首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Various parasitic nematodes secrete acetylcholinesterase (AChE). In this study, the localization of AChE in the nematode Nippostrongylus brasiliensis and the secretory forms of AChE in culture fluid were examined. A thiocholine method revealed that AChE activity was localized in the subventral glands, which have a secretory and excretory function via a duct connected to the excretory pore. By electron microscopy, AChE activity was found mainly in the matrix of secretory granules, and sometimes in the Golgi apparatus in the subventral gland cells. These results show that nematode AChE is produced and stored in the subventral glands. Monoclonal antibodies against AChE of human erythrocytes or electric rays also bound to the nematode subventral gland, suggesting immuno-cross-reactivity of AChE among these species. When AChE activity in the nematode excretory-secretory product was examined by SDS polyacrylamide gel electrophoresis combined with the thiocholine method, intense activity was demonstrated as a single band at 74kDa. Immunoblot analysis showed specific recognition of this molecule by IgE and IgG1 antibodies, but not by IgG2a antibody, in nematode-infected rat sera. These results indicate that the nematode AChE molecule produced in and secreted from the subventral glands is antigenic for the production of IgE/IgG1 in host animals.  相似文献   

2.
Summary The oesophagus ofAscaris lumbricoides is built up by a muscular-epithelial part containing the ordinary muscle fibres which run from the three sides of the oesophagus lumen towards the periphery and a system of fibres and fibrous plates at the margin of the triradiate oesophagus lumen. In four complete series ofA. lumbricoides (males and females) the nuclei of both kinds of fibres were constant in arrangement and number. The glandular system of the oesophagus consists of a large dorsal gland and two smaller subventral ones. The opening of the dorsal gland is at the anterior end of the oesophagus in the middle between nerve ring and lips. The openings of the two subventral glands are placed in the posterior end of the oesophagus in the middle of the two subventral slides at the same level. The dorsal gland fills with its ramifications the space between the muscle fibres of the three sectors with the exception of the most anterior end of the oesophagus before the opening of the dorsal gland and the subventral sectors in the posterior end of the oesophagus. The subventral sectors of the posterior end are filled by the ramifications of the two subventral glands. The ramifications of these three glands are connected. The three nuclei of the three glands have their place in the posterior end of the oesophagus, the nuclei of the subventral glands are situated in the most ventral part of each subventral sector close to each other, the nucleus of the dorsal gland has a complicated form and extends over the whole breadth of the dorsal sector. With 10 figures in the text.  相似文献   

3.
Three monodonal antibodies (MAbs) that bound to secretory granules within the subventral esophageal glands of second-stage juveniles (J2) of the soybean cyst nematode (SCN), Heterodera glycines, were developed from intrasplenic immunizations of a mouse with homogenates of SCN J2. Two MAbs to the secretory granules within subventral glands and one MAb to granules within the dorsal esophageal gland of SCN J2 were developed by intrasplenic immunizations with J2 stylet secretions. Stylet secretions, produced in vitro by incubating SCN J2 in 5-methoxy DMT oxalate, were solubilized with a high pH buffer and concentrated for use as antigen. Three of the five MAbs specific to the subventral esophageal glands bound to stylet secretions from SCN J2 in immunofluorescence and ELISA assays. Two of these three MAbs also bound to secretory granules within both the dorsal and subventral esophageal glands of young SCN females. All five of the subventral gland MAbs bound to the subventral glands of Heterodera schachtii and one bound to the subventral glands of Globodera tabacum, but none bound to any structures in Meloidogyne incognita or Caenorhabditis elegans.  相似文献   

