首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Nonalcoholic fatty liver disease (NAFLD) has become the most prevalent chronic liver disease worldwide, without any Food and Drug Administration-approved pharmacological intervention in clinic. Trim38, as an important member of the TRIM (tripartite motif-containing) family, was largely reported to be involved in the regulation of innate immune and inflammatory responses. However, the functional roles of TRIM38 in NAFLD remain largely unknown. Here, the expression of TRIM38 was first detected in liver samples of both NAFLD mice model and patients diagnosed with NAFLD. We found that TRIM38 expression was downregulated in NAFLD liver tissues compared with normal liver tissues. Genetic Trim38-KO in vivo showed that TRIM38 depletion deteriorated the high-fat diet and high fat and high cholesterol diet-induced hepatic steatosis and high fat and high cholesterol diet-induced liver inflammation and fibrosis. In particular, we found that the effects of hepatocellular lipid accumulation and inflammation induced by palmitic acid and oleic acid were aggravated by TRIM38 depletion but mitigated by TRIM38 overexpression in vitro. Mechanically, RNA-Seq analysis demonstrated that TRIM38 ameliorated nonalcoholic steatohepatitis progression by attenuating the activation of MAPK signaling pathway. We further found that TRIM38 interacted with transforming growth factor-β-activated kinase 1 binding protein 2 and promoted its protein degradation, thus inhibiting the transforming growth factor-β-activated kinase 1-MAPK signal cascades. In summary, our study revealed that TRIM38 could suppress hepatic steatosis, inflammatory, and fibrosis in NAFLD via promoting transforming growth factor-β-activated kinase 1 binding protein 2 degradation. TRIM38 could be a potential target for NAFLD treatment.  相似文献   

3.
This study aimed at measuring the influence of a low salt diet on the development of experimental atherosclerosis in moderately hyperlipidemic mice. Experiments were carried out on LDL receptor (LDLR) knockout (KO) mice, or apolipoprotein E (apoE) KO mice on a low sodium chloride diet (LSD) as compared with a normal salt diet (NSD). On LSD, the rise of the plasma concentrations of TG and nonesterified fatty acid (NEFA) was, respectively, 19% and 34% in LDLR KO mice, and 21% and 35% in apoE KO mice, and that of plasma cholesterol was limited to the LDLR KO group alone (15%). Probably due to the apoE KO severe hypercholesterolemia, the arterial inner-wall fat storage was not influenced by the diet salt content and was far more abundant in the apoE KO than in the LDLR KO mice. However, in the less severe hypercholesterolemia of the LDLR KO mice, lipid deposits on the LSD were greater than on the NSD. Arterial fat storage correlated with NEFA concentrations in the LDLR KO mice alone (n = 14, P = 0.0065). Thus, dietary sodium chloride restriction enhances aortic wall lipid storage in moderately hyperlipidemic mice.  相似文献   

4.
Non‐alcoholic fatty liver disease (NAFLD) can progress to the more serious non‐alcoholic steatohepatitis (NASH), characterized by inflammatory injury and fibrosis. The pathogenic basis of NAFLD progressing to NASH is currently unknown, but growing evidence suggests MD2 (myeloid differentiation factor 2), an accessory protein of TLR4, is an important signalling component contributing to this disease. We evaluated the effectiveness of the specific MD2 inhibitor, L6H21, in reducing inflammatory liver injury in a relevant high‐fat diet (HFD) mouse model of NASH and in the palmitic acid (PA)‐stimulated human liver cell line (HepG2). For study, genetic knockout (MD2?/?) mice were fed a HFD or control diet for 24 weeks, or wild‐type mice placed on a similar diet regimen and treated with L6H21 for the last 8 or 16 weeks. Results indicated that MD2 inhibition with L6H21 was as effective as MD2 knockout in preventing the HFD‐induced hepatic lipid accumulation, pro‐fibrotic changes and expression of pro‐inflammatory molecules. Direct challenge of HepG2 with PA (200 μM) increased MD2‐TLR4 complex formation and expression of pro‐inflammatory and pro‐fibrotic genes and L6H21 pre‐treatment prevented these PA‐induced responses. Interestingly, MD2 knockout or L6H21 increased expression of the anti‐inflammatory molecule, PPARγ, in liver tissue and the liver cell line. Our results provide further evidence for the critical role of MD2 in the development of NASH and conclude that MD2 could be a potential therapeutic target for NAFLD/NASH treatment. Moreover, the small molecule MD2 inhibitor, L6H21, was an effective and selective investigative agent for future mechanistic studies of MD2.  相似文献   

