首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract: Ethyl β-carboline-β-carboxylate (β-CCE) is a mixed-type inhibitor of [3H]flunitrazepam ([3H]FNM) binding to benzodiazepine receptors in noncerebellar regions of rat brain. These findings may represent the presence of either receptor multiplicity or negative cooperativity among benzodiazepine receptors. [3H]Propyl β-carboline-3-carboxylate ([3H]PrCC) has previously been shown to bind specifically to benzodiazepine receptors of rat cerebellum. In the present study we found no indication of the presence of true negative cooperativity among benzodiazepine receptors when [3H]PrCC was used as radioligand. However, we observed that [3H]PrCC labelled only 57% of [3H]FNM binding sites in rat hippocampus (Bmax values) and 71% in rat cerebral cortex, whereas the number of receptors labelled by both ligands was equal in the cerebellum. Hofstee analyses of the shallow inhibition curves seen in hippocampus and cerebral cortex when [3H]FNM binding was inhibited by β-CCE indicate that β-CCE and some other β-carboline-3-carboxylate derivatives interact preferentially with a subclass of receptors, and that the percentage of this subclass is equivalent to the number of receptors labelled by [3H]PrCC. We conclude that [3H]PrCC at low concentration (0.3–0.4 × 10-9 M) labels a subclass of benzodiazepine receptors, BZ1, while another class, BZ2 receptors, are not labelled by [3H]PrCC when filtration assays are used. By parallel determinations of the proportion between [3H]FNM and [3H]PrCC binding we calculated the percentage of BZ1 receptors in several regions of rat, guinea pig and calf brain and in mouse forebrain. The values ranged from approximately 50% in hippocampus to 90% in the guinea pig pons.  相似文献   

2.
DMCM (methyl 6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate) produces convulsions in mice and rats, probably by interacting with benzodiazepine (BZ) receptors. Investigation of specific binding of [3H]DMCM to rat hippocampus and cortex revealed polyphasic saturation curves, indicating a high-affinity site (KD = 0.5-0.8 nM) and a site with lower affinity (KD = 3-6 nM). BZ receptor ligands of various chemical classes, but not other agents, displace [3H]DMCM from specific binding sites--indicating that [3H]DMCM binds to BZ receptors in rat brain. The regional distribution of [3H]DMCM binding is complementary to that of the BZ1-selective radioligand [3H]PrCC. Specific binding of [3H]DMCM (0.1 nM) was reduced by gamma-aminobutyric acid (GABA) receptor agonist to approximately 20% of the control value at 37 degrees C in chloride-containing buffers; the reduction was bicuculline methiodide- and RU 5135-sensitive. The effective concentrations of 10 GABA analogues in reducing [3H]DMCM binding correlated closely to published values for their GABA receptor affinity. Specific binding of [3H]DMCM is regulated by unknown factors; e.g. enhanced binding was found by Ag+ treatment of membranes, in the presence of picrotoxinin, or by exposure to ultraviolet light in the presence of flunitrazepam. In conclusion, [3H]DMCM appears to bind to high-affinity brain BZ receptors, although the binding properties are different from those of [3H]flunitrazepam and [3H]PrCC. These differences might relate in part to subclass selectivity and in part to differences in efficacy of DMCM at BZ receptors.  相似文献   

3.
Photolabeling of the benzodiazepine receptor, which to date has been done with benzodiazepine agonists such as flunitrazepam, can also be achieved with Ro 15-4513, a partial inverse agonist of the benzodiazepine receptor. [3H]Ro 15-4513 specifically and irreversibly labeled a protein with an apparent molecular weight of 51,000 (P51) in cerebellum and at least two proteins with apparent molecular weights of 51,000 (P51) and 55,000 (P55) in hippocampus. Photolabeling was inhibited by 10 microM diazepam but not by 10 microM Ro 5-4864. The BZ1 receptor-selective ligands CL 218872 and beta-carboline-3-carboxylate ethyl ester preferentially inhibited irreversible binding of [3H]Ro 15-4513 to protein P51. Not only these biochemical results but also the distribution and density of [3H]Ro 15-4513 binding sites in rat brain sections were similar to the findings with [3H]flunitrazepam. Thus, the binding sites for agonists and inverse agonists appear to be located on the same proteins. In contrast, whereas [3H]flunitrazepam is known to label only 25% of the benzodiazepine binding sites in brain membranes, all binding sites are photolabeled by [3H]Ro 15-4513. Thus, all benzodiazepine receptor sites are associated with photolabeled proteins with apparent molecular weights of 51,000 and/or 55,000. In cerebellum, an additional protein (MW 57,000) unrelated to the benzodiazepine receptor was labeled by [3H]Ro 15-4513 but not by [3H]flunitrazepam. In brain sections, this component contributed to higher labeling by [3H]Ro 15-4513 in the granular than the molecular layer.  相似文献   