4.
The fine structure of the esophagus, including procorpus, metacorpus, isthmus, gland lobe, and esophago-intestinal junction, is examined in males of Sarisodera hydrophila. A cuticle-lined lumen extends most of the length of the esophagus, broadens to form a pump chamber in the metacorpus, and posteriorly is continuous with junctional complexes among four esophago-intestinal cells. These four cells are partially enveloped by the gland lobe which basically consists of three gland cells, one dorsal and two subventral. Each gland cell has an anterior process which opens into the lumen of the esophagus through a cuticle-lined duct. The dorsal gland joins the lumen in the anterior portion of the procorpus, whereas ducts of the subventral glands terminate at the base of the metacorpus pump chamber. The subventral glands are predominant in the posterior portion of the gland lobe and are partially ensheathed by a narrow portion of the dorsal gland which extends to within 5 μm of the posterior terminus of the gland lobe. Contents of the dorsal gland include primarily electron dense granules, although rough endoplasmic reticulum (RER) is predominant posteriorly. Secretory granules within the subventral glands vary in morphology and are evenly distributed throughout the two ceils among other organelles, including RER and a large Golgi apparatus. Innervation of the esophagus includes nerve processes which originate from several perikaryons (cell bodies) located in the anterior portion of the gland lobe. The esophagus of males of S. hydrophila is compared with that of other Heteroderoidea, Heterodera glycines and Meloidogyne incognita.  相似文献   

5.
Summary The structure of the male reproductive systems of two species ofHaplognathia cf.lyra andH. cf.rosacea was described. The structure of the testes and the anterior portions of the sperm ducts in both species was found to be similar. However, considerable species differences were found between the structures of the glands and muscles associated with the reproductive systems. These were more elaborate inH. cf.lyra than inH. cf.rosacea. The former species possessed an H-shaped sperm duct gland, three distinct groups of penis muscles and a penis with two cell types and with a lumen. The latter species had paired sperm duct glands, no specialized penis muscles and a penis with only one cell type and without a detectable lumen. No open gonopore was observed in either species. The sperm presumably exit through a ventral tissue connection observed connecting the penis and the ventral epidermis. These findings were discussed in the light of Mainitz's (1977) theory concerning the primitive penis type within the Gnathostomulida.Abbreviations ap anterior-posterior penis muscles - bm basement membrane - csd common sperm duct - dl dorsal lumen of the penis - dp dorsal gland cells of the penis - dv dorsoventral muscles anterior to the penis - dw sperm duct wall cell - e epidermis - ex exit cell - g intestine - gl gut lumen - n nerve - p penis - sd sperm duct - sdg sperm duct gland - tw testes wall cell - vl ventral lumen of the penis - vp ventral gland cells of the penis This project was supported by NSF grant #GB 42211 (R.M. Rieger P.I.). The line drawings have been executed after our design by Ms. Linda McVay  相似文献   

6.
Summary The dorsal and subventral esophageal glands and their secretory granules in the root-knot nematodeMeloidogyne incognita changed during parasitism of plants. The subventral esophageal glands shrank and the dorsal gland enlarged with the onset of parasitism. While secretory granules formed by both types of glands were spherical, membrane-bound, and Golgi derived, the granules differed in morphology and size between the two types of glands. Subventral gland extensions in preparasitic second-stage juveniles were packed with secretory granules which varied in diameter from 700–1,100 nm and had a finely granular matrix. Within the matrix of each subventral gland granule was an electron-transparent core that contained minute spherical vesicles. The size and position of the core varied within different granules. Few granules were present in the dorsal gland extension in preparasitic juveniles. The matrix of dorsal gland secretory granules formed during parasitism was homogeneous and more electron-dense than the matrix of subventral gland granules. Subventral gland secretory granules of parasitic juveniles and adult females appeared degenerate.  相似文献   