5.
The present study was aimed (1) to investigate the effect of cholesterol and fat enriched diets on the development of steatohepatitis in apolipoprotein E-knockout mice, and (2) to study the chronological relationships between the development of hepatic alterations, hypercholesterolemia and atherosclerotic lesions in this experimental model. The study consisted of two protocols. Protocol 1 was used in 90 mice subdivided in groups of 18. For 10 weeks, each group was given a diet with different fat and cholesterol contents. Protocol 2 was used in 42 mice, subdivided in four groups. Each group was given a diet enriched with cholesterol and palm oil and they were sacrificed at 8, 13, 18 and 24 weeks of age. Results were as following. (1) Mice given high fat/high cholesterol diets developed an impairment of liver histology consisting of fat accumulation, macrophage proliferation, and inflammation. (2) These effects were modulated by the type of fat: olive oil was mainly associated with macrovesicular steatosis and cholesterol plus palm oil with severe steatohepatitis. (3) There was a chronological and quantitative relationship between liver impairment and the formation of atheromatous lesions. We conclude that apolipoprotein E-knockout mice may be a useful model for investigating the mechanisms of diet-induced steatohepatitis. (Mol Cell Biochem 268: 53–58, 2008)  相似文献   

6.
目的建立饮食诱导非酒精性脂肪肝病(NAFLD)合并高血糖动物模型并观察其特点。方法将64只SD大鼠随机分为2组。正常对照组(用普通饲料饲喂)32只,高糖高脂组(饲以高糖高脂饲料)32只,连续喂养12个月。于实验第3月末、第6月末、第9月末、第12月末观察动物体重、内脏脂肪重量;比较血液中有关血脂、血糖、炎症介质等方面的生化指标以及组织病理学观察。结果与正常对照组相比,各阶段高糖高脂组大鼠体重、内脏脂肪重量明显增加;血清ALT、FFA、LPS、TNFα、FPG、FINS和HOMA-IR的水平都升高,其差异有统计学意义;而HOMA-β以第六个月出现代偿性增强后进行性衰退。病理组织学显示肝脏发生严重的脂变、脂肪肝进而发生肝炎、纤维化及肝硬化;随时间进展胰岛逐渐萎缩并伴有炎性浸润;脂肪细胞逐渐增大并伴有炎性浸润。结论高糖高脂饮食可建立大鼠NAFLD合并高血糖动物模型,该模型可在NAFLD和相关的糖尿病研究中发挥作用。  相似文献   