4.
The regional distribution of [3H]zolpidem, a novel imidazopyridine hypnotic possessing preferential affinity for the BZD1 (benzodiazepine subtype 1) receptor, has been studied autoradiographically in the rat CNS and compared with that of [3H]flunitrazepam. The binding of [3H]zolpidem to rat brain sections was saturable, specific, reversible, and of high affinity (KD = 6.4 nM). It occurred at a single population of sites whose pharmacological characteristics were similar to those of the benzodiazepine receptors labeled with [3H]flunitrazepam. However, ethyl-beta-carboline-3-carboxylate and CL 218,872 were more potent displacers of [3H]zolpidem than of [3H]flunitrazepam. The autoradiographic brain distribution of [3H]zolpidem binding sites was qualitatively similar to that previously reported for benzodiazepine receptors. The highest levels of [3H]-zolpidem binding sites occurred in the olfactory bulb (glomerular layer), inferior colliculus, ventral pallidum, nucleus of the diagonal band of Broca, cerebral cortex (layer IV), medial septum, islands of Calleja, subthalamic nucleus, and substantia nigra pars reticulata, whereas the lowest densities were found in parts of the thalamus, pons, and medulla. Comparative quantitative autoradiographic analysis of the binding of [3H]zolpidem and [3H]flunitrazepam [a mixed BZD1/BZD2 (benzodiazepine subtype 2) receptor agonist] in the CNS revealed that the relative density of both 3H-labeled ligands differed in several brain areas. Similar levels of binding for both ligands were found in brain regions enriched in BZD1 receptors, e.g., substantia nigra pars reticulata, inferior colliculus, cerebellum, and cerebral cortex lamina IV. The levels of [3H]zolpidem binding were five times lower than those of [3H]flunitrazepam binding in those brain regions enriched in BZD2 receptors, e.g., nucleus accumbens, dentate gyrus, and striatum. Moreover, [3H]zolpidem binding was undetectable in the spinal cord (which contains predominantly BZD2 receptors). Finally, like CL 218,872 and ethyl-beta-carboline-3-carboxylate, zolpidem was a more potent displacer of [3H]flunitrazepam binding in brain regions enriched in BZD1 receptors than in brain areas enriched in BZD2 receptors. The present data add further support to the view that zolpidem, although structurally unrelated to the benzodiazepines, binds to the benzodiazepine receptor and possesses selectivity for the BZD1 receptor subtype.  相似文献   

5.
The binding of [3H]diazepam to cell homogenates of embryonic rat brain neurons grown in culture was examined. Under the conditions used to prepare and maintain these neurons, only a single, saturable, high-affinity binding site was observed. The binding of [3H]diazepam was potently inhibited by the CNS-specific benzodiazepine clonazepam (Ki = 0.56 +/- 0.08 nM) but was not affected by the peripheral-type receptor ligand Ro5-4864. The KD for [3H]diazepam bound specifically to cell homogenates was 2.64 +/- 0.24 nM, and the Bmax was 952 +/- 43 fmol/mg of protein. [3H]Diazepam binding to cell membranes washed three times was stimulated dose-dependently by gamma-aminobutyric acid (GABA), reaching 112 +/- 7.5% above control values at 10(-4) M. The rank order for potency of drug binding to the benzodiazepine receptor site in cultured neurons was clonazepam greater than diazepam greater than beta-carboline-3-carboxylate ethyl ester greater than Ro15-1788 greater than CL218,872 much greater than Ro5-4864. The binding characteristics of this site are very similar to those of the Type II benzodiazepine receptors present in rat brain. These data demonstrate that part, if not all, of the benzodiazepine-GABA-chloride ionophore receptor complex is being expressed by cultured embryonic rat brain neurons in the absence of accompanying glial cells and suggest that these cultures may serve as a model system for the study of Type II benzodiazepine receptor function.  相似文献   

