of UP I followed by 19 amino acids which are encoded by the open reading frame of cDNA clone pRP10 immediately following the UP I sequence. This proves that ssDBP UP I arises by proteolysis from hnRNP core protein A1. This finding must lead to a re-evaluation of the possible physiological role of UP I and related ssDBPs. The formerly assumed function in DNA replication, although not completely ruled out, should be reconsidered in the light of a possible alternative or complementary function in hnRNA processing where UP I could either be a simple degradation product of core protein A1 (as a consequence of controlling the levels of active A1) or may continue to function as an RNA binding protein which has lost the ability to interact with the other core proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
To protect their genetic material cells adopt different mechanisms linked to DNA replication, recombination and repair. Several proteins function at the interface of these DNA transactions. In the present study, we report on the identification of a novel archaeal DNA helicase. BlastP searches of the Sulfolobus solfataricus genome database allowed us to identify an open reading frame (SSO0112, 875 amino acid residues) having sequence similarity with the human RecQ5beta. The corresponding protein, termed Hel112 by us, was produced in Escherichia coli in soluble form, purified to homogeneity and characterized. Gel-filtration chromatography and glycerol-gradient sedimentation analyses revealed that Hel112 forms monomers and dimers in solution. Biochemical characterization of the two oligomeric species revealed that only the monomeric form has an ATP-dependent 3'-5' DNA-helicase activity, whereas, unexpectedly, both the monomeric and dimeric forms possess DNA strand-annealing capability. The Hel112 monomeric form is able to unwind forked and 3'-tailed DNA structures with high efficiency, whereas it is almost inactive on blunt-ended duplexes and bubble-containing molecules. This analysis reveals that S. solfataricus Hel112 shares some enzymatic features with the RecQ-like DNA helicases and suggests potential cellular functions of this protein.  相似文献   

9.
10.
Protein A1 is one of the major component of mammalian ribonucleoprotein particles (hnRNP). Human protein A1 cDNA cloning and sequencing revealed the existence of at least two protein isoforms. Among the cDNAs examined, sequence differences were found both in the structural portion, leading to aminoacid changes (Tyr to Phe or Arg to Lys) and in the non translated 3'-region where two T-stretches of different length were observed. Interestingly one of the aminoacid substitutions falls into a consensus sequence common to many RNA binding proteins. Northern blot analysis of poly A+ RNAs from five human tissues revealed two mRNA forms of 1500 and 1900 n due to alternative polyadenylation. Analysis of genomic DNA showed at least 30 A1-specific sequences, some of which correspond to processed pseudogenes. These results suggest that protein A1 is encoded by a multigene family.  相似文献   

11.
12.
hnRNP A1 is a pre-mRNA binding protein that antagonizes the alternative splicing activity of splicing factors SF2/ASF or SC35, causing activation of distal 5' splice sites. The structural requirements for hnRNP A1 function were determined by mutagenesis of recombinant human hnRNP A1. Two conserved Phe residues in the RNP-1 submotif of each of two RNA recognition motifs appear to be involved in specific RNA-protein interactions and are essential for modulating alternative splicing. These residues are not required for general pre-mRNA binding or RNA annealing activity. The C-terminal Gly-rich domain is necessary for alternative splicing activity, for stable RNA binding and for optimal RNA annealing activity. hnRNP A1B, which is an alternatively spliced isoform of hnRNP A1 with a longer Gly-rich domain, binds more strongly to pre-mRNA but has only limited alternative splicing activity. In contrast, hnRNP A2 and B1, which have 68% amino acid identity with hnRNP A1, bind more weakly to pre-mRNA and have stronger splice site switching activities than hnRNP A1. We propose that specific combinations of antagonistic hnRNP A/B and SR proteins are involved in regulating alternative splicing of distinct subsets of cellular premRNAs.  相似文献   

