首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cationic porphyrins form stable complexes with oligodeoxynucleotides. To evaluate delivery, we used a 20mer phosphorothioate oligomer (Isis 3521) targeted to the 3'-untranslated region of the PKC-alpha mRNA, and complexed it with porphyrin. The expression of PKC-alpha protein and mRNA in T24 bladder carcinoma cells was reduced by approximately 80 +/- 10% at a concentration of oligomer of 3 microM, and 9 microM porphyrin. The expression of PKC-beta1, -delta and -straightepsilon isoforms was unaffected by this treatment, but elimination of PKC-zeta protein and mRNA were observed. However, treatment with the porphyrin complex of Isis 3522, an oligomer which is directed at the 5' coding region of the PKC-alpha mRNA, was equally effective as Isis 3521 with respect to PKC-alpha, but did not affect PKC-zeta protein or mRNA levels. Since Isis 3521 has an 11-base region of complementarity with the PKC-zeta mRNA, wheras Isis 3522 has only a 4-base region, the effect of Isis 3521 on PKC-zeta protein and mRNA expression may be due to irrelevant cleavage. Depending upon the desired application, this new strategy may offer several advantages over other methods of antisense oligodeoxynucleotide delivery including efficiency, stability, solubility, relatively low toxicity and serum compatibility. Porphyrins may thus be a potentially useful delivery vehicle for antisense therapeutics and/or target validation.  相似文献   

2.
We have previously described the characterization of a 20mer phosphorothioate oligodeoxynucleotide (ISIS 4189) which inhibits murine protein kinase C-alpha (PKC-alpha) gene expression, both in vitro and in vivo. In an effort to increase the antisense activity of this oligonucleotide, 2'-O-propyl modifications have been incorporated into the 5'- and 3'-ends of the oligonucleotide, with the eight central bases left as phosphorothioate oligodeoxynucleotides. Hybridization analysis demonstrated that these modifications increased affinity by approximately 8 and 6 degrees C per oligonucleotide for the phosphodiester (ISIS 7815) and phosphorothioate (ISIS 7817) respectively when hybridized to an RNA complement. In addition, 2'-O-propyl incorporation greatly enhanced the nuclease resistance of the oligonucleotides to snake venom phosphodiesterase or intracellular nucleases in vivo. The increase in affinity and nuclease stability of ISIS 7817 resulted in a 5-fold increase in the ability of the oligonucleotide to inhibit PKC-alpha gene expression in murine C127 cells, as compared with the parent phosphorothioate oligodeoxynucleotide. Thus an RNase H-dependent phosphorothioate oligodeoxynucleotide can be modified as a 2'-O-propyl 'chimeric' oligonucleotide to provide a significant increase in antisense activity in cell culture.  相似文献   

3.
Lipofectin, which is a mixture of neutral lipid with a cationic lipid, has been widely used to enhance cellular delivery of phosphorothioate, 2'-sugar-modified, and chimeric antisense oligonucleotides. Phosphodiester oligonucleotides delivered with Lipofectin usually do not elicit antisense activity probably because cationic lipid formulations do not sufficiently protect unmodified oligonucleotides from nuclease degradation. We show that a cationic polymer, polyethylenimine (PEI), improves the uptake and antisense activity of 3'-capped 20-mer and 12-mer antisense phosphodiester oligonucleotides (PO-ODN) targeted to different regions of Ha-ras mRNA and to the 3'-untranslated region (3'-UTR) of C-raf kinase. In contrast, PEI, which forms a very stable complex with the 20-mer phosphorothioate oligonucleotide (PS-ODN), does not enhance its antisense activity. Using fluorescently labeled carriers and ODN, we show that PEI-PS-ODN particles are very efficiently taken up by cells but PS-ODN is not dissociated from the carrier. Our results indicate that carrier-ODN particle size and stability and ODN release kinetics vary with the chemical nature of the ODN and the carrier being transfected into the cells. The very low cost of PEI compared with cytofectins and the increased affinity for target mRNA and decreased affinity for proteins of PO-ODN compared with PS-ODN make the use of PEI-PO-ODN very attractive.  相似文献   