6.
The inhibition of flunitrazepam (FNP) binding to rat brain benzodiazepine (BZ) receptors by methyl beta-carboline-3-carboxylate (MCC) was studied. Biphasic dissociation was observed for [3H]FNP and [3H]MCC in cerebral cortex, cerebellum, and hippocampus, although the dissociation of [3H]MCC was much faster. The dissociation rate of [3H]FNP was increased by MCC in the cerebellum, but was not altered in cerebral cortex or hippocampus. [3H]FNP binding stimulated by gamma-aminobutyric acid was enhanced in the presence of MCC in all three regions examined. These results indicate that MCC exerts these effects by interacting with allosteric sites that are different from the FNP recognition sites on the BZ receptors.  相似文献   

7.
Irreversible photolabeling by [3H]flunitrazepam of four proteins with apparent molecular weights 51,000 (P51), 53,000 (P53), 55,000 (P55), and 59,000 (P59) was investigated in various rat brain regions by SDS-polyacrylamide gel electrophoresis, fluorography, and quantitative determination of radioactivity bound to proteins. On maximal labeling of these proteins, only 15-25% of [3H]flunitrazepam reversibly bound to membranes becomes irreversibly attached to proteins. Results presented indicate that for every [3H]flunitrazepam molecule irreversibly bound to membranes, three molecules dissociate from reversible benzodiazepine binding sites. This seems to indicate that these proteins are either closely associated or identical with reversible benzodiazepine binding sites, and supports the hypothesis that four benzodiazepine binding sites are associated with one benzodiazepine receptor. When irreversible labeling profiles of proteins P51, P53, P55, and P59 were compared in different brain regions, it was found that labeling of individual proteins varied independently, supporting previous evidence that these proteins are associated with distinct benzodiazepine receptors.  相似文献   

8.
The binding of [3H]flunitrazepam to benzodiazepine receptors in synaptic membranes and a digitonin-solubilized receptor fraction of rat brain is increased by avermectin B1a and gamma-aminobutyric acid (GABA). The effects of avermectin B1a and GABA are both sensitive to inhibition by (+)-bicuculline. Avermectin B1a and GABA both decrease the Kd and increase the Bmax of [3H]flunitrazepam binding to membranes. Kinetic analysis of the binding of [3H]flunitrazepam to rat brain membranes indicates that avermectin B1a and GABA reduce the rate constants of both association and dissociation between the ligand and the receptor. These results suggest a similar mechanism of modulation of benzodiazepine binding by avermectin B1a and GABA. This modulation may involve in interaction among the receptors for benzodiazepine, GABA and avermectin B1a.  相似文献   