7.
D. Bunke 《Zoomorphology》1994,114(4):247-258
Summary The excretory system of Aeolosoma bengalense has been examined by light and electron microscopy. The system consists of seven serially arranged paris of metanephridia and six pairs of podocytes (referring to the first zoid of an animal chain). The podocytes surround blood spaces of the alimentary canal forming dorsoventrally running loops that emerge on both sides of it. The two elements of the system have a correlative position, each podocyte extending in close proximity to the funnel of a metanephridium. Only in the region of the first metanephridia are podocytes lacking. The nephrostome of the metanephridia consists of two cells, an inner one, the terminal duct cell, and an outer one enwrapping it, called the mantle cell. Nephrostomal cilia that extend into the coelomic space arise exclusively from the rim of the mantle cell whereas those of the terminal duct cell arranged on its luminal surface protrude into the canal forming a flame. The nephridial canal is ciliated throughout and is either intra- or extracellular. Its initial loops aggregate to form a compact organ, the nephridial body. The middle part of the duct constitutes a loop that ascends at each side of the alimentary canal where it is in intimate contact with its blood spaces. Ultrastructural features of the duct cells suggest a reabsorptive function in two regions, the nephridial body and the uppermost part of the loop. The terminal part of the duct passes through the nephridial body and opens ventrolaterally. Generally, the transverse vascular loops at the gut consist of one podocyte each. In the oesophageal region, where only one pair of podocytes is present, the loops connect the dorsal with the ventral longitudinal vessel. Three pairs of podocytes are present in the dilated region of the intestine emerging from its lateral wall and joining the median ventral vessel or blood spaces near by. In the hind gut, where two pairs of podocytes occur, the loops arise from the dorsolateral part and enter directly the ventral vessel. Cytological features of podocytes resemble those of other animals. The results are discussed on the basis of current theories on the function and the phylogenetic significance of excretory systems in the Annelida.Abbreviations bl basal lamina - bs blood space - bv blood vessel - cf ciliary flame - ci cilia - co connection of the vascular loop with the intestinal blood space - cu cuticle - db dense body - dc duct cell - di dictyosome - za zonula adhearens - dv dorsal vessel - ecb epicuticular body - ev endocytotic vesicle - ic intestinal cell - ici inner cilia - iv intestinal vessel - lm longitudinal muscle - mc mantle cell - mg midgut - mi mitochondrion - mv microvilli - nu nucleus - oci outer cilia - oe oesophagus - pc podocyte - pe pedicel - pel primary elongation of the podocyte - sm slit membrane - tc terminal duct cell - ve vesicle with heterogeneous contents - vv ventral vessel  相似文献   

8.
W. Kobusch 《Zoomorphology》1994,114(4):239-246
Summary The ultrastructure of the maxillary gland of the terrestrial isopod Porcellio scaber is described. The gland is composed of an end sac, an excretory duct and a terminal duct which opens by a valve at the base of maxilla 2. An epithelium of podocytes in the end sac enables passive ultrafiltration by haemolymph pressure. The excretory duct shows ultrastructural adaptations to secretion and resorption. SEM micrographs reveal the location and the morphology of the valve at the excretory pore. A model reconstructed from serial sections allowed the calculation of morphometric data of the gland. The ultrafiltration area of the end sac and the area of resorption and secretion of the excretory duct amount to 0.091 and 0.157 cm2 per 1 g of fresh body weight, respectively. The total volume of the gland is calculated to be 0.04 mm3 in a specimen of 13.7 mm length. In comparison with the marine species Mesidotea entomon, the relative areas for ultrafiltration and resorption of the gland of P. scaber are more than twice as large as the corresponding areas of the marine species. This relative enlargement of the gland in P. scaber and the form of the valve at the excretory pore are seen as adaptations to terrestrial life.  相似文献   

9.
10.
The development and life stages of Meloidogyne cruciani on tomato was studied at 28 C. Roots of 2-wk-old ''Rutgers'' tomato seedlings were exposed to inoculum for 24 h, rinsed, and the seedlings repotted. No major changes in juvenile development were observed prior to 8 days after inoculation. At 11 days the second-stage juvenile had enlarged considerably. The genital primordium had not yet asumed the V-shape characteristic of developing females, but the presence of rectal glands identified the juveniles as females. At this time (11 days), two additional, previously undescribed esophageal lobes were first observed; they were adjacent to the dorsal and subventral glands. After molting from second to third stage, the stylet cone, shaft, and the lumen of the stylet knobs are shed and remain attached to the second-stage cuticle. The excretory duct of the third-stage juveniles was directed anteriorly from the excretory pore of the second-stage cuticle and appear attached to the body wall of the third-stage juveniles opposite the procorpus. At 19 days after inoculation, the last molt took place. The adult female possessed a new stylet, a large five-gland esophagus, a prominent excretory system ending in a unicellular gland and a fully developed reproductive system.  相似文献   

11.
Monoclonal antibodies to secretory granules in the dorsal or subventral esophageal glands were generated by injecting BALB/c mice with immunogens from preparasitic second-stage juveniles (J2) of Meloidogyne incognita. Antibodies specific for secretory granules in the J2 subventral esophageal glands or the dorsal gland were identified by indirect immunofluorescence microscopy. Only antibodies that reacted with granules in the J2 dorsal gland reacted with the esophageal gland lobe ofM. incognita adult females. The antibodies also reacted with secretory granules in both types of esophageal glands in M. javanica and M. arenaria J2 but not with granules in esophageal glands of Heterodera glycines J2.  相似文献   