7.
Non-alcoholic fatty liver disease (NAFLD) is a major cause of morbidity and mortality in developed countries, resulting in steatohepatitis (NASH), fibrosis and eventually cirrhosis. Modulating inflammatory mediators such as chemokines may represent a novel therapeutic strategy for NAFLD. We recently demonstrated that the chemokine receptor CXCR6 promotes hepatic NKT cell accumulation, thereby controlling inflammation in experimental NAFLD. In this study, we first investigated human biopsies (n = 20), confirming that accumulation of inflammatory cells such as macrophages is a hallmark of progressive NAFLD. Moreover, CXCR6 gene expression correlated with the inflammatory activity (ALT levels) in human NAFLD. We then tested the hypothesis that pharmacological inhibition of CXCL16 might hold therapeutic potential in NAFLD, using mouse models of acute carbon tetrachloride (CCl4)- and chronic methionine-choline-deficient (MCD) diet-induced hepatic injury. Neutralizing CXCL16 by i.p. injection of anti-CXCL16 antibody inhibited the early intrahepatic NKT cell accumulation upon acute toxic injury in vivo. Weekly therapeutic anti-CXCL16 administrations during the last 3 weeks of 6 weeks MCD diet significantly decreased the infiltration of inflammatory macrophages into the liver and intrahepatic levels of inflammatory cytokines like TNF or MCP-1. Importantly, anti-CXCL16 treatment significantly reduced fatty liver degeneration upon MCD diet, as assessed by hepatic triglyceride levels, histological steatosis scoring and quantification of lipid droplets. Moreover, injured hepatocytes up-regulated CXCL16 expression, indicating that scavenging functions of CXCL16 might be additionally involved in the pathogenesis of NAFLD. Targeting CXCL16 might therefore represent a promising novel therapeutic approach for liver inflammation and steatohepatitis.  相似文献   

8.
非酒精性脂肪性肝病(non-alcoholic fatty liver disease,NAFLD)是以肝细胞内甘油三酯和胆固醇等脂毒性脂肪过度沉积为主要特征的一种临床获得性代谢综合征。最新研究表明,NAFLD向非酒精性脂肪肝炎(NASH)进展时,肝内胆固醇积累可能较甘油三酯更具有细胞毒性风险。固醇调节元件结合蛋白2(sterol regulatory element-binding protein 2,SREBP2)是脂质代谢重要的核转录因子之一,主要调控胆固醇的生物合成和体内平衡。SREBP2及其靶基因调控的胆固醇异常是引起非酒精性脂肪肝病发生发展的重要因素之一。因此,认识SREBP2信号通路中,上下游各因素的表达调控作用与NAFLD发病机制之间关系,就显得非常重要。本文总结了受SREBP2调控表达的靶基因的特点,着重介绍SREBP2调控胆固醇体内合成与平衡的信号通路与NAFLD发病机制之间关系,为研究和指导治疗NAFLD及其代谢性疾病提供新的思路。  相似文献   

9.
Non-alcoholic fatty liver disease (NAFLD), the hepatic manifestation of the metabolic syndrome, can progress to steatohepatitis (NASH) and advanced liver disease. Mechanisms that underlie this progression remain poorly understood, partly due to lack of good animal models that resemble human NASH. We previously showed that several metabolic syndrome features that develop in LDL receptor-deficient (LDLR-/-) mice fed a diabetogenic diet are worsened by dietary cholesterol. To test whether dietary cholesterol can alter the hepatic phenotype in the metabolic syndrome, we fed LDLR-/- mice a high-fat, high-carbohydrate diabetogenic diet (DD) without or with added cholesterol (DDC). Both groups of mice developed obesity and insulin resistance. Hyperinsulinemia, dyslipidemia, hepatic triglyceride, and alanine aminotransferase (ALT) elevations were greater with DDC. Livers of DD-fed mice showed histological changes resembling NAFLD, including steatosis and modest fibrotic changes; however, DDC-fed animals developed micro- and macrovesicular steatosis, inflammatory cell foci, and fibrosis resembling human NASH. Dietary cholesterol also exacerbated hepatic macrophage infiltration, apoptosis, and oxidative stress. Thus, LDLR-/- mice fed diabetogenic diets may be useful models for studying human NASH. Dietary cholesterol appears to confer a second "hit" that results in a distinct hepatic phenotype characterized by increased inflammation and oxidative stress.  相似文献   

