首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report calculated vibrational spectra in the range of 0–3,500 cm?1 of RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) molecules adsorbed on a model aluminum surface. A molecular film was modeled using two approaches: (1) density functional theory (DFT) was used to optimize a single RDX molecule interacting with its periodic images, and (2) a group of nine molecules extracted from the crystal structure was deposited on the surface and interacted with its periodic images via molecular dynamics (MD) simulations. In both cases, the molecule was initialized in the AAA conformer geometry having the three nitro groups in axial positions, and kept that conformation in the DFT examination, but some molecules were found to change to the AAE conformer (two nitro groups in axial and one in equatorial position) in the MD analysis. The vibrational spectra obtained from both methods are similar to each other, except in the regions where collective RDX intermolecular interactions (captured by MD simulations) are important, and compare fairly well with experimental findings.
Figure
Snapshot of RDX molecules adsorbed on an Al (111) surface  相似文献   

2.
The binding interaction of the cobalt(II) 1,10-phenanthroline complex (Co(phen) 3 2+ , phen = 1,10-phenanthroline) with bovine serum albumin (BSA) was investigated by fluorescence spectroscopy combined with UV–Vis absorption and circular dichroism measurements under simulative physiological conditions. The experiment results showed that the fluorescence intensity of BSA was dramatically decreased owing to the formation of Co(phen) 3 2+ –BSA complex. The corresponding association constants (K a) between Co(phen) 3 2+ and BSA at four different temperatures were calculated according to the modified Stern–Volmer equation. The enthalpy change (ΔH°) and entropy change (ΔS°) were calculated to be ?2.73 kJ mol?1 and 82.27 J mol?1?K?1, respectively, which suggested that electrostatic interaction and hydrophobic force played major roles in stabilizing the Co(phen) 3 2+ –BSA complex. Site marker competitive experiments indicated that the binding of Co(phen) 3 2+ to BSA primarily took place in site I of BSA. A value of 4.11 nm for the average distance r between Co(phen) 3 2+ (acceptor) and tryptophan residues of BSA (donor) was derived from Förster’s energy transfer theory. The conformational investigation showed that the presence of Co(phen) 3 2+ resulted in the change of BSA secondary structure and induced the slight unfolding of the polypeptides of protein, which confirmed the microenvironment and conformational changes of BSA molecules.  相似文献   

3.
Chalcone isomerase (CHI) catalyzes the intramolecular cyclization of chalcones into flavonoids. The activity of CHI is essential for the biosynthesis of flavonoids precursors of floral pigments and phenylpropanoid plant defense compounds. In the present study, we explored the detailed binding structures and binding free energies for two different active site conformations of CHI with s-cis/s-trans conformers of three chalcone compounds by performing molecular dynamics (MD) simulations and binding free energy calculations. The computational results indicate that s-cis/s-trans conformers of chalcone compounds are orientated in the similar binding position in the active site of CHI and stabilized by the different first hydrogen bond network and the same second hydrogen bond network. The first hydrogen bond network results in much lower binding affinity of s-trans conformer of chalcone compound with CHI than that of s-cis conformer. The conformational change of the active site residue T48 from indirectly interacting with the substrate via the second hydrogen bond network to directly forming the hydrogen bond with the substrates cannot affect the binding mode of both conformers of chalcone compounds, but remarkably improves the binding affinity. These results show that CHI has a strong stereoselectivity. The calculated binding free energies for three chalcone compounds with CHI are consistent with the experimental activity data. In addition, several valuable insights are suggested for future rational design and discovery of high-efficiency mutants of CHI.
Figure
Stereoselectivity of chalcone isomerase with chalcone derivatives  相似文献   

4.
We performed a theoretical investigation, at the CC2/aug-cc-pVDZ level, of the ring-deformation mechanisms of four guanine tautomers (oxo, hydroxy, N9H, and N7H). The study showed that the optimized conical intersections S0/S1 are accessible through the 1ππ* excited states of tautomers. The optimized conical intersections S0/S1, which show deformation at the pyrimidine ring, have high energies. This means that the relaxations of the 1ππ* excited states via internal conversion are disfavored. For two tautomers we found crossing points 1ππ*/1πσ* of the excited-state reaction paths, revealing the possibility of a population of the 1πσ* excited state by the 1ππ* excited state.
Conical intersection S0/S1 of guanine  相似文献   