12.
Wu  Jihua  Somerfield  Paul J.  Austen  Melanie C.  Liang  Yanling 《Hydrobiologia》2000,431(2-3):205-210
Parodontophora limnophila sp. nov. is described from Poyang Lake, the largest freshwater lake of China. It is characterized by having an amphid with its posterior end close to the base of the stoma, relatively short cephalic setae, opisthocephalic setae arranged as two subdorsal groups of three longitudinally arranged setae and two single subventral setae, excretory pore at the level of the anterior part of the stoma and renette gland 34–47% of the oesophageal length. To date, the new species is the only Parodontophora species found in freshwater habitats.  相似文献   

13.
G. Purschke 《Zoomorphology》1985,105(4):223-239
Summary A comparative anatomical and ultrastructural study of ventral pharyngeal organs (pharyngeal bulbs) was carried out in two species of the Dinophilidae: Dinophilus gyrociliatus and Trilobodrilus axi. Special attention was paid to the fine structure of the stomodeal epithelium, cuticle, glands, muscles, and myoepithelial junctions. The differences between the species are very slight. The pharyngeal organ of the Dinophilidae is characterized by the following features: solid muscle bulbus made up of muscle cells only, bulbus muscle cells with two myofilament systems crossing at an angle of about 90°, gap junctions between these muscle cells, bulbus projects into a pharyngeal sac and bears rostrally a specific epithelium and cuticle, no bulbus glands, no investing (= sagittal) muscles, specific cuticle ultrastructure, cilia of ascending oesophagus with asymmetric tips, specific structure and position of salivary gland openings. The phylogenetic importance of these structures is discussed. Some of these characters are clearly autapomorphic features of the Dinophilidae and no common derived structures to other families with a ventral pharyngeal organ are present. Therefore, it is most likely that the dinophilid pharyngeal organ evolved independently. These findings do not agree with the hypothesis of the unity of the archiannelid families (Polygordiidae, Protodrilidae, Saccocirridae, Nerillidae, Dinophilidae, and Diurodrilidae) established on the basis of an assumed structural similarity of their ventral pharyngeal organs.Abbreviations bb basal body - bep bulbus epithelium - bl basal lamina - bm bulbus muscle - c cilium - cc coelenchyme cell - cm circular muscle - cr caudal rootlet - cu cuticle - dblm dorsal bulbus longitudinal muscle - dlm dorsal longitudinal muscle - dsn dorsal stomatogastric nerve - dy dyad - el electron-dense layer - fl fibrous layer - fi filaments - g Golgi apparatus - gl gland cell - hv homogeneous vesicle - l lipid droplet - la external lamina - lal lamellar layer - ll lower lip - lm longitudinal muscle - ly lysosome - m mitochondrion - mo mouth opening - mt microtubule - mv microvillus - mvp microvillar process - n nucleus - nu nucleolus - oes oesophagus - pcom preoral commissure - phf pharyngeal fold - phl pharyngeal lumen - phs pharyngeal sac - pms peripheral myofilament system - r rootletlike structure - rer rough endoplasmic reticulum - rr rostral rootlet - s sarcoplasmic reticulum - sc salivary canal - scom suboesophageal commissure - sd septate desmosome - ser smooth endoplasmic reticulum - sg secretory granule - sgl salivary gland - sn stomatogastric nerve - st stomach - step stomodeal epithelium - tep transitional epithelium - tf tonofilaments - va vacuole - vlm ventral longitudinal muscle - vsn ventral stomatogastric nerve - z z-element - za zonula adherens  相似文献   

14.
Ultrastructural cytochemical tests for several enzymes, proteins, carbohydrates, and nucleic acids were conducted on secretory granules o£ dorsal and subventral esophageal glands of preparasitic second-stage juveniles and the dorsal gland of adult females of Meloidogyne incognita. Secretory granules in the subventral glands of juveniles stained positive for acid phosphatase. Peroxidase, DNase, RNase, cellulase, and nucleic acids were not detected in these granules. Secretory granules in the dorsal gland of adult females stained positive for peroxidase (pH 7.6) in < 50% of the tests, Acid phosphatase, β-glucuronidase, DNase, RNase, polyphenoloxidase, cellulase, and carbohydrates were not detected in dorsal gland granules in adult females. Positive staining with cobalt thiocyanate, a stain for amino groups of basic proteins, occurred in secretory granules in the dorsal gland, ribosomes, and chromatin in adult females. Ribosomes, nuclei, and secretory granules of the dorsal gland of adult females intensely stained when incubated in three reagents specific for nucleic acid.  相似文献   