4.
Most antisense oligonucleotide experiments are performed with molecules containing RNase H-competent backbones. However, RNase H may cleave nontargeted mRNAs bound to only partially complementary oligonucleotides. Decreasing such "irrelevant cleavage" would be of critical importance to the ability of the antisense biotechnology to provide accurate assessment of gene function. RNase P is a ubiquitous endogenous cellular ribozyme whose function is to cleave the 5' terminus of precursor tRNAs to generate the mature tRNA. To recruit RNase P, complementary oligonucleotides called external guide sequences (EGS), which mimic structural features of precursor tRNA, were incorporated into an antisense 2'-O-methyl oligoribonucleotide targeted to the 3' region of the PKC-alpha mRNA. In T24 human bladder carcinoma cells, these EGSs, but not control sequences, were highly effective in downregulating PKC-alpha protein and mRNA expression. Furthermore, the downregulation is dependent on the presence of, and base sequence in, the T-loop. Similar observations were made with an EGS targeted to the bcl-xL mRNA.  相似文献   

5.
It is widely accepted that most cell types efficiently exclude oligonucleotides in vitro and require specific delivery systems, such as cationic lipids, to enhance uptake and subsequent antisense effects. Oligonucleotides are not readily transfected into leukaemia cell lines using cationic lipid systems and streptolysin O (SLO) is used to effect their delivery. We wished to investigate the optimal oligonucleotide composition for antisense efficacy and specificity following delivery into leukaemia cells using SLO. For this study the well characterised chronic myeloid leukaemia cell line KYO-1 was selected and oligonucleotides (20mers) were targeted to an empirically identified accessible site of c- myc mRNA. The efficiency and specificity of antisense effect was measured 4 and 24 h after SLO-mediated delivery of the oligonucleotides. C5-propyne phosphodiester and phosphorothioate compounds were found to present substantial non-specific effects at 20 microM but were inactive at 0.2 microM. Indeed, no antisense-specific effect was noted at any concentration at either time. All of the other oligonucleotides tested induced some measurable antisense effect, except 7 (chimeric, all-phosphorothioate, 2'-methoxyethoxy termini) which was essentially inactive at 20 microM. The rank efficiency order of the remaining antisense compounds was 4 = 3 >> 9 >> 10 = 8 = 5 = 6 > 11. The efficient antisense effects induced by the chimeric methylphosphonate-phosphodiester compounds were found to be highly specific. Increased phosphorothioate content in the oligonucleotide backbone correlated with reduced antisense activity (efficacy: 2'-methoxyethoxy series 9 >> 8 >> 7, 2'-methoxytriethoxy series 10 > 11). No consistent evidence was obtained for increased activity correlating with increased oligonucleotide-mRNA heteroduplex thermal stability. In conclusion, the chimeric methylphosphonate-phosphodiester oligodeoxynucleotides present the most favourable characteristics of the compounds tested, for efficient and specific antisense suppression of gene expression following SLO-mediated delivery.  相似文献   

6.
Antisense oligonucleotides have been widely used to achieve specific inhibition of targeted gene expression. However, the mechanism of action is not well understood and in many systems sequence-independent effects occur. We have recently shown that chronic administration of an antisense c-myc phosphorothioate oligonucleotide can specifically inhibit expression of the c-myc protein and growth in human breast cancer cells. We now identify an additional effect of the same oligonucleotide on cell adhesion. Transient delivery through electroporation of 2.5 microM antisense-myc oligonucleotide to MCF-7 cells results in 85% inhibition of adhesion to plastic substratum within 24 h. Both the onset of this effect and the subsequent recovery occur without a change in cell viability, growth, or alteration of adhesion to Matrigel, collagen IV, laminin, or fibronectin. However, no parallel changes in c-myc mRNA or protein expression are detectable, suggesting that in this instance inhibition of adhesion caused by antisense-myc oligonucleotide may involve a mechanism independent of the target sequence.  相似文献   