5.
6.
Intramolecular and intermolecular hydrogen bonding in electronic excited states of calixarene building blocks bis(2-hydroxyphenyl)methane (2HDPM) monomer and hydrogen-bonded 2HDPM-H2O complex were studied theoretically using the time-dependent density functional theory (TDDFT). Twenty-four stable conformations (12 pairs of enantiomers) of 2HDPM monomer have been found in the ground state. From the calculation results, the conformations 1a and 1b which both have an intramolecular hydrogen bond are the most stable ones. The infrared spectra of 2HDPM monomer and 2HDPM-H2O complex in ground state and S1 state were calculated. The stretching vibrational absorption band of O2???H3 group in the monomer and complex disappeared in the S1 state. At the same time, a new strong absorption band appeared at the C=O stretching region. From the calculation of bond lengths, it indicates that the O2???H3 bond is significantly lengthened in the S1 state. However, the C1???O2 bond is drastically shortened upon electronic excitation to the S1 state and has the characteristics of C=O band. Furthermore, the intramolecular hydrogen bond O2???H3?·?·?·?O4 of the 2HDPM monomer and the intermolecular hydrogen bonds O2???H3?·?·?·?O7 and O7???H9?·?·?·?O4 of 2HDPM-H2O complex are all shortened and strengthened in the S1 state.
Figure
Intramolecular and intermolecular hydrogen bonding in electronic excited states of calixarene building blocks bis(2-hydroxyphenyl)methane (2HDPM) monomer and hydrogen-bonded 2HDPM-H2O complex were studied by TDDFT method  相似文献   

7.
Gas-phase reactions of ClO/BrO with RCl (R = CH3, C2H5, and C3H7) have been investigated in detail using the popular DFT functional BHandHLYP/aug-cc-pVDZ level of theory. As a result, our findings strongly suggest that the type of reaction is firstly initiated by a typical SN2 fashion. Subsequently, two competitive substitution steps, named as SN2-induced substitution and SN2-induced elimination, respectively, would proceed before the initial SN2 product ion-dipole complex separates, in which the former exhibits less reactivity than the latter. Those are consistent with relevant experimental results. Moreover, we have also explored reactivity difference for the title reactions in term of some factors derived from methyl group, p-π electronic conjugation, ionization energy (IE), as well as molecular orbital (MO) analysis.
Figure
Energy profiles for the ClO– reactions and BrO–reactions, respectively  相似文献   

8.
Local vibrational modes can be directly derived from normal vibrational modes using the method of Konkoli and Cremer (Int J Quant Chem 67:29, 1998). This implies the calculation of the harmonic force constant matrix F q (expressed in internal coordinates q) from the corresponding Cartesian force constant matrix f x with the help of the transformation matrix U?=?WB ?(BWB ?)?1 (B: Wilson’s B-matrix). It is proven that the local vibrational modes are independent of the choice of the matrix W. However, the choice W?=?M ?1 (M: mass matrix) has numerical advantages with regard to the choice W?=?I (I: identity matrix), where the latter is frequently used in spectroscopy. The local vibrational modes can be related to the normal vibrational modes in the form of an adiabatic connection scheme (ACS) after rewriting the Wilson equation with the help of the compliance matrix. The ACSs of benzene and naphthalene based on experimental vibrational frequencies are discussed as nontrivial examples. It is demonstrated that the local-mode stretching force constants provide a quantitative measure for the C–H and C–C bond strength.  相似文献   

9.
The changes of bond dissociation energy (BDE) in the C–NO2 bond and nitro group charge upon the formation of the molecule-cation interaction between Na+ and the nitro group of 14 kinds of nitrotriazoles or methyl derivatives were investigated using the B3LYP and MP2(full) methods with the 6-311++G**, 6-311++G(2df,2p) and aug-cc-pVTZ basis sets. The strength of the C–NO2 bond was enhanced in comparison with that in the isolated nitrotriazole molecule upon the formation of molecule-cation interaction. The increment of the C–NO2 bond dissociation energy (ΔBDE) correlated well with the molecule-cation interaction energy. Electron density shifts analysis showed that the electron density shifted toward the C-NO2 bond upon complex formation, leading to the strengthened C-NO2 bond and the possibly reduced explosive sensitivity.
Figure
C1-N2 bond turns strong upon molecule-cation interaction formation, leading to a possibly reduced explosive sensitivity.  相似文献   