10.
11.
Non-alcoholic fatty liver disease (NAFLD) is an important cause of liver-related morbidity and mortality. The aim of this work was to establish and characterize a nutritional model of NAFLD in rats. Wistar or Sprague-Dawley male rats were fed ad libitum a standard diet (ST-1, 10 % kcal fat), a medium-fat gelled diet (MFGD, 35 % kcal fat) and a high-fat gelled diet (HFGD, 71 % kcal fat) for 3 or 6 weeks. We examined the serum biochemistry, the hepatic malondialdehyde, reduced glutathione (GSH) and cytokine concentration, the respiration of liver mitochondria, the expression of uncoupling protein-2 (UCP-2) mRNA in the liver and histopathological samples. Feeding with MFGD and HFGD in Wistar rats or HFGD in Sprague-Dawley rats induced small-droplet or mixed steatosis without focal inflammation or necrosis. Compared to the standard diet, there were no significant differences in serum biochemical parameters, except lower concentrations of triacylglycerols in HFGD and MFGD groups. Liver GSH was decreased in rats fed HFGD for 3 weeks in comparison with ST-1. Higher hepatic malondialdehyde was found in both strains of rats fed HFGD for 6 weeks and in Sprague-Dawley groups using MFGD or HFGD for 3 weeks vs. the standard diet. Expression of UCP-2 mRNA was increased in Wistar rats fed MFGD and HFGD for 6 weeks and in Sprague-Dawley rats using HFGD for 6 weeks compared to ST-1. The present study showed that male Wistar and Sprague-Dawley rats fed by HFGD developed comparable simple steatosis without signs of progression to non-alcoholic steatohepatitis under our experimental conditions.  相似文献   

12.
Data on the efficacy of herbal compounds are often burdened by the lack of appropriate controls or a limited statistical power. Treatments to prevent the progression of non alcoholic fatty liver disease (NAFLD) to steatohepatitis (NASH) remain unsatisfactory. A total of 56 rabbits were arrayed into 7 groups fed with standard rabbit chow (SRC), SRC with 1% cholesterol, or each of the five experimental treatments (Kampo formulas 1% keishibukuryogan [KBG], 1% orengedokuto [OGT], and 1% shosaikoto [SST]; vitamin E [VE]; or pioglitazone [PG]) in a 1% cholesterol SRC. We analyzed changes after 12 weeks in plasma and liver lipid profiles, glucose metabolism, adipocytokines, oxidative stress, and liver fibrosis. Data demonstrated that all five treatments were associated with significant amelioration of lipid profiles, oxidative stress, and liver fibrosis compared to no supplementation. KBG was superior to VE and PG in the reduction of liver total cholesterol (P < 0.01) and lipid peroxidase levels (P < 0.05), urinary 8-hydroxy-2'-deoxyguanosine (P < 0.05), hepatic alpha-smooth muscle actin positive areas (P < 0.01) and activated stellate cells (P < 0.01). In conclusion, there was a statistically significant benefit of Kampo formulas (KBG in particular) on a dietary model of NAFLD/NASH. Future studies need to be directed at the mechanisms in the treatment of NASH.  相似文献   

13.
The adipokine chemerin and its receptor, chemokine-like receptor 1 (Cmklr1), are associated with insulin resistance and nonalcoholic fatty liver disease (NAFLD), which covers a broad spectrum of liver diseases, ranging from simple steatosis to nonalcoholic steatohepatitis (NASH). It is possible that chemerin and/or Cmklr1 exert their effects on these disorders through inflammation, but so far the data have been controversial. To gain further insight into this matter, we studied the effect of whole-body Cmklr1 deficiency on insulin resistance and NAFLD. In view of the primary role of macrophages in hepatic inflammation, we also transplanted bone marrow from Cmklr1 knock-out (Cmklr1-/-) mice and wild type (WT) mice into low-density lipoprotein receptor knock-out (Ldlr-/-) mice, a mouse model for NASH. All mice were fed a high fat, high cholesterol diet containing 21% fat from milk butter and 0.2% cholesterol for 12 weeks. Insulin resistance was assessed by an oral glucose tolerance test, an insulin tolerance test, and by measurement of plasma glucose and insulin levels. Liver pathology was determined by measuring hepatic inflammation, fibrosis, lipid accumulation and the NAFLD activity score (NAS). Whole-body Cmklr1 deficiency did not affect body weight gain or food intake. In addition, we observed no differences between WT and Cmklr1-/- mice for hepatic inflammatory and fibrotic gene expression, immune cell infiltration, lipid accumulation or NAS. In line with this, we detected no differences in insulin resistance. In concordance with whole-body Cmklr1 deficiency, the absence of Cmklr1 in bone marrow-derived cells in Ldlr-/- mice did not affect their insulin resistance or liver pathology. Our results indicate that Cmklr1 is not involved in the pathogenesis of insulin resistance or NAFLD. Thus, we recommend that the associations reported between Cmklr1 and insulin resistance or NAFLD should be interpreted with caution.  相似文献   