15.
Summary The mutant cl1 of Paramecium previously described (Sainsard et al., 1974) differs from wild-type by a single recessive nuclear gene, cl 1, and its mitochondria, Mcl, can be distinguished from wild-type mitochondria, M+, (Sainsard-Chanet, 1976). In order to determine the nature of the difference between Mcl and M+ mitochondria, the stability of the Mcl phenotype was studied. It was found that the Mcl character behaves like a mitochondrial mutation. Associated with a wild-type nucleus, Mcl mitochondria retain indefinitely their distinctive properties, i.e. compatibility with a cl 1/cl 1 nucleus and decrease of the cellular growth rate and cytochrome aa3 content. Some properties of the cl1 mutant which is in fact a double nuclear-mitochondrial mutant with the mitochondrial mutation partially suppressing the nuclear one are discussed.  相似文献   

16.
Ultrastructure of the renette cell and caudal glands was studied in the free-living aquatic nematode Sphaerolaimus gracilis. The renette cell occurred posterior to the esophageal-intestinal junction and opened through an ampulla to a ventral pore behind the nerve ring. The caudal gland system of the tail consisted of two gland cells opening through separate pores and 2 to 3 other gland cells of a different type opening through a common pore. The renette cell and the two caudal gland cells were similar and both contained secretory granules, 0.5-1.5 μm in diameter. The material released attached the nematode to the substrate. The renette ampulla was surrounded by a specialized cell, the ampulla cell, which had characteristics of myoepithelium. A plug or valve structure connected to the ampulla cell may regulate the output of the secretory material. The ampulla cell is able to contract and thus is probably under direct neuronal control. Other cells in the renette ampulla region of body cavity were termed supporting cells. Living, cold-relaxed nematodes were attached to sediment particles in the renette pore region and at the tail tip. Release from sediment particles was mechanical at the renette cell discharge site but appeared to be chemical at the caudal gland. In behavioral experiments, nematodes in a water current had the ability to release a thread from the caudal glands while maintaining contact with a sediment particle attached to the tail end. If the thread was strong enough, it also could be used to change location. Nematodes anchored by the thread from the caudal glands to a sediment particle could float in water currents until they attached themselves to another sediment particle with the help of secretions from the renette cells.  相似文献   

17.
Abstract The gonochoristic syllid Petitia amphophthalma is one of the truly interstitial polychaetes. P. amphophthalma does not show any epitokous modifications at maturity such as those that usually occur in syllids. The reproductive structures are unique: the male genital organs consist of a seminal vesicle in chaetigers 6–10, subdivided into a dorsal part tightly filled with spermatozoa and a ventral part with contents in different stages of spermatogenesis, one pair of sperm ducts and conspicuous gland cells situated in chaetigers 10 and 11. Their glandular secretions are discharged into the sperm duct together with those of other types of gland cells that form the duct. The oocytes develop freely within the body cavity of the females. Each of the fertile segments possesses a paired oviduct ending in a large ciliated funnel. Sperm ducts and oviducts are probably modifications of excretory organs; nephridia are absent in segments where gonoducts occur. A direct sperm transfer by lytic opening of the integument of the female and internal fertilization are inferred. Copyright © 1996 Published by Elsevier Science Ltd on behalf of the Royal Swedish Academy of Sciences  相似文献   