9.
Synthetic n-butyl beta-carboline-3-carboxylate, an endogenous central benzodiazepine receptor inhibitor found in brain, was tritium-labeled from the butenyl ester. Binding of this [3H]beta-carboline was concentrated particularly in the synaptosomal membrane fraction of the cerebral cortex; this fraction showed a single type of high-affinity site (KD = 2.7 +/- 0.1 nM) with a Bmax of 1.16 +/- 0.08 pmol/mg of protein. The number of sites labeled was about half of that obtained with [3H]flunitrazepam binding (Bmax = 2.36 +/- 0.06 pmol/mg of protein). On the other hand, in the cerebellum, both ligands bound to practically the same number of sites. When [3H]flunitrazepam binding was done in the presence of 10(-11)-10(-5) M butyl beta-carboline, the differences between the two brain regions were more apparent. In cerebellar membranes the data fitted a straight line in the Eadie-Hofstee plot; this finding and a Hill number near unity suggest a single type of binding site. In the cortical membranes the data of binding fitted a concave curve, and the Hill number was 0.6. These are characteristics of two types of binding sites with different affinities (KD1 = 0.6-1.5 nM and KD2 = 12-18 nM). The differentiation of a high- and low-affinity site in the cerebral cortex was corroborated by experiments in which [3H]butyl beta-carboline binding was displaced by the triazolopyridazine CL 218,872. These results demonstrate that in the cerebral cortex there are two subtypes of sites (1 and 2) of central benzodiazepine receptors and that CL 218,872 binds preferentially to subtype 1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The equilibrium binding parameters of the benzodiazepine antagonist [3H]Ro 15-1788 (8-fluoro-3-carboethoxy-5,6-dihydro-5-methyl-6-oxo-4H-imidazol-[1,5-a]-1,4 benzodiazepine) were evaluated in brain membranes of the saltwater teleost fish, Mugil cephalus. To test receptor subtype specificity, displacement studies were carried out by competitive binding of [3H]Ro 15-1788 against six benzodiazepine receptor ligands, flunitrazepam [5-(2-fluoro-phenyl)-1,3-dihydro-1-methyl-7-nitro-2H-1,4-benzodiazepin-2-one], alpidem [N,N-dipropyl-6-chloro-2-(4-chlorophenyl)imidazo[1,2-a]pyridine-3-acetamide], zolpidem [N,N-6 trimethyl-2-(4-methyl-phenyl)imidazo[1,2-a]pyridine-3-acetamide hemitartrate], and beta-CCM (methyl beta-carboline-3-carboxylate). Saturation studies showed that [3H]Ro 15-1788 bound saturatably, reversibly and with a high affinity to a single class of binding sites (Kd value of 1.18-1.5 nM and Bmax values of 124-1671 fmol/mg of protein, depending on brain regions). The highest concentration of benzodiazepine recognition sites labeled with [3H]Ro 15-1788 was present in the optic lobe and the olfactory bulb and the lowest concentration was found in the medulla oblongata, cerebellum and spinal cord. The rank order of displacement efficacy of unlabelled ligands observed suggested that central-type benzodiazepine receptors are present in one class of binding sites (Type I-like) in brain membranes of Mugil cephalus. Moreover, the uptake of 36Cl- into M. cephalus brain membrane vesicles was only marginally stimulated by concentrations of GABA that significantly enhanced the 36Cl- uptake into mammalian brain membrane vesicles. The results may indicate a different functional activity of the GABA-coupled chloride ionophore in the fish brain as compared with the mammalian brain.  相似文献   

11.
The recently discovered benzodiazepine antagonist Ro 15-1788 was characterized in binding studies, and its potency and selectivity were determined in vivo by interaction with drug-induced changes in dopamine turnover and cerebellar cGMP level. Ro 15-1788 reduced [3H]flunitrazepam binding in the brain in vivo with a potency similar to that of diazepam and effectively inhibited [3H]diazepam binding in vitro (IC50 = 2.3 +/- 0.6 nmol/liter). [3H]Ro 15-1788 bound to tissue fractions of rat cerebral cortex with an apparent dissociation (KD) of 1.0 +/- 0.1 nmol/liter. The in vitro potency of various benzodiazepines in displacing [3H]Ro 15-1788 from its binding site was of the same rank order as found previously in [3H]diazepam binding. Autoradiograms of [3H]Ro 15-1788 binding in sections of rat cerebellum showed the same distribution of radioactivity as with [3H]flunitrazepam. The attenuating effect of diazepam on the chlorpromazine- or stress-induced elevation of homovanillic acid in rat brain was antagonized by Ro 15-1788. Among a series of compounds which either decreased or increased the rat cerebellar cGMP level, only the effect of benzodiazepine receptor ligands (diazepam, zopiclone, CL 218 872) was antagonized by Ro 15-1788. Thus, Ro 15-1788 is a selective benzodiazepine antagonist acting at the level of the benzodiazepine receptor in the central nervous system. Peripheral benzodiazepine binding sites in kidney and schistosomes were not affected by Ro 15-1788.  相似文献   

12.
When rat brain membranes were incubated with the benzodiazepine agonist [3H]flunitrazepam or the partial inverse benzodiazepine agonist [3H]Ro 15-4513 in the presence of ultraviolet light one protein (P51) was specifically and irreversibly labeled in cerebellum and at least two proteins (P51 and P55) were labeled in hippocampus. After digestion of the membranes with trypsin, protein P51 was degraded into several peptides. When P51 was photolabeled with [3H]Ro 15-4513, four peptides with apparent molecular weights of 39,000, 29,000, 21,000, and 17,000 were observed. When P51 was labeled with [3H]flunitrazepam, only two peptides with apparent molecular weights of 39,000 and 25,000 were obtained. Protein P55 was only partially degraded by trypsin, and whether it was labeled with [3H]flunitrazepam or [3H]Ro 15-4513 it yielded the same two proteolytic peptides with apparent molecular weights of 42,000 and 45,000. These results support the existence of at least two different benzodiazepine receptor subtypes associated with proteins P51 and P55. The different receptors seem to be differentially protected against treatment with trypsin. In addition, these results indicate that in the benzodiazepine receptor subtype associated with P51 benzodiazepine agonists and partial inverse benzodiazepine agonists irreversibly bind to different parts of the molecule.  相似文献   