7.
Progress in oligonucleotide chemistry has provided second-generation antisense oligonucleotides with increased efficacy and reduced non-antisense-related toxicity. The ability of the 2'-O-(2-methoxyethylribose) (2'-MOE)-modified phosphorothioate gapmer oligonucleotide 4625, which matches the bcl-2 mRNA and has three base-mismatches to bcl-xL, to inhibit bcl-2 and bcl-xL expression and induce tumor cell apoptosis has been described. Here we investigated the consequences of adding of 2'-MOE or 2'-Me modifications to ribonucleotides at either the two ends of the sequence, or the center region together with different combinations of phosphodiester/phosphorothioate backbones on the activity of oligonucleotide 4625. The ability of the various 4625 analogs, including the parental first-generation oligonucleotide 3005, to inhibit bcl-2 and bcl-xL expression, and diminish cell growth or induce tumor cell death was assessed in SW2 lung cancer cells using real-time PCR, Western blotting and cell viability assays. Only oligonucleotide 4625 exhibited a potent bispecific antisense activity against bcl-2 and bcl-xL, which effectively reduced tumor cell viability. The other antisense oligonucleotides were either uniquely active against bcl-2 or completely inactive. Our data suggest that the 2'-MOE modification in combination with the phophorothioate gapmer chemistry is the optimal format of the 4625 sequence in terms of antisense activity and biological efficacy.  相似文献   

8.
9.
A novel approach based on a plasma membrane permeability-disturbing agent was proposed as an antisense oligonucleotide delivery system. AMA, a derivative of the polyene antibiotic amphotericin B, formed a stable complex when mixed with phosphodiester oligodeoxynucleotides and enhanced the intracellular uptake of a 5' fluoresceinated anti-mdr1 20-mer into NIH-MDR-G185 cells. The nonlabeled phosphorothioate form of the oligodeoxynucleotide, complexed to AMA, inhibited P-glycoprotein expression with better efficiency and less nonspecific effects than when vectorized by Lipofectin. AMA may thus be a good agent for antisense strategy.  相似文献   

10.
Several classes of oligonucleotide antisense compounds of sequence complementary to the start of the mRNA coding sequence for chloramphenicol acetyl transferase (CAT), including methylphosphonate, alkyltriester, and phosphorothioate analogues of DNA, have been compared to "normal" phosphodiester oligonucleotides for their ability to inhibit expression of plasmid-directed CAT gene activity in CV-1 cells. CAT gene expression was inhibited when transfection with plasmid DNA containing the gene for CAT coupled to simian virus 40 regulatory sequences (pSV2CAT) or the human immunodeficiency virus enhancer (pHIVCAT) was carried out in the presence of 30 microM concentrations of analogue. For the oligo-methylphosphonate analogue, inhibition was dependent on both oligomer concentration and chain length. Analogues with phosphodiester linkages that alternated with either methylphosphonate, ethyl phosphotriester, or isopropyl phosphotriester linkages were less effective inhibitors, in that order. The phosphorothioate analogue was about two-times more potent than the oligo-methylphosphonate, which was in turn approximately twice as potent as the normal oligonucleotide.  相似文献   