13.
14.
hnRNP A1 associates with telomere ends and stimulates telomerase activity   总被引:6,自引:1,他引:5  
Telomerase is a ribonucleoprotein enzyme complex that reverse-transcribes an integral RNA template to add short DNA repeats to the 3'-ends of telomeres. G-quadruplex structure in a DNA substrate can block its extension by telomerase. We have found that hnRNP A1--which was previously implicated in telomere length regulation--binds to both single-stranded and structured human telomeric repeats, and in the latter case, it disrupts their higher-order structure. Using an in vitro telomerase assay, we observed that depletion of hnRNP A/B proteins from 293 human embryonic kidney cell extracts dramatically reduced telomerase activity, which was fully recovered upon addition of purified recombinant hnRNP A1. This finding suggests that hnRNP A1 functions as an auxiliary, if not essential, factor of telomerase holoenzyme. We further show, using chromatin immunoprecipitation, that hnRNP A1 associates with human telomeres in vivo. We propose that hnRNP A1 stimulates telomere elongation through unwinding of a G-quadruplex or G-G hairpin structure formed at each translocation step.  相似文献   

15.
Antibodies to hnRNP core protein A1 in connective tissue diseases   总被引:3,自引:0,他引:3  
We investigated the specificity of circulating autoantibodies to a heterogeneous nuclear ribonuclear protein A1 (hnRNP A1), obtained by recombinant DNA technique, in different rheumatic diseases: systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), scleroderma, primary Sjogren's syndrome (SS), idiopathic Raynaud (IR), mixed connective tissue disease (MCTD), and healthy donors. All sera were tested by ELISA on hnRNP A1 protein. Positive values were obtained in 22% SLE, 19% scleroderma, 10% IR, 40% (2/5) MCTD, 5% SS, and 50% RA patients. The majority of patients reacted with the aminoterminal part (UP1) of hnRNP A1; however, some RA patients reacted also with the carboxy-terminal part that shows partial homology with keratin. Therefore, hnRNP A1 (UP1) can be considered a target of antinuclear autoimmunity in various rheumatic disorders.  相似文献   

16.
C G Burd  G Dreyfuss 《The EMBO journal》1994,13(5):1197-1204
Pre-mRNA is processed as a large complex of pre-mRNA, snRNPs and pre-mRNA binding proteins (hnRNP proteins). The significance of hnRNP proteins in mRNA biogenesis is likely to be reflected in their RNA binding properties. We have determined the RNA binding specificity of hnRNP A1 and of each of its two RNA binding domains (RBDs), by selection/amplification from pools of random sequence RNA. Unique RNA molecules were selected by hnRNP A1 and each individual RBD, suggesting that the RNA binding specificity of hnRNP A1 is the result of both RBDs acting as a single RNA binding composite. Interestingly, the consensus high-affinity hnRNP A1 binding site, UAGGGA/U, resembles the consensus sequences of vertebrate 5' and 3' splice sites. The highest affinity 'winner' sequence for hnRNP A1 contained a duplication of this sequence separated by two nucleotides, and was bound by hnRNP A1 with an apparent dissociation constant of 1 x 10(-9) M. hnRNP A1 also bound other RNA sequences, including pre-mRNA splice sites and an intron-derived sequence, but with reduced affinities, demonstrating that hnRNP A1 binds different RNA sequences with a > 100-fold range of affinities. These experiments demonstrate that hnRNP A1 is a sequence-specific RNA binding protein. UV light-induced protein-RNA crosslinking in nuclear extracts demonstrated that an oligoribonucleotide containing the A1 winner sequence can be used as a specific affinity reagent for hnRNP A1 and an unidentified 50 kDa protein. We also show that this oligoribonucleotide, as well as two others containing 5' and 3' pre-mRNA splice sites, are potent inhibitors of in vitro pre-mRNA splicing.  相似文献   