13.
Polyclonal antibodies have been raised against the GABA/benzodiazepine receptor purified to homogeneity from bovine cerebral cortex in deoxycholate and Triton X-100 media. Radioimmunoassay was applied to measure specific antibody production using the 125I-labelled gamma-aminobutyric acid (GABA)/benzodiazepine receptor as antigen. The antibodies specifically immunoprecipitated the binding sites for [3H]muscimol and for [3H]flunitrazepam from purified preparations. In addition, when a 3-[(3-cholamidopropyl)dimethylammonio] 1-propanesulphonate (CHAPS) extract of bovine brain membranes was treated with the antibodies, those sites as well as the [3H]propyl-beta-carboline-3-carboxylate binding, the [35S]t-butylbicyclophosphorothionate binding (TBPS), the barbiturate-enhanced [3H]flunitrazepam binding, and the GABA-enhanced [3H]flunitrazepam binding were all removed together into the immunoprecipitate. Western blot experiments showed that these antibodies recognise the alpha-subunit of the purified GABA/benzodiazepine receptor. These results further support the existence in the brain of a single protein, the GABAA receptor, containing a set of regulatory binding sites for benzodiazepines and chloride channel modulators.  相似文献   

14.
The interaction of benzodiazepines and beta-carbolines with metal cations was investigated. Among numerous transition metal cations, only three, CO2+, Ni2+ and Zn2+, specifically inhibited the binding of [3H]beta-carboline-3-carboxylate ethyl ester (beta-CCE). The effects of these cations on [3H]beta-CCE binding were exactly opposite to those on [3H]diazepam binding. The effects of these cations was not dependent on lipid peroxidation. The differential effect of these cations may reflect a general difference in the way agonists and antagonists bind to the benzodiazepine receptor.  相似文献   

15.
The effects of guanyl nucleotides on the binding of [3H]flunitrazepam to rat hippocampal synaptic membranes were studied. In equilibrium binding studies, gamma-amino-n-butyric acid (GABA) increased and GTP decreased the binding affinity of [3H]flunitrazepam; GTP also caused a decrease in binding capacity. The effect, however, is variable. In studies of the dissociation kinetics of [3H]flunitrazepam using diazepam and the antagonist Ro 15-1788 as the displacers, there was evidence of two dissociation rate constants. GTP increased both the fast- and slow-dissociation rate constants and increased the ratio of the slow-dissociation binding state. The effect of GTP was mimicked by its nonhydrolyzable analogue 5'-guanylylimidodiphosphate but not by ATP and occurred when diazepam, but not when Ro 15-1788, was used as the displacer. GABA antagonized the effect of GTP on the dissociation of [3H]flunitrazepam. The nature of the benzodiazepine receptor, its actions, and the possible role of cyclic AMP as a second messenger are discussed.  相似文献   

16.
T H Chiu  O F Yu  H C Rosenberg 《Life sciences》1989,45(11):1021-1028
Irreversible incorporation of [3H]flunitrazepam and [3H]Ro15-4513 into GABA/benzodiazepine receptor subunits was studied by UV irradiation using ligand-bound membrane pellets from rat cerebral cortical and cerebellar synaptic membranes. Specific incorporation for [3H]flunitrazepam was greater in the pellet than in the suspension. The incorporation was identical for [3H]Ro15-4513 in both pellet and suspension. With the ligand-bound pellets, 50% of the available binding sites were photolabeled by both ligands in cortex and cerebellum. SDS polyacrylamide gel electrophoresis and fluorography of [3H]flunitrazepam photo-labeled receptor revealed the same number of major sites in both brain regions. In contrast, [3H]Ro15-4513 appears to label fewer sites in cortex and cerebellum. Photoaffinity labeling with [3H]flunitrazepam in ligand-bound membrane pellet provides a more selective and reliable method for studying the subunit structure of GABA/benzodiazepine receptor complex.  相似文献   