10.
Periodic DFT method has been firstly used to calculate the bulk structure, electronic structure, electrical transferring and thermodynamic properties of crystalline 5-azido-1H-tetrazole (HCN7) and its four different salts. The anion CN7 ? was included in all of the salts such as ammonium 5-azidotetrazolate ([NH4]+[CN7]?), hydrazinium 5-azidotetrazolate ([N2H5]+[CN7]?), guanidinium 5-azidotetrazolate ([CH6N3]+[CN7]??·?H2O) and 1-aminoguanidinium 5- azidotetrazolate ([CH7N4]+[CN7]?). The simulation is in reasonable agreement with the experimental results. It is found the salts of HCN7 are more stable than itself because the band gap of the salts is larger. The density of state shows the p states of them (including HCN7 and its four salts) have played a very significant role in the reaction.
Figure
The structure of priming explosive (5-azido-1H-tetrazole)  相似文献   

11.
12.
Increase of the atmospheric concentration of halogenated organic compounds is partially responsible for a change of the global climate. In this work we have investigated the interaction between halogenated ether and water, which is one of the most important constituent of the atmosphere. The structures of the complexes formed by the two most stable conformers of enflurane (a volatile anaesthetic) with one and two water molecules were calculated by means of the counterpoise CP-corrected gradient optimization at the MP2/6–311++G(d,p) level. In these complexes the CH…Ow hydrogen bonds are formed, with the H…Ow distances varying between 2.23 and 2.32 Å. A small contraction of the CH bonds and the blue shifts of the ν(CH) stretching vibrations are predicted. There is also a weak interaction between one of the F atoms and the H atom of water, with the Hw…F distances between 2.41 and 2.87 Å. The CCSD(T)/CBS calculated stabilization energies in these complexes are between ?5.89 and ?4.66 kcal?mol?1, while the enthalpies of formation are between ?4.35 and ?3.22 kcal?mol?1. The Cl halogen bonding between enflurane and water has been found in two complexes. The intermolecular (Cl···O) distance is smaller than the sum of the corresponding van der Waals radii. The CCSD(T)/CBS stabilization energies for these complexes are about ?2 kcal?mol?1.
Figure
Complex between enflurane and water molecules  相似文献   

13.
Density functional theory (DFT) calculations at B3LYP/6-31 G (d,p) and B3LYP/6-311?+?G(d,p) levels for the substituted pyridine-catalyzed isomerization of monomethyl maleate revealed that isomerization proceeds via four steps, with the rate-limiting step being proton transfer from the substituted pyridinium ion to the C=C double bond in INT1. In addition, it was found that the isomerization rate (maleate to fumarate) is solvent dependent. Polar solvents, such as water, tend to accelerate the isomerization rate, whereas apolar solvents, such as chloroform, act to slow down the reaction. A linear correlation was obtained between the isomerization activation energy and the dielectric constant of the solvent. Furthermore, linearity was achieved when the activation energy was plotted against the pK a value of the catalyst. Substituted-pyridine derivatives with high pK a values were able to catalyze isomerization more efficiently than those with low pK a values. The calculated relative rates for prodrugs 16 were: 1 (406.7), 2 (7.6?×?106), 3 (1.0), 4 (20.7), 5 (13.5) and 6 (2.2?×?103). This result indicates that isomerizations of prodrugs 1 and 35 are expected to be slow and that of prodrugs 2 and 6 are expected to be relatively fast. Hence, prodrugs 2 and 35 have the potential to be utilized as prodrugs for the slow release of monomethylfumarate in the treatment of psoriasis and multiple sclerosis.
Figure
Substituted pyridine-catalyzed isomerization of monomethylmaleate (prodrug, cis-isomer) to monomethylfumerate (parental drug, trans-isomer)  相似文献   