18.
Summary The copulatory organs in Macrostomum sp. and Microstomum sp. contain simple tubular stylets which are intracellular specializations. The stylet in Macrostomum sp. is produced in a syncytium covering part of the prostatic vesicle. The proximal region of the stylet surrounds the vesicle which contains six prostatic gland ducts and six accessory (sensory) cells containing ciliary rootlets. The stylet in Microstomum sp. is produced in an extension of a syncytium which lines the combined seminal-prostatic vesicle. The stylet is connected to the combined vesicle by a narrow bridge of matrix syncytium through which sperm, prostatic gland products and sensory cilia pass from the vesicle to the stylet lumen. In both species the matrix syncytium can be interpreted as a specialized terminal end of the male canal epithelium. Stylets of Turbellaria and other lower Metazoa are discussed in regards to structure (one or several pieces) and location (in separate cells, in a syncytium, or extracellular).Abbreviations used in figures ac accessory cell - b basal body - c cilium - cv combined vesicle - d prostatic gland duct - dc degenerative cell - di dictyosome - e epidermis - ed ejaculatory duct - g prostatic gland cell - h hemidesmosome - i intercellular matrix - im internal muscle - in intestine; - l lumen of male canal - lm longitudinal muscle - m matrix syncytium - mc male canal epithelial cell - mi microfilaments - mt microtubules - mu muscle cell - mv microvilli - n nucleus - np nerve process - ns neurosecretory (?) granule - p prostatic vesicle - pv prostatic part of combined vesicle - r rootlet - s stylet - sm stylet material - sp sperm - sv seminal part of combined vesicle  相似文献   

19.
The grey-lethal (gl) mouse is the most relevant animal model for recessive osteopetrosis, a genetic defect affecting bone resorption. To localize the gl gene, two novel backcrosses between the gl mutant strain GL/Le dl J +/+gl and with the Mus spretus or the Mus m. molossinus have been generated and typed with 19 DNA markers representative of genes or microsatellites. In the Mus m. molossinus backcross, the gl locus cosegregates with the D10Mit108,109,184,193,254,255 markers within a 1 centimorgan genetic interval between the markers (D10Mit54,55,215,Cd24a) and D10Mit148. Our results have also eliminated all the five candidate genes previously localized to this region (Braf-rs1, Fyn, Cd24a, Ros1, and Gja1). On the Mus spretus background, segregation distortion due to a ∼threefold differential survival resulted in a severe deficit in gl/gl animals, indicating the presence of modifier genes. We have also characterized nine cosegregating microsatellite markers closely linked to gl as defined by their specific polymorphisms for the Chromosome (Chr) 10 harboring the gl mutation. Screening of several mouse inbred strains for these polymorphic markers revealed an identical pattern between gl and 129/SvEms, suggesting that the gl mutation arose on this genetic background. The linkage between this polymorphic region and the gl locus provides an entry point to produce a physical map to isolate the gl gene. Received: 23 June 1998 / Accepted: 17 November 1998  相似文献   

20.
Summary The genital system ofCryptazeca monodonta is very similar to those reported for semidiaulic stylommatophores, but with some specific features. The fertilization pouch is simple and surrounded by subepithelial goblet gland cells. The spermoviduct has two different grooves: the oviductal channel and the spermatic groove, which run together with a blind-ending allospermiduct that opens into the lumen of the free oviduct. The vagina has a thick muscular wall with numerous pigmentary cells embedded in it. The vas deferens diverges from the spermiduct and becomes mainly glandular just before it joins the penis. This genital system is equipped with an auxiliary copulatory structure that consists of two independent and complementary organs. One of them is located just before the fusion of the free oviduct and the spermatheca stalk lumina and consists mainly of a thick mass of connective tissue. The other is a muscular sarcobellum located inside the penis. Both these organs are covered by small papillae whose connective cells are stacked. Each papilla has a solid spine on its top, which seems to be of mesenchymatous origin. As in other stylommatophores, the auxiliary copulatory organ is equipped with an adjoining gland, which inCryptazeca is next to the sarcobellum.Abbreviations ACO auxiliary copulatory organ - ag albumen gland - al allospermiduct - c connective aggregate of ACO - cc connective cells of ACO papillae - cf connective fibres - ep epiphalus - fo free oviduct - fp fertilization pouch - gl.c gland cells of sarcobellum - hd hermaphroditic duct (distal portion) - m muscle fibres - ov oviduct - p penis - pc penial caecum - pp papillae of ACO - pr prostatic gland - prm penial retractor muscle - p.sh penial sheath - s spermatheca - sc sarcobellum - SEM scanning electron micrograph - sov spermoviduct - sp spine - spd spermiduct - ss spermatheca stalk - v vagina - vd vas deferens  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号