11.
Hexitol nucleic acids (HNAs) are nuclease resistant and provide strong hybridization to RNA. However, there is relatively little information on the biological properties of HNA antisense oligonucleotides. In this study, we compared the antisense effects of a chimeric HNA ‘gapmer’ oligonucleotide comprising a phosphorothioate central sequence flanked by 5′ and 3′ HNA sequences to conventional phosphorothioate oligonucleotides and to a 2′-O-methoxyethyl (2′-O-ME) phosphorothioate ‘gapmer’. The antisense oligomers each targeted a sequence bracketing the start codon of the message of MDR1, a gene involved in multi-drug resistance in cancer cells. Antisense and control oligonucleotides were delivered to MDR1-expressing cells using transfection with the cationic lipid Lipofectamine 2000. The anti-MDR1 HNA gapmer was substantially more potent than a phosphorothioate oligonucleotide of the same sequence in reducing expression of P-glycoprotein, the MDR1 gene product. HNA and 2′-O-ME gapmers displayed similar potency, but a pure HNA antisense oligonucleotide (lacking the phosphorothioate ‘gap’) was ineffective, indicating that RNase H activity was likely required. Treatment with anti-MDR1 HNA gapmer resulted in increased cellular accumulation of the drug surrogate Rhodamine 123 that correlated well with the reduced cell surface expression of P-glycoprotein. Thus, HNA gapmers may provide a valuable additional tool for antisense-based investigations and therapeutic approaches.  相似文献   

12.
Abstract

Antisense oligonucleotides bind to specific mRNA or pre-mRNA sequences through Watson-Crick base pairing, resulting in decreased expression of the targeted protein. The use of cationic lipids to enhance cellular uptake of antisense oligonucleotides is reviewed herein. Cationic lipids such as N[1-(2,3-dioleyloxy)propyl]-N, N, N-trimethylammonium chloride (DOTMA) were found to enhance the biological activity of phosphorothioate oligonucleotides by at least 1000-fold in cell culture. Cationic lipid preparations enhanced both the rate and amount of oligonucleotide which associated with cells. In addition, DOTMA markedly changed the subcellular distribution of the oligonucleotide. In the absence of lipid, fluorescein labelled phosphorothioate oligonucleotides accumulated in discrete cytoplasmic structures. In the presence of cationic lipids, the oligonucleotides concentrated within the nucleus, were excluded from nucleoli, and localized in punctate cytoplasmic structures. The accumulation of the oligonucleotide in the nucleus was inhibited by incubation of the cells at 4°C and by monensin, but not by chloroquine, ammonium chloride, or nocodazole. Cell lines, both primary and transformed, differ markedly in their sensitivity to inhibition of gene expression with antisense oligonucleotides in the presence of cationic lipids. The differential sensitivity of the cells correlates with the amount of 35S-labelled oligonucleotide associated with the cells and the number of cells in the population which take up the oligonucleotide. Our studies have demonstrated that several types of cationic lipids markedly enhance the activity of phosphorothioate oligonucleotides in cell culture models. We are currently investigating the ability of cationic lipids to enhance activity of antisense oligonucleotides in more complex systems such as organ cultures and in animals.  相似文献   

13.
Genetic and biochemical studies have provided convincing evidence that the 5' noncoding region (5' NCR) of hepatitis C virus (HCV) is highly conserved among viral isolates worldwide and that translation of HCV is directed by an internal ribosome entry site (IRES) located within the 5' NCR. We have investigated inhibition of HCV gene expression using antisense oligonucleotides complementary to the 5' NCR, translation initiation codon, and core protein coding sequences. Oligonucleotides were evaluated for activity after treatment of a human hepatocyte cell line expressing the HCV 5' NCR, core protein coding sequences, and the majority of the envelope gene (E1). More than 50 oligonucleotides were evaluated for inhibition of HCV RNA and protein expression. Two oligonucleotides, ISIS 6095, targeted to a stem-loop structure within the 5' NCR known to be important for IRES function, and ISIS 6547, targeted to sequences spanning the AUG used for initiation of HCV polyprotein translation, were found to be the most effective at inhibiting HCV gene expression. ISIS 6095 and 6547 caused concentration-dependent reductions in HCV RNA and protein levels, with 50% inhibitory concentrations of 0.1 to 0.2 microM. Reduction of RNA levels, and subsequently protein levels, by these phosphorothioate oligonucleotides was consistent with RNase H cleavage of RNA at the site of oligonucleotide hybridization. Chemically modified HCV antisense phosphodiester oligonucleotides were designed and evaluated for inhibition of core protein expression to identify oligonucleotides and HCV target sequences that do not require RNase H activity to inhibit expression. A uniformly modified 2'-methoxyethoxy phosphodiester antisense oligonucleotide complementary to the initiator AUG reduced HCV core protein levels as effectively as phosphorothioate oligonucleotide ISIS 6095 but without reducing HCV RNA levels. Results of our studies show that HCV gene expression is reduced by antisense oligonucleotides and demonstrate that it is feasible to design antisense oligonucleotide inhibitors of translation that do not require RNase H activation. The data demonstrate that chemically modified antisense oligonucleotides can be used as tools to identify important regulatory sequences and/or structures important for efficient translation of HCV.  相似文献   