17.
Eukaryotic nuclear RNA binding proteins share a common sequence motif thought to be implicated in RNA binding. One of the two domains present in A1 hnRNP protein, has been modelled by homology in order to make a prediction of the main features of the RNA binding site. Acylphosphatase (EC 3.6.1.7) was selected as template for the modeling experiment. The predicted RNA binding site is a beta-sheet containing the two RNP consensus sequences as well as lysines and arginines conserved among the family.  相似文献   

18.
The hnRNP A1 pre-mRNA is alternatively spliced to yield the A1 and A1b mRNAs, which encode proteins differing in their ability to modulate 5' splice site selection. Sequencing a genomic portion of the murine A1 gene revealed that the intron separating exon 7 and the alternative exon 7B is highly conserved between mouse and human. In vitro splicing assays indicate that a conserved element (CE1) from the central portion of the intron shifts selection toward the distal donor site when positioned in between the 5' splice sites of exon 7 and 7B. In vivo, the CE1 element promotes exon 7B skipping. A 17-nucleotide sequence within CE1 (CE1a) is sufficient to activate the distal 5' splice site. RNase T1 protection/immunoprecipitation assays indicate that hnRNP A1 binds to CE1a, which contains the sequence UAGAGU, a close match to the reported optimal A1 binding site, UAGGGU. Replacing CE1a by different oligonucleotides carrying the sequence UAGAGU or UAGGGU maintains the preference for the distal 5' splice site. In contrast, mutations in the AUGAGU sequence activate the proximal 5' splice site. In support of a direct role of the A1-CE1 interaction in 5'-splice-site selection, we observed that the amplitude of the shift correlates with the efficiency of A1 binding. Whereas addition of SR proteins abrogates the effect of CE1, the presence of CE1 does not modify U1 snRNP binding to competing 5' splice sites, as judged by oligonucleotide-targeted RNase H protection assays. Our results suggest that hnRNP A1 modulates splice site selection on its own pre-mRNA without changing the binding of U1 snRNP to competing 5' splice sites.  相似文献   

19.
Heterogeneous nuclear ribonucleoprotein (hnRNP) core protein A1 is a major component of mammalian hnRNP 40 S particles. We describe the structure of an active A1 gene and report on the partial characterization of the A1 gene family. About 30 A1-specific sequences are present per haploid human genome: 15 such sequences were isolated from a human genomic DNA library. Many corresponded to pseudogenes of the processed type but by applying a selection for actively transcribed regions we isolated an active A1 gene. The gene spans a region of 4.6 x 10(3) base-pairs and it is split into ten exons that encode the 320 amino acid residues of the protein. The amino acid sequence derived from the exon sequences is identical with that deduced from cDNA and reported for the protein. One intron exactly separates the two structural domains that constitute the protein. Each of the two RNA-binding domains in protein A1 is encoded by one exon. Experimental evidence indicates that the A1 gene can encode for more than one protein by alternative splicing. The gene is preceded by a strong promoter that contains at least two CCAAT boxes and two possible Sp1 binding sites, but it lacks a TATA box.  相似文献   

20.
Mammalian chromosomes terminate with a 3' tail which consists of reiterations of the G-rich repeat, d(TTAGGG). The telomeric tail is the primer for replication by telomerase, and it may also invade telomeric duplex DNA to form terminal lariat structures, or T loops. Here we show that the ubiquitous and highly conserved mammalian protein hnRNP D interacts specifically with the G-rich strand of the telomeric repeat. A single gene encodes multiple isoforms of hnRNP D. All isoforms bind comparably to the G-rich strand, and certain isoforms can also bind tightly and specifically to the C-rich telomeric strand. G-rich telomeric sequences readily form structures stabilized by G-G pairing, which can interfere with telomere replication by telomerase. We show that hnRNP D binding to the G-rich strand destabilizes intrastrand G-G pairing and that hnRNP D interacts specifically with telomerase in human cell extracts. This biochemical analysis suggest that hnRNP D could function in vivo to destabilize structures formed by telomeric G-rich tails and facilitate their extension by telomerase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号