14.
A density functional theory study was carried out to predict the electrostatic potentials as well as average local ionization energies on both the outer and the inner surfaces of carbon, boron-nitride (BN), boron-phosphide (BP) and silicon-carbide (SiC) single-walled nanotubes. For each nanotube, the effect of tube radius on the surface potentials and calculated average local ionization energies was investigated. It is found that SiC and BN nanotubes have much stronger and more variable surface potentials than do carbon and BP nanotubes. For the SiC, BN and BP nanotubes, there are characteristic patterns of positive and negative sites on the outer lateral surfaces. On the other hand, a general feature of all of the systems studied is that stronger potentials are associated with regions of higher curvature. According to the evaluated surface electrostatic potentials, it is concluded that, for the narrowest tubes, the water solubility of BN tubes is slightly greater than that of SiC followed by carbon and BP nanotubes.
Figure
Computed surface electrostatic potential (a) and average ionization potential energy (b) of the (6,0) Si24C24H12 nanotube. Color ranges for VS(r), in kcal?mol?1: red >22.91, yellow 3.83–22.91, green ?15.25–3.82, blue <?15.25. Color ranges for ī(r), in eV: red >11.35, yellow 9.63–11.35, green 7.91–9.63, blue <7.91. Black circles Surface maxima, blue surface minima.  相似文献   

15.
Electronic structure, 1H NMR and infrared spectra of diquat (6,7-dihydrodipyrido[1,2-b:1′,2′-e] pyrazine-5,8-diium or DQ2+) encapsulated by cucurbit[n]uril (n?=?7,8) hosts are obtained using the density functional theory. Theoretical calculations have shown that both CB[7] or CB[8] host possesses strong affinity toward DQ2+ compared to its reduced cation or neutral species. Calculated 1H NMR spectra reveal that Hα protons on bi-pyridinium rings of DQ2+@CB[8] complex are de-shielded owing to C=O?H interactions. On the other hand aromatic (Hβ and Hδ) of DQ2+ within the CB[8] cavity exhibit significant shielding. The complexation of CB[8] with DQ2+ splits the carbonyl stretching vibration (1788 cm?1) into two distinct vibrations which correspond to 1765 cm?1 arising from hydrogen bonded carbonyls and the 1792 cm?1 band from non-interacting ones. Further, the CN stretching vibration in DQ2+ exhibits a frequency blue-shift of 6 cm?1 on its encapsulation within the CB[8] cavity. The direction of frequency shift has been explained on the basis of natural bond orbital analyses.
Figure
Diquat-cucurbituril complexes  相似文献   

16.
The interaction between lanthanum atom (La) and C74 (D 3h) was investigated by all-electron relativistic density function theory (DFT). With the aid of the representative patch of C74 (D 3h), we studied the interaction between C74 (D 3h) and La and obtained the interaction potential. Optimized structures show that there are three equivalent stable isomers, with La located about 1.7 Å off center. There is one transition state between every two stable isomers. According to the minimum energy pathway, the possible movement trajectory of La atoms in the C74 (D 3h) cage was explored. The calculated energy barrier for La atoms moving from the stable isomer to the transition state is 18.4 kcal mol?1. In addition, the dynamic NMR spectra of La@C74 according to the trajectory was calculated.
Figure
Optimized structure of La@C74, the ring trajectory of La in C74, and the dynamic 13C NMR spectrum as investigated by all-electron relativistic density function theory  相似文献   

17.
We examine a short way to reach an exceptional point that corresponds to a coalescence of two resonance energies. The application concerns the photodissociation of the Na2 molecule exposed to a laser field. In this case, the resonances can be correlated with the field-free vibrational states of the diatomic species. The resonances are due to the field-induced coupling with the continuum of a repulsive potential. We also draw attention to a new kind of exceptional point involving a resonance originating from a vibrational state coalescing with a shape-type resonance of the repulsive potential. A laser control scenario, aiming at the adiabatic transport from this field-free decaying state to a stable field-free vibrational state, is discussed in terms of field-induced dissociation quenching.
Figure
Laser-controlled Dissociation Quenching mechanism in Na2 using an Exceptional Point resulting from the merging of a shape-type resonance (R 8) and a Feshbach one originating from a vibrational bound state (v=0). The population transfer process is indicated by the blue arrow of the left panel. The laser-controlled energy trajectory from R 8 (decaying state) to v=0 (stable state) is displayed in the middle panel, while the survival probability is given in the right panel. An efficiency of about 25 % is reached for the quenching control.  相似文献   