14.
We have demonstrated the formation of higher-order structures (presumably tetraplexes) by an 18-mer phosphorothioate antisense c-myb oligodeoxyribonucleotide that has been shown to have activity in the treatment of leukemia xenograft models. Although not observable by conventionally employed techniques, such as PAGE and dimethyl sulfate (DMS) protection, the formation of such higher-order structures by this oligonucleotide was revealed by several techniques. These included capillary gel electrophoresis (CGE), which demonstrated the presence of molecules with greatly increased retention time compared with the monomer; magnetic circular dichroism spectroscopy, which demonstrated a band at 290 nm, a characteristic of antiparallel tetraplexes; and fluorescence energy transfer measurements. For the last, the 18-mer phosphorothioate oligonucleotide was synthesized with a 5'-fluorescein group. Similar to the molecular beacon model, its fluorescence was quenched when combined in solution with tetraplex-forming oligomers that contained a 3'-Dabcyl moiety. 7-Deazaguanosine inhibits the formation of tetraplexes by eliminated Hoogsteen base pair interactions. The wild-type and 7-deazaguanosine-substituted antisense c-myb oligomers differentially downregulated the expression of the c-myb proto-oncogene in K562 and HL60 cells, with the wild-type oligomer being the least active. The 18-mer c-myb molecule can, therefore, form highly complex structures, whose analysis in solution cannot be limited to examination of slab gel electrophoresis results alone.  相似文献   

15.
A biological reporter gene assay was employed to determine the crucial parameters for maximizing selective targeting of a Ha-ras codon 12 point mutation (G----T) using phosphorothioate antisense oligonucleotides. We have tested a series of oligonucleotides ranging in length between 5 and 25 bases, each centered around the codon 12 point mutation. Our results indicate that selective targeting of this point mutation can be achieved with phosphorothioate antisense oligonucleotides, but this selectivity is critically dependent upon oligonucleotide length and concentration. The maximum selectivity observed in antisense experiments, 5-fold for a 17-base oligonucleotide, was closely predicted by a simple thermodynamic model that relates the fraction of mutant to wild type target bound as a function of oligonucleotide concentration and affinity. These results suggest thermodynamic analysis of oligonucleotide/target interactions is useful in predicting the specificity that can be achieved by an antisense oligonucleotide targeted to a single base point mutation.  相似文献   

16.
The murine 3T3-L1 preadipocyte cell line is well characterized for its capacity to undergo differentiation into adipocytes under appropriate hormonal stimulation. p107, a member of the retinoblastoma tumor suppressor gene family has been shown to be dramatically upregulated during the early requisite clonal expansion phase of 3T3-L1 adipogenesis; however, a functional consequence has yet to be described. A phosphorothioate antisense RNA approach was utilized to determine if inhibition of p107 expression would block or perturb adipocyte differentiation. A series of three phosphorothioate oligonucleotides in antisense orientation was generated, designated AS1, AS2, and AS3 along with a sense control oligonucleotide complementary to AS1 and added to postconfluent cells at a concentration of 20 and 50 microM throughout hormonally stimulated differentiation. Treatment of cells with either concentration of the sense, AS1, AS2, or 20 microM AS3 oligonucleotides had little effect on either Oil Red O lipid accumulation or induction of p107 protein levels. In contrast, treatment with 50 microM AS3 inhibited the increase in p107 protein levels and led to a complete block in differentiation as detected by Oil Red O lipid accumulation and inhibition of adipocyte-specific mRNA expression. In addition, treatment with AS3 led to a significant inhibition of cellular proliferation associated with clonal expansion. Combined, these results provide strong evidence supporting a functional role for p107 in 3T3-L1 adipocyte differentiation.  相似文献   