14.
15.
《Free radical research》2013,47(8):602-613
Abstract

Non-alcoholic fatty liver disease (NAFLD) is a common chronic liver disease. Iron, cholesterol, and oxidative damage are frequently suggested to be related to the progression of NAFLD, but the precise relationship between them remains unclear. Guinea pigs fed on a high cholesterol and fat diet (without oxidized lipids) generated a disease model of NAFLD with hallmark observations in liver histology and increased liver damage markers. Hepatic cholesterol and iron levels were found to be significantly elevated and directly correlated. Plasma hepcidin and transferrin levels were decreased. Plasma iron concentrations were found to be elevated, likely due to an increased intestinal iron absorption caused by the decrease in plasma hepcidin. However, hepatic transferrin receptor-2 levels were unchanged. No significant increase in hepatic lipid peroxidation was detected using F2-isoprostanes as a reliable biomarker, nor was there a rise in protein carbonyls, a general index of oxidative protein damage. Some increases in cholesterol oxidation products were observed, but largely negated after normalizing for the elevated hepatic cholesterol content. Indeed, increased hemosiderin deposition and unchanged ferritin levels in liver suggested that the excess iron mainly existed as hemosiderin, which is redox-inactive.  相似文献   

16.
17.
Non-alcoholic fatty liver disease (NAFLD) accompanies obesity and insulin resistance. Recent meta-analysis suggested omega-3 polyunsaturated fatty acids DHA and EPA to decrease liver fat in NAFLD patients. Anti-inflammatory, hypolipidemic, and insulin-sensitizing effects of DHA/EPA depend on their lipid form, with marine phospholipids showing better efficacy than fish oils. We characterized the mechanisms underlying beneficial effects of DHA/EPA phospholipids, alone or combined with an antidiabetic drug, on hepatosteatosis. C57BL/6N mice were fed for 7 weeks an obesogenic high-fat diet (cHF) or cHF-based interventions: (i) cHF supplemented with phosphatidylcholine-rich concentrate from herring (replacing 10% of dietary lipids; PC), (ii) cHF containing rosiglitazone (10 mg/kg diet; R), or (iii) PC + R. Metabolic analyses, hepatic gene expression and lipidome profiling were performed. Results showed that PC and PC + R prevented cHF-induced weight gain and glucose intolerance, while all interventions reduced abdominal fat and plasma triacylglycerols. PC and PC + R also lowered hepatic and plasma cholesterol and reduced hepatosteatosis. Microarray analysis revealed integrated down-regulation of hepatic lipogenic and cholesterol biosynthesis pathways by PC, while R-induced lipogenesis was fully counteracted in PC + R. Gene expression changes in PC and PC + R were associated with preferential enrichment of hepatic phosphatidylcholine and phosphatidylethanolamine fractions by DHA/EPA. The complex down-regulation of hepatic lipogenic and cholesterol biosynthesis genes and the antisteatotic effects were unique to DHA/EPA-containing phospholipids, since they were absent in mice fed soy-derived phosphatidylcholine. Thus, inhibition of lipid and cholesterol biosynthesis associated with potent antisteatotic effects in the liver in response to DHA/EPA-containing phospholipids support their use in NAFLD prevention and treatment.  相似文献   