17.
The effects of temperature on the interaction of various ligands with the benzodiazepine receptor were studied in rat brain membrane preparations. The affinities of all ligands studied were reduced on raising the temperature from 4 to 37 degrees C. The variation of affinity constant with temperature deviated from the classical relationship for both the anticonvulsant ligand [3H]flunitrazepam and the proconvulsant ligand [3H]ethyl beta-carboline-3-carboxylate. This implies a variation of observed enthalpy change of binding with temperature. Possible reasons for this are discussed. Gamma-Aminobutyric acid and sodium chloride both enhance the binding of [3H]flunitrazepam--the former by an increase in the entropic component of the binding energy, and the latter by an increase in the enthalpic component. In a series of ligands of different biological activities, no simple correlation was observed between biological activity and temperature dependence of binding.  相似文献   

18.
The binding of [3H]diazepam and [3H]3-carboethoxy-beta-carboline was examined in rat brain synaptosomal membranes treated with irazepine, an alkylating benzodiazepine. Under incubation conditions that resulted in a 25-33% reduction in the Bmax of [3H]diazepam binding, only modest (less than 8.5%) reductions in the Bmax of [3H]3-carboethoxy-beta-carboline were observed. The differential effects of irazepine on the binding of these two compounds may be explained by the presence of multiple areas or "domains" on the benzodiazepine receptor.  相似文献   

19.
The effects of treatment of brain membranes with diethyl pyrocarbonate (DEP), a histidine-modifying reagent, on the binding of 3H-labeled Ro 15-4513 (ethyl-8-azido-5,6-dihydro-5-methyl-6-oxo-4H-imidazo[1,5-a]- [1,4]benzodiazepine-3-carboxylate) and [3H]diazepam were compared. DEP pretreatment produced a dose-dependent decrease in [3H]diazepam binding, whereas low DEP concentrations enhanced the binding of [3H]Ro 15-4513. These effects were reversed by incubation with hydroxylamine after the treatment. The enhancement of [3H]Ro 15-4513 binding was due to an increase in the affinity of the binding sites (KD), without any effect on binding capacity (Bmax). The enhancement was perceived in cerebral cortical, cerebellar, and hippocampal membranes. DEP treatment decreased the displacement of [3H]Ro 15-4513 binding by diazepam and FG 7142 (N-methyl-beta-carboline-3-carboxamide) but not by Ro 15-4513 and Ro 19-4603 (tert-butyl-5,6-dihydro-5-methyl-6-oxo-4H-imidazol[1,5- a]thieno[2,3-f][1,4]diazepine-3-carboxylate). Although the stimulating effect of gamma-aminobutyric acid (GABA) on [3H]-diazepam binding was not affected by DEP treatment, such treatment reduced the inhibitory effect of GABA on [3H]Ro 15-4513 binding. The enhancement of [3H]Ro 15-4513 binding was observed in membranes pretreated with DEP in the presence of flunitrazepam, whereas such pretreatment reduced significantly the inhibitory effect of DEP on [3H]-diazepam binding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Abstract: [3H]Diazepam and [3H]flunitrazepam ([3H]FNP) binding to washed and frozen synaptosomal membranes from rat cerebral cortex were compared. In Tris-citrate buffer, γ -aminobutyric acid (GABA) and NaCl both increased [3H]diazepam binding more than [3H]FNP binding. GABA and pentobarbital both enhanced this effect of NaCl. Because of the extremely rapid dissociation of [3H]diazepam in the absence of NaCl and GABA, the Bmax (maximal binding capacity) was smaller by the filtration assay than by the centrifugation assay. [3H]FNP, which dissociates more slowly, had the same Bmax in both assays. [3H]Diazepam association had two components, and was faster than [3H]FNP association. [3H]Diazepam dissociation, which also had two components, was faster than that of [3H]FNP, and also had a greater fraction of rapidly dissociating species. [3H]FNP dissociation was similar when initiated by diazepam, flunitrazepam, clonazepam, or Ro15-1788, which is a benzodiazepine antagonist. [3H]Diazepam dissociation with Ro15-1788, flunitrazepam, or clonazepam was slower than with diazepam. GABA and NaCl, but not pentobarbital, increased the percentage of slowly dissociating species. This effect of NaCl was potentiated by GABA and pentobarbital. The results support the cyclic model of benzodiazepine receptors existing in two interconvertible conformations, and suggest that, distinct from their binding affinity, some ligands (like flunitrazepam) are better than others (like diazepam) in inducing the conversion of the receptor to the higher-affinity state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号