18.
The interactions of L-aminoglucosidic stereoisomers such as rhodostreptomycins A (Rho A) and B (Rho B) with cations (Mg2+, Ca2+, and H+) were studied by a quantum mechanical method that utilized DFT with B3LYP/6-311G**. Docking studies were also carried out in order to explore the surface recognition properties of L-aminoglucoside with respect to Mg2+ and Ca2+ ions under solvated and nonsolvated conditions. Although both of the stereoisomers possess similar physicochemical/antibiotic properties against Helicobacter pylori, the thermochemical values for these complexes showed that its high affinity for Mg2+ cations caused the hydration of Rho B. According to the results of the calculations, for Rho A–Ca2+(H2O)6, ΔH = ?72.21 kcal?mol?1; for Rho B–Ca2+(H2O)6, ΔH = ?72.53 kcal?mol?1; for Rho A–Mg2+(H2O)6, ΔH = ?72.99  kcal?mol?1 and for Rho B–Mg2+(H2O)6, ΔH = ?95.00  kcal?mol?1, confirming that Rho B binds most strongly with hydrated Mg2+, considering the energy associated with this binding process. This result suggests that Rho B forms a more stable complex than its isomer does with magnesium ion. Docking results show that both of these rhodostreptomycin molecules bind to solvated Ca2+ or Mg2+ through hydrogen bonding. Finally, Rho B is more stable than Rho A when protonation occurs.
Figure
Rho B–H showed higher stability since it is considered a proton pump inhibitor, and is therefore a stronger inhibitor of Helicobacter pylori  相似文献   

19.
The influence of NO 3 ? -N on growth and osmotic adjustment was studied in Tamarix laxa Willd., a halophyte with salt glands on its twigs. Seedlings of T. laxa Willd. were exposed to 1 mM (control) or 300 mM NaCl, with 0.05, 1 or 10 mM NO 3 ? -N for 24 days. The relative growth rate of seedlings at 300 mM NaCl was lower than that of control plants at all NO 3 ? -N levels, but the concentrations of organic N and total N in the twigs did not differ between the two NaCl treatments. Increasing NO 3 ? supply under 300 mM NaCl improved the growth of T. laxa, indicating that NO 3 ? played positive roles in improving salt resistance of the plant. The twigs of T. laxa Willd. accumulated mainly inorganic ions, especially Na+ and Cl?, to lower osmotic potential (Ψs): the contributions of Na+ and Cl? to Ψs were estimated at 31% and 27% respectively, at the highest levels of supply of both NaCl and NO 3 ? -N. The estimated contribution of NO 3 ? -N to Ψs was as high as 20% in the twigs in these conditions, indicating that NO 3 ? was also involved in osmotic adjustment in the twigs. Furthermore, increases in tissue NO 3 ? were accompanied by decreases in tissue Cl? and proline under 300 mM NaCl. The estimated contribution of proline to Ψs declined as with NO 3 ? -N supply increased from 1 to 10 mM, while the contributions of nitrate to Ψs were enhanced under 300 mM NaCl. This suggested that higher accumulation of nitrate in the vacuole alleviated the effects of salinity stress on the plant by balancing the osmotic potential. In conclusion, NO 3 ? -N played both nutritional and osmotic roles in T. laxa Willd. in saline conditions.  相似文献   

20.
In this work, computations of density functional theory (DFT) were carried out to investigate the nature of interactions in solid 2,6-dibromo-4-nitroaniline (DBNA). This system was selected to mimic the hydrogen/halogen bonding found within crystal structures as well as within biological molecules. DFT (M06-2X/6-311++G**) calculations indicated that the binding energies for different of interactions lie in the range between ?1.66 and ?9.77 kcal mol?1. The quantum theory of atoms in molecules (QTAIM) was applied to provide more insight into the nature of these interactions. Symmetry-adapted perturbation theory (SAPT) analysis indicated that stability of the Br···Br halogen bonds is predicted to be attributable mainly to dispersion, while electrostatic forces, which have been widely believed to be responsible for these types of interactions, play a smaller role. Our results indicate that, for those nuclei participating in hydrogen/halogen bonding interactions, nuclear quadrupole resonance parameters exhibit considerable changes on going from the isolated molecule model to crystalline DBNA.
Figure
Electrostatic potential mapped on the surface of 2,6-dibromo-4-nitroaniline (DBNA) molecular electron density (0.001 e au?3). Color ranges for V S(r), in kcal?mol?1: red > 26.5, yellow 26.5–5.7, green 5.7– ?15.1, blue < ?15.1. Black circles Surface maxima, blue surface minima  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号