18.
Nonalcoholic fatty liver disease (NAFLD) is associated with hepatic steatosis, inflammation and liver fibrosis and has become one of the leading causes of hepatocellular carcinoma and liver failure. However, the underlying molecular mechanism of hepatic steatosis and the progression to nonalcoholic steatohepatitis (NASH) are not fully understood. Herein, we discovered that AMPKα2 catalytic subunit showed reduced expression in the liver following high fat diet (HFD) feeding to mice. Importantly, knockout of AMPKα2 in mice aggravated NAFLD, hepatic steatosis, inflammation and fibrosis. On the other hand, hepatocyte-targeted overexpression of AMPKα2 prevented or reversed NAFLD indications. In vivo mechanistic studies revealed that increased phosphorylation of IKKα/β and NF-κB in HFD-fed AMPKα2−/− mice compared to WT mice, and treatment of these mouse cohorts with an inhibitor of NF-κB signaling for 4 weeks, effectively attenuated the progression of steatohepatitis and metabolic disorder features. In summary, AMPKα2 provides a protective role in the process of hepatic steatosis to NASH progression through suppression of liver NF-κB signaling.  相似文献   

19.
The purpose of the study was to investigate the effect of flaxseed oil (FO), rich in alpha-linolenic acid (ALA) (18:3 n-3) on growth parameters and lipid metabolism of rats fed with high fat diet. High fat diet (HFD) resulted in significant alterations in hepatic lipids, increase in body weight gain and negative effect on lipoprotein metabolism. FO supplementation significantly lowered the increase in body weight gain, liver weight, plasma cholesterol, triglycerides, phospholipids, free fatty acids, high-density lipoprotein (HDL), low-density lipoprotein-cholesterol (LDL-C), very low-density lipoprotein (VLDL), LDL/HDL and TC/HDL ratio in HFD fed rats. FO significantly reduced the hepatic and plasma lipid levels indicating its hypolipidemic activity. On the other hand, oral administration of FO exhibited lower plasma lipoprotein profile as compared to HFD rats. Hepatic protection by FO is further substantiated by the normal liver histological findings in HFD fed rats. These data suggest that FO participate in the normal regulation of plasma lipid concentration and cholesterol metabolism in liver. No adverse effect of FO on growth parameters and plasma lipids in rats fed with fat-free diet. The results of the present study demonstrate that FO may be developed as a useful therapy for hyperlipidemia through reducing hepatic lipids, thereby proving its hypolipidemic activity.  相似文献   

20.
Nonalcoholic fatty liver disease (NAFLD) is currently the most common liver disease worldwide, both in adults and in children. NAFLD is characterized by aberrant lipid storage in hepatocytes (hepatic steatosis) and inflammatory progression to nonalcoholic steatohepatitis. Evidences so far suggest that intrahepatic lipid accumulation does not always derive from obesity. Gut microbiota has been considered as a regulator of energy homeostasis and ectopic fat deposition, suggesting its implications in metabolic diseases. Probiotics are live microbial that alter the enteric microflora and have beneficial effects on human health. Although the molecular mechanisms of probiotics have not been completely elucidated yet, many of their effects have proved to be beneficial in NAFLD, including the modulation of the intestinal microbiota, an antibacterial substance production, an improved epithelial barrier function and a reduced intestinal inflammation. Given the close anatomical and functional correlation between the bowel and the liver, and the immunoregulatory effects elicited by probiotics, the aim of this review is to summarize today's knowledge about probiotics in NAFLD, focusing in particular on their molecular and biochemical mechanisms, as well as highlighting their efficacy as an emerging therapeutic strategy to treat this condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号