17.
Novel antisense peptide nucleic acid (PNA) constructs targeting p75NTR as a potential therapeutic strategy for amyotrophic lateral sclerosis (ALS) were designed, synthesised and evaluated against phosphorothioate oligonucleotide sequences (PS-ODN). An 11-mer antisense PNA directed at the initiation codon dose-dependently inhibited p75NTR expression and death signalling by nerve growth factor in Schwann cell cultures. Inhibition of p75NTR production was not detected in cultures treated with the nonsense PNA or antisense PNA directed at the 3'-terminus sequence. The 19-mer PS-ODN sequences also failed to confer any activity against p75NTR but, unlike the PNA sequences, were toxic in vitro at comparable doses.  相似文献   

18.
The antisense approach is conceptually simple and elegant; to design an inhibitor of a specific mRNA, one needs only to know the sequence of the targeted mRNA and an appropriately modified complementary oligonucleotide. Of the many analogs of oligodeoxynucleotides explored as antisense agents, phosphorothioate analogs have been studied the most extensively. The use of phosphorothioate oligodeoxynucleotides as antisense agents in various studies have shown promising results. However, they have also indicated that quite often, biological effects observed could be solely or partly non-specific in nature. It is becoming clear that not all phosphorothioate oligodeoxynucleotides of varying length and base composition are the same, and important consideration should be given to maintain antisense mechanisms while identifying effective antisense oligonucleotides. In this review, I have summarized the progress made in my laboratory in understanding the specificity and mechanism of actions of phosphorothioate oligonucleotides and the rationale for designing second-generation mixed-backbone oligonucleotides.  相似文献   

19.
It has been recently demonstrated that a complex of avidin, a cationic protein, and a monobiotinylated antisense oligonucleotide for the GLUT1 glucose transporter mRNA is taken up by cells in vitro and by organs in vivo via absorptive-mediated endocytosis. In the present study, a GLUT1 biotinylated oligonucleotide-avidin construct showing complete protection against serum 3'-exonuclease-mediated degradation is described. 21-mer antisense oligonucleotides complementary to nucleotides 162-182 and 161-181 of the bovine GLUT1 glucose transporter mRNA were synthesized with a 6-aminodeoxyuridine at positions 3 and 20, respectively, biotinylated with NHS- or NHS-XX-biotin to yield near 5'- or near 3'-biotinylated oligonucleotide (bio-DNA), and 5'- and 3'-end radiolabeled. Serum induced a rapid degradation of unprotected (no avidin) [5'-32P]-5'-bio-DNA (> 95% at 30 min). Avidin partially protected this construct (approximately 31% of intact 21-mer oligo remained at 1 h). Similar results were obtained with the [3'-32P]-5'-bio-DNA; however, no degradation products of varying size were observed, confirming that the degradation is mediated primarily by a 3'-exonuclease. Incubation of the [5'-32P]-3'-bio-DNA with serum showed a rapid conversion to the 20- and 19-mer forms (t1/2 approximately 13 min). Conversely, avidin totally protected this construct against the serum 3'-exonuclease. In conclusion, avidin fully protects antisense oligonucleotides biotinylated at the near 3'-terminus against serum 3'-exonuclease degradation, and this property may be useful for avidin-mediated drug delivery of oligonucleotides to tissues in vivo or to cultured cells in vitro.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号